]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/entry/entry_64.S
x86/entry/64: Make cpu_entry_area.tss read-only
[mirror_ubuntu-artful-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <linux/err.h>
41
42 .code64
43 .section .entry.text, "ax"
44
45 #ifdef CONFIG_PARAVIRT
46 ENTRY(native_usergs_sysret64)
47 UNWIND_HINT_EMPTY
48 swapgs
49 sysretq
50 END(native_usergs_sysret64)
51 #endif /* CONFIG_PARAVIRT */
52
53 .macro TRACE_IRQS_IRETQ
54 #ifdef CONFIG_TRACE_IRQFLAGS
55 bt $9, EFLAGS(%rsp) /* interrupts off? */
56 jnc 1f
57 TRACE_IRQS_ON
58 1:
59 #endif
60 .endm
61
62 /*
63 * When dynamic function tracer is enabled it will add a breakpoint
64 * to all locations that it is about to modify, sync CPUs, update
65 * all the code, sync CPUs, then remove the breakpoints. In this time
66 * if lockdep is enabled, it might jump back into the debug handler
67 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 *
69 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
70 * make sure the stack pointer does not get reset back to the top
71 * of the debug stack, and instead just reuses the current stack.
72 */
73 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74
75 .macro TRACE_IRQS_OFF_DEBUG
76 call debug_stack_set_zero
77 TRACE_IRQS_OFF
78 call debug_stack_reset
79 .endm
80
81 .macro TRACE_IRQS_ON_DEBUG
82 call debug_stack_set_zero
83 TRACE_IRQS_ON
84 call debug_stack_reset
85 .endm
86
87 .macro TRACE_IRQS_IRETQ_DEBUG
88 bt $9, EFLAGS(%rsp) /* interrupts off? */
89 jnc 1f
90 TRACE_IRQS_ON_DEBUG
91 1:
92 .endm
93
94 #else
95 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
96 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
97 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
98 #endif
99
100 /*
101 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
102 *
103 * This is the only entry point used for 64-bit system calls. The
104 * hardware interface is reasonably well designed and the register to
105 * argument mapping Linux uses fits well with the registers that are
106 * available when SYSCALL is used.
107 *
108 * SYSCALL instructions can be found inlined in libc implementations as
109 * well as some other programs and libraries. There are also a handful
110 * of SYSCALL instructions in the vDSO used, for example, as a
111 * clock_gettimeofday fallback.
112 *
113 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 * then loads new ss, cs, and rip from previously programmed MSRs.
115 * rflags gets masked by a value from another MSR (so CLD and CLAC
116 * are not needed). SYSCALL does not save anything on the stack
117 * and does not change rsp.
118 *
119 * Registers on entry:
120 * rax system call number
121 * rcx return address
122 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
123 * rdi arg0
124 * rsi arg1
125 * rdx arg2
126 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
127 * r8 arg4
128 * r9 arg5
129 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130 *
131 * Only called from user space.
132 *
133 * When user can change pt_regs->foo always force IRET. That is because
134 * it deals with uncanonical addresses better. SYSRET has trouble
135 * with them due to bugs in both AMD and Intel CPUs.
136 */
137
138 .pushsection .entry_trampoline, "ax"
139
140 /*
141 * The code in here gets remapped into cpu_entry_area's trampoline. This means
142 * that the assembler and linker have the wrong idea as to where this code
143 * lives (and, in fact, it's mapped more than once, so it's not even at a
144 * fixed address). So we can't reference any symbols outside the entry
145 * trampoline and expect it to work.
146 *
147 * Instead, we carefully abuse %rip-relative addressing.
148 * _entry_trampoline(%rip) refers to the start of the remapped) entry
149 * trampoline. We can thus find cpu_entry_area with this macro:
150 */
151
152 #define CPU_ENTRY_AREA \
153 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
154
155 /* The top word of the SYSENTER stack is hot and is usable as scratch space. */
156 #define RSP_SCRATCH CPU_ENTRY_AREA_SYSENTER_stack + \
157 SIZEOF_SYSENTER_stack - 8 + CPU_ENTRY_AREA
158
159 ENTRY(entry_SYSCALL_64_trampoline)
160 UNWIND_HINT_EMPTY
161 swapgs
162
163 /* Stash the user RSP. */
164 movq %rsp, RSP_SCRATCH
165
166 /* Load the top of the task stack into RSP */
167 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
168
169 /* Start building the simulated IRET frame. */
170 pushq $__USER_DS /* pt_regs->ss */
171 pushq RSP_SCRATCH /* pt_regs->sp */
172 pushq %r11 /* pt_regs->flags */
173 pushq $__USER_CS /* pt_regs->cs */
174 pushq %rcx /* pt_regs->ip */
175
176 /*
177 * x86 lacks a near absolute jump, and we can't jump to the real
178 * entry text with a relative jump. We could push the target
179 * address and then use retq, but this destroys the pipeline on
180 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
181 * spill RDI and restore it in a second-stage trampoline.
182 */
183 pushq %rdi
184 movq $entry_SYSCALL_64_stage2, %rdi
185 jmp *%rdi
186 END(entry_SYSCALL_64_trampoline)
187
188 .popsection
189
190 ENTRY(entry_SYSCALL_64_stage2)
191 UNWIND_HINT_EMPTY
192 popq %rdi
193 jmp entry_SYSCALL_64_after_hwframe
194 END(entry_SYSCALL_64_stage2)
195
196 ENTRY(entry_SYSCALL_64)
197 UNWIND_HINT_EMPTY
198 /*
199 * Interrupts are off on entry.
200 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
201 * it is too small to ever cause noticeable irq latency.
202 */
203
204 swapgs
205 movq %rsp, PER_CPU_VAR(rsp_scratch)
206 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
207
208 TRACE_IRQS_OFF
209
210 /* Construct struct pt_regs on stack */
211 pushq $__USER_DS /* pt_regs->ss */
212 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
213 pushq %r11 /* pt_regs->flags */
214 pushq $__USER_CS /* pt_regs->cs */
215 pushq %rcx /* pt_regs->ip */
216 GLOBAL(entry_SYSCALL_64_after_hwframe)
217 pushq %rax /* pt_regs->orig_ax */
218 pushq %rdi /* pt_regs->di */
219 pushq %rsi /* pt_regs->si */
220 pushq %rdx /* pt_regs->dx */
221 pushq %rcx /* pt_regs->cx */
222 pushq $-ENOSYS /* pt_regs->ax */
223 pushq %r8 /* pt_regs->r8 */
224 pushq %r9 /* pt_regs->r9 */
225 pushq %r10 /* pt_regs->r10 */
226 pushq %r11 /* pt_regs->r11 */
227 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
228 UNWIND_HINT_REGS extra=0
229
230 /*
231 * If we need to do entry work or if we guess we'll need to do
232 * exit work, go straight to the slow path.
233 */
234 movq PER_CPU_VAR(current_task), %r11
235 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
236 jnz entry_SYSCALL64_slow_path
237
238 entry_SYSCALL_64_fastpath:
239 /*
240 * Easy case: enable interrupts and issue the syscall. If the syscall
241 * needs pt_regs, we'll call a stub that disables interrupts again
242 * and jumps to the slow path.
