]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/entry/entry_64.S
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <linux/err.h>
40
41 .code64
42 .section .entry.text, "ax"
43
44 #ifdef CONFIG_PARAVIRT
45 ENTRY(native_usergs_sysret64)
46 swapgs
47 sysretq
48 ENDPROC(native_usergs_sysret64)
49 #endif /* CONFIG_PARAVIRT */
50
51 .macro TRACE_IRQS_IRETQ
52 #ifdef CONFIG_TRACE_IRQFLAGS
53 bt $9, EFLAGS(%rsp) /* interrupts off? */
54 jnc 1f
55 TRACE_IRQS_ON
56 1:
57 #endif
58 .endm
59
60 /*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73 .macro TRACE_IRQS_OFF_DEBUG
74 call debug_stack_set_zero
75 TRACE_IRQS_OFF
76 call debug_stack_reset
77 .endm
78
79 .macro TRACE_IRQS_ON_DEBUG
80 call debug_stack_set_zero
81 TRACE_IRQS_ON
82 call debug_stack_reset
83 .endm
84
85 .macro TRACE_IRQS_IRETQ_DEBUG
86 bt $9, EFLAGS(%rsp) /* interrupts off? */
87 jnc 1f
88 TRACE_IRQS_ON_DEBUG
89 1:
90 .endm
91
92 #else
93 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
94 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
95 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
96 #endif
97
98 /*
99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
100 *
101 * This is the only entry point used for 64-bit system calls. The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries. There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
118 * rax system call number
119 * rcx return address
120 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
121 * rdi arg0
122 * rsi arg1
123 * rdx arg2
124 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
125 * r8 arg4
126 * r9 arg5
127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128 *
129 * Only called from user space.
130 *
131 * When user can change pt_regs->foo always force IRET. That is because
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
134 */
135
136 ENTRY(entry_SYSCALL_64)
137 /*
138 * Interrupts are off on entry.
139 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140 * it is too small to ever cause noticeable irq latency.
141 */
142 SWAPGS_UNSAFE_STACK
143 /*
144 * A hypervisor implementation might want to use a label
145 * after the swapgs, so that it can do the swapgs
146 * for the guest and jump here on syscall.
147 */
148 GLOBAL(entry_SYSCALL_64_after_swapgs)
149
150 movq %rsp, PER_CPU_VAR(rsp_scratch)
151 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152
153 TRACE_IRQS_OFF
154
155 /* Construct struct pt_regs on stack */
156 pushq $__USER_DS /* pt_regs->ss */
157 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
158 pushq %r11 /* pt_regs->flags */
159 pushq $__USER_CS /* pt_regs->cs */
160 pushq %rcx /* pt_regs->ip */
161 pushq %rax /* pt_regs->orig_ax */
162 pushq %rdi /* pt_regs->di */
163 pushq %rsi /* pt_regs->si */
164 pushq %rdx /* pt_regs->dx */
165 pushq %rcx /* pt_regs->cx */
166 pushq $-ENOSYS /* pt_regs->ax */
167 pushq %r8 /* pt_regs->r8 */
168 pushq %r9 /* pt_regs->r9 */
169 pushq %r10 /* pt_regs->r10 */
170 pushq %r11 /* pt_regs->r11 */
171 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
172
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 jnz entry_SYSCALL64_slow_path
180
181 entry_SYSCALL_64_fastpath:
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
189 #if __SYSCALL_MASK == ~0
190 cmpq $__NR_syscall_max, %rax
191 #else
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
194 #endif
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
202 */
203 call *sys_call_table(, %rax, 8)
204 .Lentry_SYSCALL_64_after_fastpath_call:
205
206 movq %rax, RAX(%rsp)
207 1:
208
209 /*
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
213 */
214 DISABLE_INTERRUPTS(CLBR_ANY)
215 TRACE_IRQS_OFF
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218 jnz 1f
219
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
224 RESTORE_C_REGS_EXCEPT_RCX_R11
225 movq RSP(%rsp), %rsp
226 USERGS_SYSRET64
227
228 1:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
234 TRACE_IRQS_ON
235 ENABLE_INTERRUPTS(CLBR_ANY)
236 SAVE_EXTRA_REGS
237 movq %rsp, %rdi
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
240
241 entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
243 SAVE_EXTRA_REGS
244 movq %rsp, %rdi
245 call do_syscall_64 /* returns with IRQs disabled */
246
247 return_from_SYSCALL_64:
248 RESTORE_EXTRA_REGS
249 TRACE_IRQS_IRETQ /* we're about to change IF */
250
251 /*
252 * Try to use SYSRET instead of IRET if we're returning to
253 * a completely clean 64-bit userspace context.