243 */
244 TRACE_IRQS_ON
245 ENABLE_INTERRUPTS(CLBR_NONE)
246 #if __SYSCALL_MASK == ~0
247 cmpq $__NR_syscall_max, %rax
248 #else
249 andl $__SYSCALL_MASK, %eax
250 cmpl $__NR_syscall_max, %eax
251 #endif
252 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
253 movq %r10, %rcx
254
255 /*
256 * This call instruction is handled specially in stub_ptregs_64.
257 * It might end up jumping to the slow path. If it jumps, RAX
258 * and all argument registers are clobbered.
259 */
260 call *sys_call_table(, %rax, 8)
261 .Lentry_SYSCALL_64_after_fastpath_call:
262
263 movq %rax, RAX(%rsp)
264 1:
265
266 /*
267 * If we get here, then we know that pt_regs is clean for SYSRET64.
268 * If we see that no exit work is required (which we are required
269 * to check with IRQs off), then we can go straight to SYSRET64.
270 */
271 DISABLE_INTERRUPTS(CLBR_ANY)
272 TRACE_IRQS_OFF
273 movq PER_CPU_VAR(current_task), %r11
274 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
275 jnz 1f
276
277 LOCKDEP_SYS_EXIT
278 TRACE_IRQS_ON /* user mode is traced as IRQs on */
279 movq RIP(%rsp), %rcx
280 movq EFLAGS(%rsp), %r11
281 addq $6*8, %rsp /* skip extra regs -- they were preserved */
282 UNWIND_HINT_EMPTY
283 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
284
285 1:
286 /*
287 * The fast path looked good when we started, but something changed
288 * along the way and we need to switch to the slow path. Calling
289 * raise(3) will trigger this, for example. IRQs are off.
290 */
291 TRACE_IRQS_ON
292 ENABLE_INTERRUPTS(CLBR_ANY)
293 SAVE_EXTRA_REGS
294 movq %rsp, %rdi
295 call syscall_return_slowpath /* returns with IRQs disabled */
296 jmp return_from_SYSCALL_64
297
298 entry_SYSCALL64_slow_path:
299 /* IRQs are off. */
300 SAVE_EXTRA_REGS
301 movq %rsp, %rdi
302 call do_syscall_64 /* returns with IRQs disabled */
303
304 return_from_SYSCALL_64:
305 TRACE_IRQS_IRETQ /* we're about to change IF */
306
307 /*
308 * Try to use SYSRET instead of IRET if we're returning to
309 * a completely clean 64-bit userspace context. If we're not,
310 * go to the slow exit path.
311 */
312 movq RCX(%rsp), %rcx
313 movq RIP(%rsp), %r11
314
315 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
316 jne swapgs_restore_regs_and_return_to_usermode
317
318 /*
319 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
320 * in kernel space. This essentially lets the user take over
321 * the kernel, since userspace controls RSP.
322 *
323 * If width of "canonical tail" ever becomes variable, this will need
324 * to be updated to remain correct on both old and new CPUs.
325 *
326 * Change top bits to match most significant bit (47th or 56th bit
327 * depending on paging mode) in the address.
328 */
329 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
330 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
331
332 /* If this changed %rcx, it was not canonical */
333 cmpq %rcx, %r11
334 jne swapgs_restore_regs_and_return_to_usermode
335
336 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
337 jne swapgs_restore_regs_and_return_to_usermode
338
339 movq R11(%rsp), %r11
340 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
341 jne swapgs_restore_regs_and_return_to_usermode
342
343 /*
344 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
345 * restore RF properly. If the slowpath sets it for whatever reason, we
346 * need to restore it correctly.
347 *
348 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
349 * trap from userspace immediately after SYSRET. This would cause an
350 * infinite loop whenever #DB happens with register state that satisfies
351 * the opportunistic SYSRET conditions. For example, single-stepping
352 * this user code:
353 *
354 * movq $stuck_here, %rcx
355 * pushfq
356 * popq %r11
357 * stuck_here:
358 *
359 * would never get past 'stuck_here'.
360 */
361 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
362 jnz swapgs_restore_regs_and_return_to_usermode
363
364 /* nothing to check for RSP */
365
366 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
367 jne swapgs_restore_regs_and_return_to_usermode
368
369 /*
370 * We win! This label is here just for ease of understanding
371 * perf profiles. Nothing jumps here.
372 */
373 syscall_return_via_sysret:
374 /* rcx and r11 are already restored (see code above) */
375 UNWIND_HINT_EMPTY
376 POP_EXTRA_REGS
377 .Lpop_c_regs_except_rcx_r11_and_sysret:
378 popq %rsi /* skip r11 */
379 popq %r10
380 popq %r9
381 popq %r8
382 popq %rax
383 popq %rsi /* skip rcx */
384 popq %rdx
385 popq %rsi
386
387 /*
388 * Now all regs are restored except RSP and RDI.
389 * Save old stack pointer and switch to trampoline stack.
390 */
391 movq %rsp, %rdi
392 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
393
394 pushq RSP-RDI(%rdi) /* RSP */
395 pushq (%rdi) /* RDI */
396
397 /*
398 * We are on the trampoline stack. All regs except RDI are live.
399 * We can do future final exit work right here.
400 */
401
402 popq %rdi
403 popq %rsp
404 USERGS_SYSRET64
405 END(entry_SYSCALL_64)
406
407 ENTRY(stub_ptregs_64)
408 /*
409 * Syscalls marked as needing ptregs land here.
410 * If we are on the fast path, we need to save the extra regs,
411 * which we achieve by trying again on the slow path. If we are on
412 * the slow path, the extra regs are already saved.
413 *
414 * RAX stores a pointer to the C function implementing the syscall.
415 * IRQs are on.
416 */
417 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
418 jne 1f
419
420 /*
421 * Called from fast path -- disable IRQs again, pop return address
422 * and jump to slow path
423 */
424 DISABLE_INTERRUPTS(CLBR_ANY)
425 TRACE_IRQS_OFF
426 popq %rax
427 UNWIND_HINT_REGS extra=0
428 jmp entry_SYSCALL64_slow_path
429
430 1:
431 jmp *%rax /* Called from C */
432 END(stub_ptregs_64)
433
434 .macro ptregs_stub func
435 ENTRY(ptregs_\func)
436 UNWIND_HINT_FUNC
437 leaq \func(%rip), %rax
438 jmp stub_ptregs_64
439 END(ptregs_\func)
440 .endm
441
442 /* Instantiate ptregs_stub for each ptregs-using syscall */
443 #define __SYSCALL_64_QUAL_(sym)
444 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
445 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
446 #include <asm/syscalls_64.h>
447
448 /*
449 * %rdi: prev task
450 * %rsi: next task
451 */
452 ENTRY(__switch_to_asm)
453 UNWIND_HINT_FUNC
454 /*
455 * Save callee-saved registers
456 * This must match the order in inactive_task_frame
457 */
458 pushq %rbp
459 pushq %rbx
460 pushq %r12
461 pushq %r13
462 pushq %r14
463 pushq %r15
464
465 /* switch stack */
466 movq %rsp, TASK_threadsp(%rdi)
467 movq TASK_threadsp(%rsi), %rsp
468
469 #ifdef CONFIG_CC_STACKPROTECTOR
470 movq TASK_stack_canary(%rsi), %rbx
471 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
472 #endif
473
474 /* restore callee-saved registers */
475 popq %r15
476 popq %r14
477 popq %r13
478 popq %r12
479 popq %rbx
480 popq %rbp
481
482 jmp __switch_to
483 END(__switch_to_asm)
484
485 /*
486 * A newly forked process directly context switches into this address.
487 *
488 * rax: prev task we switched from
489 * rbx: kernel thread func (NULL for user thread)
490 * r12: kernel thread arg
491 */
492 ENTRY(ret_from_fork)
493 UNWIND_HINT_EMPTY
494 movq %rax, %rdi
495 call schedule_tail /* rdi: 'prev' task parameter */
496
497 testq %rbx, %rbx /* from kernel_thread? */
498 jnz 1f /* kernel threads are uncommon */
499
500 2:
501 UNWIND_HINT_REGS
502 movq %rsp, %rdi
503 call syscall_return_slowpath /* returns with IRQs disabled */
504 TRACE_IRQS_ON /* user mode is traced as IRQS on */
505 jmp swapgs_restore_regs_and_return_to_usermode
506
507 1:
508 /* kernel thread */
509 movq %r12, %rdi
510 call *%rbx
511 /*
512 * A kernel thread is allowed to return here after successfully
513 * calling do_execve(). Exit to userspace to complete the execve()
514 * syscall.
515 */
516 movq $0, RAX(%rsp)
517 jmp 2b
518 END(ret_from_fork)
519
520 /*
521 * Build the entry stubs with some assembler magic.
522 * We pack 1 stub into every 8-byte block.
523 */
524 .align 8
525 ENTRY(irq_entries_start)
526 vector=FIRST_EXTERNAL_VECTOR
527 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
528 UNWIND_HINT_IRET_REGS
529 pushq $(~vector+0x80) /* Note: always in signed byte range */
530 jmp common_interrupt
531 .align 8
532 vector=vector+1
533 .endr
534 END(irq_entries_start)
535
536 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
537 #ifdef CONFIG_DEBUG_ENTRY
538 pushq %rax
539 SAVE_FLAGS(CLBR_RAX)
540 testl $X86_EFLAGS_IF, %eax
541 jz .Lokay_\@
542 ud2
543 .Lokay_\@:
544 popq %rax
545 #endif
546 .endm
547
548 /*
549 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
550 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
551 * Requires kernel GSBASE.
552 *
553 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
554 */
555 .macro ENTER_IRQ_STACK regs=1 old_rsp
556 DEBUG_ENTRY_ASSERT_IRQS_OFF
557 movq %rsp, \old_rsp
558
559 .if \regs
560 UNWIND_HINT_REGS base=\old_rsp
561 .endif
562
563 incl PER_CPU_VAR(irq_count)
564 jnz .Lirq_stack_push_old_rsp_\@
565
566 /*
567 * Right now, if we just incremented irq_count to zero, we've
568 * claimed the IRQ stack but we haven't switched to it yet.
569 *
570 * If anything is added that can interrupt us here without using IST,
571 * it must be *extremely* careful to limit its stack usage. This
572 * could include kprobes and a hypothetical future IST-less #DB
573 * handler.
574 *
575 * The OOPS unwinder relies on the word at the top of the IRQ
576 * stack linking back to the previous RSP for the entire time we're
577 * on the IRQ stack. For this to work reliably, we need to write
578 * it before we actually move ourselves to the IRQ stack.
579 */
580
581 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
582 movq PER_CPU_VAR(irq_stack_ptr), %rsp
583
584 #ifdef CONFIG_DEBUG_ENTRY
585 /*
586 * If the first movq above becomes wrong due to IRQ stack layout
587 * changes, the only way we'll notice is if we try to unwind right
588 * here. Assert that we set up the stack right to catch this type
589 * of bug quickly.
590 */
591 cmpq -8(%rsp), \old_rsp
592 je .Lirq_stack_okay\@
593 ud2
594 .Lirq_stack_okay\@:
595 #endif
596
597 .Lirq_stack_push_old_rsp_\@:
598 pushq \old_rsp
599
600 .if \regs
601 UNWIND_HINT_REGS indirect=1
602 .endif
603 .endm
604
605 /*
606 * Undoes ENTER_IRQ_STACK.
607 */
608 .macro LEAVE_IRQ_STACK regs=1
609 DEBUG_ENTRY_ASSERT_IRQS_OFF
610 /* We need to be off the IRQ stack before decrementing irq_count. */
611 popq %rsp
612
613 .if \regs
614 UNWIND_HINT_REGS
615 .endif
616
617 /*
618 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
619 * the irq stack but we're not on it.
620 */
621
622 decl PER_CPU_VAR(irq_count)
623 .endm
624
625 /*
626 * Interrupt entry/exit.
627 *
628 * Interrupt entry points save only callee clobbered registers in fast path.
629 *
630 * Entry runs with interrupts off.
631 */
632
633 /* 0(%rsp): ~(interrupt number) */
634 .macro interrupt func
635 cld
636
637 testb $3, CS-ORIG_RAX(%rsp)
638 jz 1f
639 SWAPGS
640 call switch_to_thread_stack
641 1:
642
643 ALLOC_PT_GPREGS_ON_STACK
644 SAVE_C_REGS
645 SAVE_EXTRA_REGS
646 ENCODE_FRAME_POINTER
647
648 testb $3, CS(%rsp)
649 jz 1f
650
651 /*
652 * IRQ from user mode.
653 *
654 * We need to tell lockdep that IRQs are off. We can't do this until
655 * we fix gsbase, and we should do it before enter_from_user_mode
656 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
657 * the simplest way to handle it is to just call it twice if
658 * we enter from user mode. There's no reason to optimize this since
659 * TRACE_IRQS_OFF is a no-op if lockdep is off.
660 */
661 TRACE_IRQS_OFF
662
663 CALL_enter_from_user_mode
664
665 1:
666 ENTER_IRQ_STACK old_rsp=%rdi
667 /* We entered an interrupt context - irqs are off: */
668 TRACE_IRQS_OFF
669
670 call \func /* rdi points to pt_regs */
671 .endm
672
673 /*
674 * The interrupt stubs push (~vector+0x80) onto the stack and
675 * then jump to common_interrupt.
676 */
677 .p2align CONFIG_X86_L1_CACHE_SHIFT
678 common_interrupt:
679 ASM_CLAC
680 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
681 interrupt do_IRQ
682 /* 0(%rsp): old RSP */
683 ret_from_intr:
684 DISABLE_INTERRUPTS(CLBR_ANY)
685 TRACE_IRQS_OFF
686
687 LEAVE_IRQ_STACK
688
689 testb $3, CS(%rsp)
690 jz retint_kernel
691
692 /* Interrupt came from user space */
693 GLOBAL(retint_user)
694 mov %rsp,%rdi
695 call prepare_exit_to_usermode
696 TRACE_IRQS_IRETQ
697
698 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
699 #ifdef CONFIG_DEBUG_ENTRY
700 /* Assert that pt_regs indicates user mode. */
701 testb $3, CS(%rsp)
702 jnz 1f
703 ud2
704 1:
705 #endif
706 POP_EXTRA_REGS
707 popq %r11
708 popq %r10
709 popq %r9
710 popq %r8
711 popq %rax
712 popq %rcx
713 popq %rdx
714 popq %rsi
715
716 /*
717 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
718 * Save old stack pointer and switch to trampoline stack.