254 */
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257 cmpq %rcx, %r11 /* RCX == RIP */
258 jne opportunistic_sysret_failed
259
260 /*
261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262 * in kernel space. This essentially lets the user take over
263 * the kernel, since userspace controls RSP.
264 *
265 * If width of "canonical tail" ever becomes variable, this will need
266 * to be updated to remain correct on both old and new CPUs.
267 *
268 * Change top bits to match most significant bit (47th or 56th bit
269 * depending on paging mode) in the address.
270 */
271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
276 jne opportunistic_sysret_failed
277
278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
279 jne opportunistic_sysret_failed
280
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
283 jne opportunistic_sysret_failed
284
285 /*
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
295 *
296 * movq $stuck_here, %rcx
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304 jnz opportunistic_sysret_failed
305
306 /* nothing to check for RSP */
307
308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
309 jne opportunistic_sysret_failed
310
311 /*
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
314 */
315 syscall_return_via_sysret:
316 /* rcx and r11 are already restored (see code above) */
317 RESTORE_C_REGS_EXCEPT_RCX_R11
318 movq RSP(%rsp), %rsp
319 USERGS_SYSRET64
320
321 opportunistic_sysret_failed:
322 SWAPGS
323 jmp restore_c_regs_and_iret
324 END(entry_SYSCALL_64)
325
326 ENTRY(stub_ptregs_64)
327 /*
328 * Syscalls marked as needing ptregs land here.
329 * If we are on the fast path, we need to save the extra regs,
330 * which we achieve by trying again on the slow path. If we are on
331 * the slow path, the extra regs are already saved.
332 *
333 * RAX stores a pointer to the C function implementing the syscall.
334 * IRQs are on.
335 */
336 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
337 jne 1f
338
339 /*
340 * Called from fast path -- disable IRQs again, pop return address
341 * and jump to slow path
342 */
343 DISABLE_INTERRUPTS(CLBR_ANY)
344 TRACE_IRQS_OFF
345 popq %rax
346 jmp entry_SYSCALL64_slow_path
347
348 1:
349 jmp *%rax /* Called from C */
350 END(stub_ptregs_64)
351
352 .macro ptregs_stub func
353 ENTRY(ptregs_\func)
354 leaq \func(%rip), %rax
355 jmp stub_ptregs_64
356 END(ptregs_\func)
357 .endm
358
359 /* Instantiate ptregs_stub for each ptregs-using syscall */
360 #define __SYSCALL_64_QUAL_(sym)
361 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
362 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
363 #include <asm/syscalls_64.h>
364
365 /*
366 * %rdi: prev task
367 * %rsi: next task
368 */
369 ENTRY(__switch_to_asm)
370 /*
371 * Save callee-saved registers
372 * This must match the order in inactive_task_frame
373 */
374 pushq %rbp
375 pushq %rbx
376 pushq %r12
377 pushq %r13
378 pushq %r14
379 pushq %r15
380
381 /* switch stack */
382 movq %rsp, TASK_threadsp(%rdi)
383 movq TASK_threadsp(%rsi), %rsp
384
385 #ifdef CONFIG_CC_STACKPROTECTOR
386 movq TASK_stack_canary(%rsi), %rbx
387 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
388 #endif
389
390 /* restore callee-saved registers */
391 popq %r15
392 popq %r14
393 popq %r13
394 popq %r12
395 popq %rbx
396 popq %rbp
397
398 jmp __switch_to
399 END(__switch_to_asm)
400
401 /*
402 * A newly forked process directly context switches into this address.