719 */
720 movq %rsp, %rdi
721 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
722
723 /* Copy the IRET frame to the trampoline stack. */
724 pushq 6*8(%rdi) /* SS */
725 pushq 5*8(%rdi) /* RSP */
726 pushq 4*8(%rdi) /* EFLAGS */
727 pushq 3*8(%rdi) /* CS */
728 pushq 2*8(%rdi) /* RIP */
729
730 /* Push user RDI on the trampoline stack. */
731 pushq (%rdi)
732
733 /*
734 * We are on the trampoline stack. All regs except RDI are live.
735 * We can do future final exit work right here.
736 */
737
738 /* Restore RDI. */
739 popq %rdi
740 SWAPGS
741 INTERRUPT_RETURN
742
743
744 /* Returning to kernel space */
745 retint_kernel:
746 #ifdef CONFIG_PREEMPT
747 /* Interrupts are off */
748 /* Check if we need preemption */
749 bt $9, EFLAGS(%rsp) /* were interrupts off? */
750 jnc 1f
751 0: cmpl $0, PER_CPU_VAR(__preempt_count)
752 jnz 1f
753 call preempt_schedule_irq
754 jmp 0b
755 1:
756 #endif
757 /*
758 * The iretq could re-enable interrupts:
759 */
760 TRACE_IRQS_IRETQ
761
762 GLOBAL(restore_regs_and_return_to_kernel)
763 #ifdef CONFIG_DEBUG_ENTRY
764 /* Assert that pt_regs indicates kernel mode. */
765 testb $3, CS(%rsp)
766 jz 1f
767 ud2
768 1:
769 #endif
770 POP_EXTRA_REGS
771 POP_C_REGS
772 addq $8, %rsp /* skip regs->orig_ax */
773 INTERRUPT_RETURN
774
775 ENTRY(native_iret)
776 UNWIND_HINT_IRET_REGS
777 /*
778 * Are we returning to a stack segment from the LDT? Note: in
779 * 64-bit mode SS:RSP on the exception stack is always valid.
780 */
781 #ifdef CONFIG_X86_ESPFIX64
782 testb $4, (SS-RIP)(%rsp)
783 jnz native_irq_return_ldt
784 #endif
785
786 .global native_irq_return_iret
787 native_irq_return_iret:
788 /*
789 * This may fault. Non-paranoid faults on return to userspace are
790 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
791 * Double-faults due to espfix64 are handled in do_double_fault.
792 * Other faults here are fatal.
793 */
794 iretq
795
796 #ifdef CONFIG_X86_ESPFIX64
797 native_irq_return_ldt:
798 /*
799 * We are running with user GSBASE. All GPRs contain their user
800 * values. We have a percpu ESPFIX stack that is eight slots
801 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
802 * of the ESPFIX stack.
803 *
804 * We clobber RAX and RDI in this code. We stash RDI on the
805 * normal stack and RAX on the ESPFIX stack.
806 *
807 * The ESPFIX stack layout we set up looks like this:
808 *
809 * --- top of ESPFIX stack ---
810 * SS
811 * RSP
812 * RFLAGS
813 * CS
814 * RIP <-- RSP points here when we're done
815 * RAX <-- espfix_waddr points here
816 * --- bottom of ESPFIX stack ---
817 */
818
819 pushq %rdi /* Stash user RDI */
820 SWAPGS
821 movq PER_CPU_VAR(espfix_waddr), %rdi
822 movq %rax, (0*8)(%rdi) /* user RAX */
823 movq (1*8)(%rsp), %rax /* user RIP */
824 movq %rax, (1*8)(%rdi)
825 movq (2*8)(%rsp), %rax /* user CS */
826 movq %rax, (2*8)(%rdi)
827 movq (3*8)(%rsp), %rax /* user RFLAGS */
828 movq %rax, (3*8)(%rdi)
829 movq (5*8)(%rsp), %rax /* user SS */
830 movq %rax, (5*8)(%rdi)
831 movq (4*8)(%rsp), %rax /* user RSP */
832 movq %rax, (4*8)(%rdi)
833 /* Now RAX == RSP. */
834
835 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
836 popq %rdi /* Restore user RDI */
837
838 /*
839 * espfix_stack[31:16] == 0. The page tables are set up such that
840 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
841 * espfix_waddr for any X. That is, there are 65536 RO aliases of
842 * the same page. Set up RSP so that RSP[31:16] contains the
843 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
844 * still points to an RO alias of the ESPFIX stack.
845 */
846 orq PER_CPU_VAR(espfix_stack), %rax
847 SWAPGS
848 movq %rax, %rsp
849 UNWIND_HINT_IRET_REGS offset=8
850
851 /*
852 * At this point, we cannot write to the stack any more, but we can
853 * still read.
854 */
855 popq %rax /* Restore user RAX */
856
857 /*
858 * RSP now points to an ordinary IRET frame, except that the page
859 * is read-only and RSP[31:16] are preloaded with the userspace
860 * values. We can now IRET back to userspace.
861 */
862 jmp native_irq_return_iret
863 #endif
864 END(common_interrupt)
865
866 /*
867 * APIC interrupts.
868 */
869 .macro apicinterrupt3 num sym do_sym
870 ENTRY(\sym)
871 UNWIND_HINT_IRET_REGS
872 ASM_CLAC
873 pushq $~(\num)
874 .Lcommon_\sym:
875 interrupt \do_sym
876 jmp ret_from_intr
877 END(\sym)
878 .endm
879
880 #ifdef CONFIG_TRACING
881 #define trace(sym) trace_##sym
882 #define smp_trace(sym) smp_trace_##sym
883
884 .macro trace_apicinterrupt num sym
885 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
886 .endm
887 #else
888 .macro trace_apicinterrupt num sym do_sym
889 .endm
890 #endif
891
892 /* Make sure APIC interrupt handlers end up in the irqentry section: */
893 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
894 #define POP_SECTION_IRQENTRY .popsection
895
896 .macro apicinterrupt num sym do_sym
897 PUSH_SECTION_IRQENTRY
898 apicinterrupt3 \num \sym \do_sym
899 trace_apicinterrupt \num \sym
900 POP_SECTION_IRQENTRY
901 .endm
902
903 #ifdef CONFIG_SMP
904 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
905 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
906 #endif
907
908 #ifdef CONFIG_X86_UV
909 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
910 #endif
911
912 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
913 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
914
915 #ifdef CONFIG_HAVE_KVM
916 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
917 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
918 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
919 #endif
920
921 #ifdef CONFIG_X86_MCE_THRESHOLD
922 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
923 #endif
924
925 #ifdef CONFIG_X86_MCE_AMD
926 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
927 #endif
928
929 #ifdef CONFIG_X86_THERMAL_VECTOR
930 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
931 #endif
932
933 #ifdef CONFIG_SMP
934 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
935 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
936 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
937 #endif
938
939 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
940 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
941
942 #ifdef CONFIG_IRQ_WORK
943 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
944 #endif
945
946 /*
947 * Exception entry points.