403 *
404 * rax: prev task we switched from
405 * rbx: kernel thread func (NULL for user thread)
406 * r12: kernel thread arg
407 */
408 ENTRY(ret_from_fork)
409 movq %rax, %rdi
410 call schedule_tail /* rdi: 'prev' task parameter */
411
412 testq %rbx, %rbx /* from kernel_thread? */
413 jnz 1f /* kernel threads are uncommon */
414
415 2:
416 movq %rsp, %rdi
417 call syscall_return_slowpath /* returns with IRQs disabled */
418 TRACE_IRQS_ON /* user mode is traced as IRQS on */
419 SWAPGS
420 jmp restore_regs_and_iret
421
422 1:
423 /* kernel thread */
424 movq %r12, %rdi
425 call *%rbx
426 /*
427 * A kernel thread is allowed to return here after successfully
428 * calling do_execve(). Exit to userspace to complete the execve()
429 * syscall.
430 */
431 movq $0, RAX(%rsp)
432 jmp 2b
433 END(ret_from_fork)
434
435 /*
436 * Build the entry stubs with some assembler magic.
437 * We pack 1 stub into every 8-byte block.
438 */
439 .align 8
440 ENTRY(irq_entries_start)
441 vector=FIRST_EXTERNAL_VECTOR
442 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443 pushq $(~vector+0x80) /* Note: always in signed byte range */
444 vector=vector+1
445 jmp common_interrupt
446 .align 8
447 .endr
448 END(irq_entries_start)
449
450 /*
451 * Interrupt entry/exit.
452 *
453 * Interrupt entry points save only callee clobbered registers in fast path.
454 *
455 * Entry runs with interrupts off.
456 */
457
458 /* 0(%rsp): ~(interrupt number) */
459 .macro interrupt func
460 cld
461 ALLOC_PT_GPREGS_ON_STACK
462 SAVE_C_REGS
463 SAVE_EXTRA_REGS
464 ENCODE_FRAME_POINTER
465
466 testb $3, CS(%rsp)
467 jz 1f
468
469 /*
470 * IRQ from user mode. Switch to kernel gsbase and inform context
471 * tracking that we're in kernel mode.
472 */
473 SWAPGS
474
475 /*
476 * We need to tell lockdep that IRQs are off. We can't do this until
477 * we fix gsbase, and we should do it before enter_from_user_mode
478 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
479 * the simplest way to handle it is to just call it twice if
480 * we enter from user mode. There's no reason to optimize this since
481 * TRACE_IRQS_OFF is a no-op if lockdep is off.
482 */
483 TRACE_IRQS_OFF
484
485 CALL_enter_from_user_mode
486
487 1:
488 /*
489 * Save previous stack pointer, optionally switch to interrupt stack.
490 * irq_count is used to check if a CPU is already on an interrupt stack
491 * or not. While this is essentially redundant with preempt_count it is
492 * a little cheaper to use a separate counter in the PDA (short of
493 * moving irq_enter into assembly, which would be too much work)
494 */
495 movq %rsp, %rdi
496 incl PER_CPU_VAR(irq_count)
497 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
498 pushq %rdi
499 /* We entered an interrupt context - irqs are off: */
500 TRACE_IRQS_OFF
501
502 call \func /* rdi points to pt_regs */
503 .endm
504
505 /*
506 * The interrupt stubs push (~vector+0x80) onto the stack and
507 * then jump to common_interrupt.