948 */
949 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
950
951 /*
952 * Switch to the thread stack. This is called with the IRET frame and
953 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
954 * space has not been allocated for them.)
955 */
956 ENTRY(switch_to_thread_stack)
957 UNWIND_HINT_FUNC
958
959 pushq %rdi
960 movq %rsp, %rdi
961 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
962 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
963
964 pushq 7*8(%rdi) /* regs->ss */
965 pushq 6*8(%rdi) /* regs->rsp */
966 pushq 5*8(%rdi) /* regs->eflags */
967 pushq 4*8(%rdi) /* regs->cs */
968 pushq 3*8(%rdi) /* regs->ip */
969 pushq 2*8(%rdi) /* regs->orig_ax */
970 pushq 8(%rdi) /* return address */
971 UNWIND_HINT_FUNC
972
973 movq (%rdi), %rdi
974 ret
975 END(switch_to_thread_stack)
976
977 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
978 ENTRY(\sym)
979 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
980
981 /* Sanity check */
982 .if \shift_ist != -1 && \paranoid == 0
983 .error "using shift_ist requires paranoid=1"
984 .endif
985
986 ASM_CLAC
987
988 .if \has_error_code == 0
989 pushq $-1 /* ORIG_RAX: no syscall to restart */
990 .endif
991
992 ALLOC_PT_GPREGS_ON_STACK
993
994 .if \paranoid < 2
995 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
996 jnz .Lfrom_usermode_switch_stack_\@
997 .endif
998
999 .if \paranoid
1000 call paranoid_entry
1001 .else
1002 call error_entry
1003 .endif
1004 UNWIND_HINT_REGS
1005 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1006
1007 .if \paranoid
1008 .if \shift_ist != -1
1009 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
1010 .else
1011 TRACE_IRQS_OFF
1012 .endif
1013 .endif
1014
1015 movq %rsp, %rdi /* pt_regs pointer */
1016
1017 .if \has_error_code
1018 movq ORIG_RAX(%rsp), %rsi /* get error code */
1019 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1020 .else
1021 xorl %esi, %esi /* no error code */
1022 .endif
1023
1024 .if \shift_ist != -1
1025 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1026 .endif
1027
1028 call \do_sym
1029
1030 .if \shift_ist != -1
1031 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1032 .endif
1033
1034 /* these procedures expect "no swapgs" flag in ebx */
1035 .if \paranoid
1036 jmp paranoid_exit
1037 .else
1038 jmp error_exit
1039 .endif
1040
1041 .if \paranoid < 2
1042 /*
1043 * Entry from userspace. Switch stacks and treat it
1044 * as a normal entry. This means that paranoid handlers
1045 * run in real process context if user_mode(regs).
1046 */
1047 .Lfrom_usermode_switch_stack_\@:
1048 call error_entry
1049
1050 movq %rsp, %rdi /* pt_regs pointer */
1051
1052 .if \has_error_code
1053 movq ORIG_RAX(%rsp), %rsi /* get error code */
1054 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1055 .else
1056 xorl %esi, %esi /* no error code */
1057 .endif
1058
1059 call \do_sym
1060
1061 jmp error_exit /* %ebx: no swapgs flag */
1062 .endif
1063 END(\sym)
1064 .endm
1065
1066 idtentry divide_error do_divide_error has_error_code=0
1067 idtentry overflow do_overflow has_error_code=0
1068 idtentry bounds do_bounds has_error_code=0
1069 idtentry invalid_op do_invalid_op has_error_code=0
1070 idtentry device_not_available do_device_not_available has_error_code=0
1071 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1072 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1073 idtentry invalid_TSS do_invalid_TSS has_error_code=1
1074 idtentry segment_not_present do_segment_not_present has_error_code=1
1075 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1076 idtentry coprocessor_error do_coprocessor_error has_error_code=0
1077 idtentry alignment_check do_alignment_check has_error_code=1
1078 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1079
1080
1081 /*
1082 * Reload gs selector with exception handling
1083 * edi: new selector
1084 */
1085 ENTRY(native_load_gs_index)
1086 FRAME_BEGIN
1087 pushfq
1088 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1089 SWAPGS
1090 .Lgs_change:
1091 movl %edi, %gs
1092 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1093 SWAPGS
1094 popfq
1095 FRAME_END
1096 ret
1097 ENDPROC(native_load_gs_index)
1098 EXPORT_SYMBOL(native_load_gs_index)
1099
1100 _ASM_EXTABLE(.Lgs_change, bad_gs)
1101 .section .fixup, "ax"
1102 /* running with kernelgs */
1103 bad_gs:
1104 SWAPGS /* switch back to user gs */
1105 .macro ZAP_GS
1106 /* This can't be a string because the preprocessor needs to see it. */
1107 movl $__USER_DS, %eax
1108 movl %eax, %gs
1109 .endm
1110 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1111 xorl %eax, %eax
1112 movl %eax, %gs
1113 jmp 2b
1114 .previous
1115
1116 /* Call softirq on interrupt stack. Interrupts are off. */
1117 ENTRY(do_softirq_own_stack)
1118 pushq %rbp
1119 mov %rsp, %rbp
1120 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1121 call __do_softirq
1122 LEAVE_IRQ_STACK regs=0
1123 leaveq
1124 ret
1125 ENDPROC(do_softirq_own_stack)
1126
1127 #ifdef CONFIG_XEN
1128 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1129
1130 /*
1131 * A note on the "critical region" in our callback handler.
1132 * We want to avoid stacking callback handlers due to events occurring
1133 * during handling of the last event. To do this, we keep events disabled
1134 * until we've done all processing. HOWEVER, we must enable events before
1135 * popping the stack frame (can't be done atomically) and so it would still
1136 * be possible to get enough handler activations to overflow the stack.
1137 * Although unlikely, bugs of that kind are hard to track down, so we'd
1138 * like to avoid the possibility.
1139 * So, on entry to the handler we detect whether we interrupted an
1140 * existing activation in its critical region -- if so, we pop the current
1141 * activation and restart the handler using the previous one.
1142 */
1143 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1144
1145 /*
1146 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1147 * see the correct pointer to the pt_regs
1148 */
1149 UNWIND_HINT_FUNC
1150 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1151 UNWIND_HINT_REGS
1152
1153 ENTER_IRQ_STACK old_rsp=%r10
1154 call xen_evtchn_do_upcall
1155 LEAVE_IRQ_STACK
1156
1157 #ifndef CONFIG_PREEMPT
1158 call xen_maybe_preempt_hcall
1159 #endif
1160 jmp error_exit
1161 END(xen_do_hypervisor_callback)
1162
1163 /*
1164 * Hypervisor uses this for application faults while it executes.
1165 * We get here for two reasons:
1166 * 1. Fault while reloading DS, ES, FS or GS
1167 * 2. Fault while executing IRET
1168 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1169 * registers that could be reloaded and zeroed the others.
1170 * Category 2 we fix up by killing the current process. We cannot use the
1171 * normal Linux return path in this case because if we use the IRET hypercall
1172 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1173 * We distinguish between categories by comparing each saved segment register
1174 * with its current contents: any discrepancy means we in category 1.