508 */
509 .p2align CONFIG_X86_L1_CACHE_SHIFT
510 common_interrupt:
511 ASM_CLAC
512 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
513 interrupt do_IRQ
514 /* 0(%rsp): old RSP */
515 ret_from_intr:
516 DISABLE_INTERRUPTS(CLBR_ANY)
517 TRACE_IRQS_OFF
518 decl PER_CPU_VAR(irq_count)
519
520 /* Restore saved previous stack */
521 popq %rsp
522
523 testb $3, CS(%rsp)
524 jz retint_kernel
525
526 /* Interrupt came from user space */
527 GLOBAL(retint_user)
528 mov %rsp,%rdi
529 call prepare_exit_to_usermode
530 TRACE_IRQS_IRETQ
531 SWAPGS
532 jmp restore_regs_and_iret
533
534 /* Returning to kernel space */
535 retint_kernel:
536 #ifdef CONFIG_PREEMPT
537 /* Interrupts are off */
538 /* Check if we need preemption */
539 bt $9, EFLAGS(%rsp) /* were interrupts off? */
540 jnc 1f
541 0: cmpl $0, PER_CPU_VAR(__preempt_count)
542 jnz 1f
543 call preempt_schedule_irq
544 jmp 0b
545 1:
546 #endif
547 /*
548 * The iretq could re-enable interrupts:
549 */
550 TRACE_IRQS_IRETQ
551
552 /*
553 * At this label, code paths which return to kernel and to user,
554 * which come from interrupts/exception and from syscalls, merge.
555 */
556 GLOBAL(restore_regs_and_iret)
557 RESTORE_EXTRA_REGS
558 restore_c_regs_and_iret:
559 RESTORE_C_REGS
560 REMOVE_PT_GPREGS_FROM_STACK 8
561 INTERRUPT_RETURN
562
563 ENTRY(native_iret)
564 /*
565 * Are we returning to a stack segment from the LDT? Note: in
566 * 64-bit mode SS:RSP on the exception stack is always valid.
567 */
568 #ifdef CONFIG_X86_ESPFIX64
569 testb $4, (SS-RIP)(%rsp)
570 jnz native_irq_return_ldt
571 #endif
572
573 .global native_irq_return_iret
574 native_irq_return_iret:
575 /*
576 * This may fault. Non-paranoid faults on return to userspace are
577 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
578 * Double-faults due to espfix64 are handled in do_double_fault.
579 * Other faults here are fatal.
580 */
581 iretq
582
583 #ifdef CONFIG_X86_ESPFIX64
584 native_irq_return_ldt:
585 /*
586 * We are running with user GSBASE. All GPRs contain their user
587 * values. We have a percpu ESPFIX stack that is eight slots
588 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
589 * of the ESPFIX stack.
590 *
591 * We clobber RAX and RDI in this code. We stash RDI on the
592 * normal stack and RAX on the ESPFIX stack.
593 *
594 * The ESPFIX stack layout we set up looks like this:
595 *
596 * --- top of ESPFIX stack ---
597 * SS
598 * RSP
599 * RFLAGS
600 * CS
601 * RIP <-- RSP points here when we're done
602 * RAX <-- espfix_waddr points here
603 * --- bottom of ESPFIX stack ---
604 */
605
606 pushq %rdi /* Stash user RDI */
607 SWAPGS
608 movq PER_CPU_VAR(espfix_waddr), %rdi
609 movq %rax, (0*8)(%rdi) /* user RAX */
610 movq (1*8)(%rsp), %rax /* user RIP */
611 movq %rax, (1*8)(%rdi)
612 movq (2*8)(%rsp), %rax /* user CS */
613 movq %rax, (2*8)(%rdi)
614 movq (3*8)(%rsp), %rax /* user RFLAGS */
615 movq %rax, (3*8)(%rdi)
616 movq (5*8)(%rsp), %rax /* user SS */
617 movq %rax, (5*8)(%rdi)
618 movq (4*8)(%rsp), %rax /* user RSP */
619 movq %rax, (4*8)(%rdi)
620 /* Now RAX == RSP. */
621
622 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
623 popq %rdi /* Restore user RDI */
624
625 /*
626 * espfix_stack[31:16] == 0. The page tables are set up such that
627 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
628 * espfix_waddr for any X. That is, there are 65536 RO aliases of
629 * the same page. Set up RSP so that RSP[31:16] contains the
630 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
631 * still points to an RO alias of the ESPFIX stack.
632 */
633 orq PER_CPU_VAR(espfix_stack), %rax
634 SWAPGS
635 movq %rax, %rsp
636
637 /*
638 * At this point, we cannot write to the stack any more, but we can
639 * still read.
640 */
641 popq %rax /* Restore user RAX */
642
643 /*
644 * RSP now points to an ordinary IRET frame, except that the page
645 * is read-only and RSP[31:16] are preloaded with the userspace
646 * values. We can now IRET back to userspace.
647 */
648 jmp native_irq_return_iret
649 #endif
650 END(common_interrupt)
651
652 /*
653 * APIC interrupts.
654 */
655 .macro apicinterrupt3 num sym do_sym
656 ENTRY(\sym)
657 ASM_CLAC
658 pushq $~(\num)
659 .Lcommon_\sym:
660 interrupt \do_sym
661 jmp ret_from_intr
662 END(\sym)
663 .endm
664
665 #ifdef CONFIG_TRACING
666 #define trace(sym) trace_##sym
667 #define smp_trace(sym) smp_trace_##sym
668
669 .macro trace_apicinterrupt num sym
670 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
671 .endm
672 #else
673 .macro trace_apicinterrupt num sym do_sym
674 .endm
675 #endif
676
677 /* Make sure APIC interrupt handlers end up in the irqentry section: */
678 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
679 # define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
680 # define POP_SECTION_IRQENTRY .popsection
681 #else
682 # define PUSH_SECTION_IRQENTRY
683 # define POP_SECTION_IRQENTRY
684 #endif
685
686 .macro apicinterrupt num sym do_sym
687 PUSH_SECTION_IRQENTRY
688 apicinterrupt3 \num \sym \do_sym
689 trace_apicinterrupt \num \sym
690 POP_SECTION_IRQENTRY
691 .endm
692
693 #ifdef CONFIG_SMP
694 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
695 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
696 #endif
697
698 #ifdef CONFIG_X86_UV
699 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
700 #endif
701
702 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
703 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
704
705 #ifdef CONFIG_HAVE_KVM
706 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
707 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
708 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
709 #endif
710
711 #ifdef CONFIG_X86_MCE_THRESHOLD
712 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
713 #endif
714
715 #ifdef CONFIG_X86_MCE_AMD
716 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
717 #endif
718
719 #ifdef CONFIG_X86_THERMAL_VECTOR
720 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
721 #endif
722
723 #ifdef CONFIG_SMP
724 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
725 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
726 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
727 #endif
728
729 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
730 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
731
732 #ifdef CONFIG_IRQ_WORK
733 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
734 #endif
735
736 /*
737 * Exception entry points.
738 */
739 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
740
741 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
742 ENTRY(\sym)
743 /* Sanity check */
744 .if \shift_ist != -1 && \paranoid == 0
745 .error "using shift_ist requires paranoid=1"
746 .endif
747
748 ASM_CLAC
749 PARAVIRT_ADJUST_EXCEPTION_FRAME
750
751 .ifeq \has_error_code
752 pushq $-1 /* ORIG_RAX: no syscall to restart */
753 .endif
754
755 ALLOC_PT_GPREGS_ON_STACK
756
757 .if \paranoid
758 .if \paranoid == 1
759 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
760 jnz 1f
761 .endif
762 call paranoid_entry
763 .else
764 call error_entry
765 .endif
766 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
767
768 .if \paranoid
769 .if \shift_ist != -1
770 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
771 .else
772 TRACE_IRQS_OFF
773 .endif
774 .endif
775
776 movq %rsp, %rdi /* pt_regs pointer */
777
778 .if \has_error_code
779 movq ORIG_RAX(%rsp), %rsi /* get error code */
780 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
781 .else
782 xorl %esi, %esi /* no error code */
783 .endif
784
785 .if \shift_ist != -1
786 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
787 .endif
788
789 call \do_sym
790
791 .if \shift_ist != -1
792 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
793 .endif
794
795 /* these procedures expect "no swapgs" flag in ebx */
796 .if \paranoid
797 jmp paranoid_exit
798 .else
799 jmp error_exit
800 .endif
801
802 .if \paranoid == 1
803 /*
804 * Paranoid entry from userspace. Switch stacks and treat it
805 * as a normal entry. This means that paranoid handlers
806 * run in real process context if user_mode(regs).