1175 */
1176 ENTRY(xen_failsafe_callback)
1177 UNWIND_HINT_EMPTY
1178 movl %ds, %ecx
1179 cmpw %cx, 0x10(%rsp)
1180 jne 1f
1181 movl %es, %ecx
1182 cmpw %cx, 0x18(%rsp)
1183 jne 1f
1184 movl %fs, %ecx
1185 cmpw %cx, 0x20(%rsp)
1186 jne 1f
1187 movl %gs, %ecx
1188 cmpw %cx, 0x28(%rsp)
1189 jne 1f
1190 /* All segments match their saved values => Category 2 (Bad IRET). */
1191 movq (%rsp), %rcx
1192 movq 8(%rsp), %r11
1193 addq $0x30, %rsp
1194 pushq $0 /* RIP */
1195 UNWIND_HINT_IRET_REGS offset=8
1196 jmp general_protection
1197 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1198 movq (%rsp), %rcx
1199 movq 8(%rsp), %r11
1200 addq $0x30, %rsp
1201 UNWIND_HINT_IRET_REGS
1202 pushq $-1 /* orig_ax = -1 => not a system call */
1203 ALLOC_PT_GPREGS_ON_STACK
1204 SAVE_C_REGS
1205 SAVE_EXTRA_REGS
1206 ENCODE_FRAME_POINTER
1207 jmp error_exit
1208 END(xen_failsafe_callback)
1209
1210 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1211 xen_hvm_callback_vector xen_evtchn_do_upcall
1212
1213 #endif /* CONFIG_XEN */
1214
1215 #if IS_ENABLED(CONFIG_HYPERV)
1216 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1217 hyperv_callback_vector hyperv_vector_handler
1218 #endif /* CONFIG_HYPERV */
1219
1220 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1221 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1222 idtentry stack_segment do_stack_segment has_error_code=1
1223
1224 #ifdef CONFIG_XEN
1225 idtentry xennmi do_nmi has_error_code=0
1226 idtentry xendebug do_debug has_error_code=0
1227 idtentry xenint3 do_int3 has_error_code=0
1228 #endif
1229
1230 idtentry general_protection do_general_protection has_error_code=1
1231 idtentry page_fault do_page_fault has_error_code=1
1232
1233 #ifdef CONFIG_KVM_GUEST
1234 idtentry async_page_fault do_async_page_fault has_error_code=1
1235 #endif
1236
1237 #ifdef CONFIG_X86_MCE
1238 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1239 #endif
1240
1241 /*
1242 * Save all registers in pt_regs, and switch gs if needed.
1243 * Use slow, but surefire "are we in kernel?" check.
1244 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1245 */
1246 ENTRY(paranoid_entry)
1247 UNWIND_HINT_FUNC
1248 cld
1249 SAVE_C_REGS 8
1250 SAVE_EXTRA_REGS 8
1251 ENCODE_FRAME_POINTER 8
1252 movl $1, %ebx
1253 movl $MSR_GS_BASE, %ecx
1254 rdmsr
1255 testl %edx, %edx
1256 js 1f /* negative -> in kernel */
1257 SWAPGS
1258 xorl %ebx, %ebx
1259 1: ret
1260 END(paranoid_entry)
1261
1262 /*
1263 * "Paranoid" exit path from exception stack. This is invoked
1264 * only on return from non-NMI IST interrupts that came
1265 * from kernel space.
1266 *
1267 * We may be returning to very strange contexts (e.g. very early
1268 * in syscall entry), so checking for preemption here would
1269 * be complicated. Fortunately, we there's no good reason
1270 * to try to handle preemption here.
1271 *
1272 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1273 */
1274 ENTRY(paranoid_exit)
1275 UNWIND_HINT_REGS
1276 DISABLE_INTERRUPTS(CLBR_ANY)
1277 TRACE_IRQS_OFF_DEBUG
1278 testl %ebx, %ebx /* swapgs needed? */
1279 jnz .Lparanoid_exit_no_swapgs
1280 TRACE_IRQS_IRETQ
1281 SWAPGS_UNSAFE_STACK
1282 jmp .Lparanoid_exit_restore
1283 .Lparanoid_exit_no_swapgs:
1284 TRACE_IRQS_IRETQ_DEBUG
1285 .Lparanoid_exit_restore:
1286 jmp restore_regs_and_return_to_kernel
1287 END(paranoid_exit)
1288
1289 /*
1290 * Save all registers in pt_regs, and switch gs if needed.
1291 * Return: EBX=0: came from user mode; EBX=1: otherwise
1292 */
1293 ENTRY(error_entry)
1294 UNWIND_HINT_FUNC
1295 cld
1296 SAVE_C_REGS 8
1297 SAVE_EXTRA_REGS 8
1298 ENCODE_FRAME_POINTER 8
1299 xorl %ebx, %ebx
1300 testb $3, CS+8(%rsp)
1301 jz .Lerror_kernelspace
1302
1303 /*
1304 * We entered from user mode or we're pretending to have entered
1305 * from user mode due to an IRET fault.
1306 */
1307 SWAPGS
1308
1309 .Lerror_entry_from_usermode_after_swapgs:
1310 /* Put us onto the real thread stack. */
1311 popq %r12 /* save return addr in %12 */
1312 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1313 call sync_regs
1314 movq %rax, %rsp /* switch stack */
1315 ENCODE_FRAME_POINTER
1316 pushq %r12
1317
1318 /*
1319 * We need to tell lockdep that IRQs are off. We can't do this until
1320 * we fix gsbase, and we should do it before enter_from_user_mode
1321 * (which can take locks).
1322 */
1323 TRACE_IRQS_OFF
1324 CALL_enter_from_user_mode
1325 ret
1326
1327 .Lerror_entry_done:
1328 TRACE_IRQS_OFF
1329 ret
1330
1331 /*
1332 * There are two places in the kernel that can potentially fault with
1333 * usergs. Handle them here. B stepping K8s sometimes report a
1334 * truncated RIP for IRET exceptions returning to compat mode. Check
1335 * for these here too.
1336 */
1337 .Lerror_kernelspace:
1338 incl %ebx
1339 leaq native_irq_return_iret(%rip), %rcx
1340 cmpq %rcx, RIP+8(%rsp)
1341 je .Lerror_bad_iret
1342 movl %ecx, %eax /* zero extend */
1343 cmpq %rax, RIP+8(%rsp)
1344 je .Lbstep_iret
1345 cmpq $.Lgs_change, RIP+8(%rsp)
1346 jne .Lerror_entry_done
1347
1348 /*
1349 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1350 * gsbase and proceed. We'll fix up the exception and land in
1351 * .Lgs_change's error handler with kernel gsbase.
1352 */
1353 SWAPGS
1354 jmp .Lerror_entry_done
1355
1356 .Lbstep_iret:
1357 /* Fix truncated RIP */
1358 movq %rcx, RIP+8(%rsp)
1359 /* fall through */
1360
1361 .Lerror_bad_iret:
1362 /*
1363 * We came from an IRET to user mode, so we have user gsbase.
1364 * Switch to kernel gsbase:
1365 */
1366 SWAPGS
1367
1368 /*
1369 * Pretend that the exception came from user mode: set up pt_regs
1370 * as if we faulted immediately after IRET and clear EBX so that
1371 * error_exit knows that we will be returning to user mode.