807 */
808 1:
809 call error_entry
810
811
812 movq %rsp, %rdi /* pt_regs pointer */
813 call sync_regs
814 movq %rax, %rsp /* switch stack */
815
816 movq %rsp, %rdi /* pt_regs pointer */
817
818 .if \has_error_code
819 movq ORIG_RAX(%rsp), %rsi /* get error code */
820 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
821 .else
822 xorl %esi, %esi /* no error code */
823 .endif
824
825 call \do_sym
826
827 jmp error_exit /* %ebx: no swapgs flag */
828 .endif
829 END(\sym)
830 .endm
831
832 #ifdef CONFIG_TRACING
833 .macro trace_idtentry sym do_sym has_error_code:req
834 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
835 idtentry \sym \do_sym has_error_code=\has_error_code
836 .endm
837 #else
838 .macro trace_idtentry sym do_sym has_error_code:req
839 idtentry \sym \do_sym has_error_code=\has_error_code
840 .endm
841 #endif
842
843 idtentry divide_error do_divide_error has_error_code=0
844 idtentry overflow do_overflow has_error_code=0
845 idtentry bounds do_bounds has_error_code=0
846 idtentry invalid_op do_invalid_op has_error_code=0
847 idtentry device_not_available do_device_not_available has_error_code=0
848 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
849 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
850 idtentry invalid_TSS do_invalid_TSS has_error_code=1
851 idtentry segment_not_present do_segment_not_present has_error_code=1
852 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
853 idtentry coprocessor_error do_coprocessor_error has_error_code=0
854 idtentry alignment_check do_alignment_check has_error_code=1
855 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
856
857
858 /*
859 * Reload gs selector with exception handling
860 * edi: new selector
861 */
862 ENTRY(native_load_gs_index)
863 pushfq
864 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
865 SWAPGS
866 .Lgs_change:
867 movl %edi, %gs
868 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
869 SWAPGS
870 popfq
871 ret
872 END(native_load_gs_index)
873 EXPORT_SYMBOL(native_load_gs_index)
874
875 _ASM_EXTABLE(.Lgs_change, bad_gs)
876 .section .fixup, "ax"
877 /* running with kernelgs */
878 bad_gs:
879 SWAPGS /* switch back to user gs */
880 .macro ZAP_GS
881 /* This can't be a string because the preprocessor needs to see it. */
882 movl $__USER_DS, %eax
883 movl %eax, %gs
884 .endm
885 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
886 xorl %eax, %eax
887 movl %eax, %gs
888 jmp 2b
889 .previous
890
891 /* Call softirq on interrupt stack. Interrupts are off. */
892 ENTRY(do_softirq_own_stack)
893 pushq %rbp
894 mov %rsp, %rbp
895 incl PER_CPU_VAR(irq_count)
896 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
897 push %rbp /* frame pointer backlink */
898 call __do_softirq
899 leaveq
900 decl PER_CPU_VAR(irq_count)
901 ret
902 END(do_softirq_own_stack)
903
904 #ifdef CONFIG_XEN
905 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
906
907 /*
908 * A note on the "critical region" in our callback handler.
909 * We want to avoid stacking callback handlers due to events occurring
910 * during handling of the last event. To do this, we keep events disabled
911 * until we've done all processing. HOWEVER, we must enable events before
912 * popping the stack frame (can't be done atomically) and so it would still
913 * be possible to get enough handler activations to overflow the stack.