1372 */
1373 mov %rsp, %rdi
1374 call fixup_bad_iret
1375 mov %rax, %rsp
1376 decl %ebx
1377 jmp .Lerror_entry_from_usermode_after_swapgs
1378 END(error_entry)
1379
1380
1381 /*
1382 * On entry, EBX is a "return to kernel mode" flag:
1383 * 1: already in kernel mode, don't need SWAPGS
1384 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1385 */
1386 ENTRY(error_exit)
1387 UNWIND_HINT_REGS
1388 DISABLE_INTERRUPTS(CLBR_ANY)
1389 TRACE_IRQS_OFF
1390 testl %ebx, %ebx
1391 jnz retint_kernel
1392 jmp retint_user
1393 END(error_exit)
1394
1395 /*
1396 * Runs on exception stack. Xen PV does not go through this path at all,
1397 * so we can use real assembly here.
1398 */
1399 ENTRY(nmi)
1400 UNWIND_HINT_IRET_REGS
1401
1402 /*
1403 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1404 * the iretq it performs will take us out of NMI context.
1405 * This means that we can have nested NMIs where the next
1406 * NMI is using the top of the stack of the previous NMI. We
1407 * can't let it execute because the nested NMI will corrupt the
1408 * stack of the previous NMI. NMI handlers are not re-entrant
1409 * anyway.
1410 *
1411 * To handle this case we do the following:
1412 * Check the a special location on the stack that contains
1413 * a variable that is set when NMIs are executing.
1414 * The interrupted task's stack is also checked to see if it
1415 * is an NMI stack.
1416 * If the variable is not set and the stack is not the NMI
1417 * stack then:
1418 * o Set the special variable on the stack
1419 * o Copy the interrupt frame into an "outermost" location on the
1420 * stack
1421 * o Copy the interrupt frame into an "iret" location on the stack
1422 * o Continue processing the NMI
1423 * If the variable is set or the previous stack is the NMI stack:
1424 * o Modify the "iret" location to jump to the repeat_nmi
1425 * o return back to the first NMI
1426 *
1427 * Now on exit of the first NMI, we first clear the stack variable
1428 * The NMI stack will tell any nested NMIs at that point that it is
1429 * nested. Then we pop the stack normally with iret, and if there was
1430 * a nested NMI that updated the copy interrupt stack frame, a
1431 * jump will be made to the repeat_nmi code that will handle the second
1432 * NMI.
1433 *
1434 * However, espfix prevents us from directly returning to userspace
1435 * with a single IRET instruction. Similarly, IRET to user mode
1436 * can fault. We therefore handle NMIs from user space like
1437 * other IST entries.
1438 */
1439
1440 ASM_CLAC
1441
1442 /* Use %rdx as our temp variable throughout */
1443 pushq %rdx
1444
1445 testb $3, CS-RIP+8(%rsp)
1446 jz .Lnmi_from_kernel
1447
1448 /*
1449 * NMI from user mode. We need to run on the thread stack, but we
1450 * can't go through the normal entry paths: NMIs are masked, and
1451 * we don't want to enable interrupts, because then we'll end
1452 * up in an awkward situation in which IRQs are on but NMIs
1453 * are off.
1454 *
1455 * We also must not push anything to the stack before switching
1456 * stacks lest we corrupt the "NMI executing" variable.
1457 */
1458
1459 swapgs
1460 cld
1461 movq %rsp, %rdx
1462 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1463 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1464 pushq 5*8(%rdx) /* pt_regs->ss */
1465 pushq 4*8(%rdx) /* pt_regs->rsp */
1466 pushq 3*8(%rdx) /* pt_regs->flags */
1467 pushq 2*8(%rdx) /* pt_regs->cs */
1468 pushq 1*8(%rdx) /* pt_regs->rip */
1469 UNWIND_HINT_IRET_REGS
1470 pushq $-1 /* pt_regs->orig_ax */
1471 pushq %rdi /* pt_regs->di */
1472 pushq %rsi /* pt_regs->si */
1473 pushq (%rdx) /* pt_regs->dx */
1474 pushq %rcx /* pt_regs->cx */
1475 pushq %rax /* pt_regs->ax */
1476 pushq %r8 /* pt_regs->r8 */
1477 pushq %r9 /* pt_regs->r9 */
1478 pushq %r10 /* pt_regs->r10 */
1479 pushq %r11 /* pt_regs->r11 */
1480 pushq %rbx /* pt_regs->rbx */
1481 pushq %rbp /* pt_regs->rbp */
1482 pushq %r12 /* pt_regs->r12 */
1483 pushq %r13 /* pt_regs->r13 */
1484 pushq %r14 /* pt_regs->r14 */
1485 pushq %r15 /* pt_regs->r15 */
1486 UNWIND_HINT_REGS
1487 ENCODE_FRAME_POINTER
1488
1489 /*
1490 * At this point we no longer need to worry about stack damage
1491 * due to nesting -- we're on the normal thread stack and we're
1492 * done with the NMI stack.
1493 */
1494
1495 movq %rsp, %rdi
1496 movq $-1, %rsi
1497 call do_nmi
1498
1499 /*
1500 * Return back to user mode. We must *not* do the normal exit
1501 * work, because we don't want to enable interrupts.
1502 */
1503 jmp swapgs_restore_regs_and_return_to_usermode
1504
1505 .Lnmi_from_kernel:
1506 /*
1507 * Here's what our stack frame will look like:
1508 * +---------------------------------------------------------+
1509 * | original SS |
1510 * | original Return RSP |
1511 * | original RFLAGS |
1512 * | original CS |
1513 * | original RIP |
1514 * +---------------------------------------------------------+
1515 * | temp storage for rdx |
1516 * +---------------------------------------------------------+
1517 * | "NMI executing" variable |
1518 * +---------------------------------------------------------+
1519 * | iret SS } Copied from "outermost" frame |
1520 * | iret Return RSP } on each loop iteration; overwritten |
1521 * | iret RFLAGS } by a nested NMI to force another |
1522 * | iret CS } iteration if needed. |
1523 * | iret RIP } |
1524 * +---------------------------------------------------------+
1525 * | outermost SS } initialized in first_nmi; |
1526 * | outermost Return RSP } will not be changed before |
1527 * | outermost RFLAGS } NMI processing is done. |
1528 * | outermost CS } Copied to "iret" frame on each |
1529 * | outermost RIP } iteration. |
1530 * +---------------------------------------------------------+
1531 * | pt_regs |
1532 * +---------------------------------------------------------+
1533 *
1534 * The "original" frame is used by hardware. Before re-enabling
1535 * NMIs, we need to be done with it, and we need to leave enough
1536 * space for the asm code here.
1537 *
1538 * We return by executing IRET while RSP points to the "iret" frame.
1539 * That will either return for real or it will loop back into NMI
1540 * processing.
1541 *
1542 * The "outermost" frame is copied to the "iret" frame on each
1543 * iteration of the loop, so each iteration starts with the "iret"
1544 * frame pointing to the final return target.
1545 */
1546
1547 /*
1548 * Determine whether we're a nested NMI.
1549 *
1550 * If we interrupted kernel code between repeat_nmi and
1551 * end_repeat_nmi, then we are a nested NMI. We must not
1552 * modify the "iret" frame because it's being written by
1553 * the outer NMI. That's okay; the outer NMI handler is
1554 * about to about to call do_nmi anyway, so we can just
1555 * resume the outer NMI.
1556 */
1557
1558 movq $repeat_nmi, %rdx
1559 cmpq 8(%rsp), %rdx
1560 ja 1f
1561 movq $end_repeat_nmi, %rdx
1562 cmpq 8(%rsp), %rdx
1563 ja nested_nmi_out
1564 1:
1565
1566 /*
1567 * Now check "NMI executing". If it's set, then we're nested.
1568 * This will not detect if we interrupted an outer NMI just
1569 * before IRET.
1570 */
1571 cmpl $1, -8(%rsp)
1572 je nested_nmi
1573
1574 /*
1575 * Now test if the previous stack was an NMI stack. This covers
1576 * the case where we interrupt an outer NMI after it clears
1577 * "NMI executing" but before IRET. We need to be careful, though:
1578 * there is one case in which RSP could point to the NMI stack
1579 * despite there being no NMI active: naughty userspace controls
1580 * RSP at the very beginning of the SYSCALL targets. We can
1581 * pull a fast one on naughty userspace, though: we program
1582 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1583 * if it controls the kernel's RSP. We set DF before we clear
1584 * "NMI executing".
1585 */
1586 lea 6*8(%rsp), %rdx
1587 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1588 cmpq %rdx, 4*8(%rsp)
1589 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1590 ja first_nmi
1591
1592 subq $EXCEPTION_STKSZ, %rdx
1593 cmpq %rdx, 4*8(%rsp)
1594 /* If it is below the NMI stack, it is a normal NMI */
1595 jb first_nmi
1596
1597 /* Ah, it is within the NMI stack. */
1598
1599 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1600 jz first_nmi /* RSP was user controlled. */
1601
1602 /* This is a nested NMI. */
1603
1604 nested_nmi:
1605 /*
1606 * Modify the "iret" frame to point to repeat_nmi, forcing another
1607 * iteration of NMI handling.
1608 */
1609 subq $8, %rsp
1610 leaq -10*8(%rsp), %rdx
1611 pushq $__KERNEL_DS
1612 pushq %rdx
1613 pushfq
1614 pushq $__KERNEL_CS
1615 pushq $repeat_nmi
1616
1617 /* Put stack back */
1618 addq $(6*8), %rsp
1619
1620 nested_nmi_out:
1621 popq %rdx
1622
1623 /* We are returning to kernel mode, so this cannot result in a fault. */
1624 iretq
1625
1626 first_nmi:
1627 /* Restore rdx. */
1628 movq (%rsp), %rdx
1629
1630 /* Make room for "NMI executing". */
1631 pushq $0
1632
1633 /* Leave room for the "iret" frame */
1634 subq $(5*8), %rsp
1635
1636 /* Copy the "original" frame to the "outermost" frame */
1637 .rept 5
1638 pushq 11*8(%rsp)
1639 .endr
1640 UNWIND_HINT_IRET_REGS
1641
1642 /* Everything up to here is safe from nested NMIs */
1643
1644 #ifdef CONFIG_DEBUG_ENTRY
1645 /*
1646 * For ease of testing, unmask NMIs right away. Disabled by
1647 * default because IRET is very expensive.
1648 */
1649 pushq $0 /* SS */
1650 pushq %rsp /* RSP (minus 8 because of the previous push) */
1651 addq $8, (%rsp) /* Fix up RSP */
1652 pushfq /* RFLAGS */
1653 pushq $__KERNEL_CS /* CS */
1654 pushq $1f /* RIP */
1655 iretq /* continues at repeat_nmi below */
1656 UNWIND_HINT_IRET_REGS
1657 1:
1658 #endif
1659
1660 repeat_nmi:
1661 /*
1662 * If there was a nested NMI, the first NMI's iret will return
1663 * here. But NMIs are still enabled and we can take another
1664 * nested NMI. The nested NMI checks the interrupted RIP to see
1665 * if it is between repeat_nmi and end_repeat_nmi, and if so
1666 * it will just return, as we are about to repeat an NMI anyway.
1667 * This makes it safe to copy to the stack frame that a nested
1668 * NMI will update.
1669 *
1670 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1671 * we're repeating an NMI, gsbase has the same value that it had on
1672 * the first iteration. paranoid_entry will load the kernel
1673 * gsbase if needed before we call do_nmi. "NMI executing"
1674 * is zero.
1675 */
1676 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1677
1678 /*
1679 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1680 * here must not modify the "iret" frame while we're writing to
1681 * it or it will end up containing garbage.
1682 */
1683 addq $(10*8), %rsp
1684 .rept 5
1685 pushq -6*8(%rsp)
1686 .endr
1687 subq $(5*8), %rsp
1688 end_repeat_nmi:
1689
1690 /*
1691 * Everything below this point can be preempted by a nested NMI.
1692 * If this happens, then the inner NMI will change the "iret"
1693 * frame to point back to repeat_nmi.
1694 */
1695 pushq $-1 /* ORIG_RAX: no syscall to restart */
1696 ALLOC_PT_GPREGS_ON_STACK
1697
1698 /*
1699 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1700 * as we should not be calling schedule in NMI context.
1701 * Even with normal interrupts enabled. An NMI should not be
1702 * setting NEED_RESCHED or anything that normal interrupts and
1703 * exceptions might do.
1704 */
1705 call paranoid_entry
1706 UNWIND_HINT_REGS
1707
1708 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1709 movq %rsp, %rdi
1710 movq $-1, %rsi
1711 call do_nmi
1712
1713 testl %ebx, %ebx /* swapgs needed? */
1714 jnz nmi_restore
1715 nmi_swapgs:
1716 SWAPGS_UNSAFE_STACK
1717 nmi_restore:
1718 POP_EXTRA_REGS
1719 POP_C_REGS
1720
1721 /*
1722 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1723 * at the "iret" frame.
1724 */
1725 addq $6*8, %rsp
1726
1727 /*
1728 * Clear "NMI executing". Set DF first so that we can easily
1729 * distinguish the remaining code between here and IRET from
1730 * the SYSCALL entry and exit paths.
1731 *
1732 * We arguably should just inspect RIP instead, but I (Andy) wrote
1733 * this code when I had the misapprehension that Xen PV supported
1734 * NMIs, and Xen PV would break that approach.
1735 */
1736 std
1737 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1738
1739 /*
1740 * iretq reads the "iret" frame and exits the NMI stack in a
1741 * single instruction. We are returning to kernel mode, so this
1742 * cannot result in a fault. Similarly, we don't need to worry
1743 * about espfix64 on the way back to kernel mode.
1744 */
1745 iretq
1746 END(nmi)
1747
1748 ENTRY(ignore_sysret)
1749 UNWIND_HINT_EMPTY
1750 mov $-ENOSYS, %eax
1751 sysret
1752 END(ignore_sysret)
1753
1754 ENTRY(rewind_stack_do_exit)
1755 UNWIND_HINT_FUNC
1756 /* Prevent any naive code from trying to unwind to our caller. */
1757 xorl %ebp, %ebp
1758
1759 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1760 leaq -PTREGS_SIZE(%rax), %rsp
1761 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1762
1763 call do_exit
1764 END(rewind_stack_do_exit)