914 * Although unlikely, bugs of that kind are hard to track down, so we'd
915 * like to avoid the possibility.
916 * So, on entry to the handler we detect whether we interrupted an
917 * existing activation in its critical region -- if so, we pop the current
918 * activation and restart the handler using the previous one.
919 */
920 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
921
922 /*
923 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
924 * see the correct pointer to the pt_regs
925 */
926 movq %rdi, %rsp /* we don't return, adjust the stack frame */
927 11: incl PER_CPU_VAR(irq_count)
928 movq %rsp, %rbp
929 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
930 pushq %rbp /* frame pointer backlink */
931 call xen_evtchn_do_upcall
932 popq %rsp
933 decl PER_CPU_VAR(irq_count)
934 #ifndef CONFIG_PREEMPT
935 call xen_maybe_preempt_hcall
936 #endif
937 jmp error_exit
938 END(xen_do_hypervisor_callback)
939
940 /*
941 * Hypervisor uses this for application faults while it executes.
942 * We get here for two reasons:
943 * 1. Fault while reloading DS, ES, FS or GS
944 * 2. Fault while executing IRET
945 * Category 1 we do not need to fix up as Xen has already reloaded all segment
946 * registers that could be reloaded and zeroed the others.
947 * Category 2 we fix up by killing the current process. We cannot use the
948 * normal Linux return path in this case because if we use the IRET hypercall
949 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
950 * We distinguish between categories by comparing each saved segment register
951 * with its current contents: any discrepancy means we in category 1.
952 */
953 ENTRY(xen_failsafe_callback)
954 movl %ds, %ecx
955 cmpw %cx, 0x10(%rsp)
956 jne 1f
957 movl %es, %ecx
958 cmpw %cx, 0x18(%rsp)
959 jne 1f
960 movl %fs, %ecx
961 cmpw %cx, 0x20(%rsp)
962 jne 1f
963 movl %gs, %ecx
964 cmpw %cx, 0x28(%rsp)
965 jne 1f
966 /* All segments match their saved values => Category 2 (Bad IRET). */
967 movq (%rsp), %rcx
968 movq 8(%rsp), %r11
969 addq $0x30, %rsp
970 pushq $0 /* RIP */
971 pushq %r11
972 pushq %rcx
973 jmp general_protection
974 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
975 movq (%rsp), %rcx
976 movq 8(%rsp), %r11
977 addq $0x30, %rsp
978 pushq $-1 /* orig_ax = -1 => not a system call */
979 ALLOC_PT_GPREGS_ON_STACK
980 SAVE_C_REGS
981 SAVE_EXTRA_REGS
982 ENCODE_FRAME_POINTER
983 jmp error_exit
984 END(xen_failsafe_callback)
985
986 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
987 xen_hvm_callback_vector xen_evtchn_do_upcall
988
989 #endif /* CONFIG_XEN */
990
991 #if IS_ENABLED(CONFIG_HYPERV)
992 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
993 hyperv_callback_vector hyperv_vector_handler
994 #endif /* CONFIG_HYPERV */
995
996 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
997 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
998 idtentry stack_segment do_stack_segment has_error_code=1
999
1000 #ifdef CONFIG_XEN
1001 idtentry xen_debug do_debug has_error_code=0
1002 idtentry xen_int3 do_int3 has_error_code=0
1003 idtentry xen_stack_segment do_stack_segment has_error_code=1
1004 #endif
1005
1006 idtentry general_protection do_general_protection has_error_code=1
1007 trace_idtentry page_fault do_page_fault has_error_code=1
1008
1009 #ifdef CONFIG_KVM_GUEST
1010 idtentry async_page_fault do_async_page_fault has_error_code=1
1011 #endif
1012
1013 #ifdef CONFIG_X86_MCE
1014 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1015 #endif
1016
1017 /*
1018 * Save all registers in pt_regs, and switch gs if needed.
1019 * Use slow, but surefire "are we in kernel?" check.
1020 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1021 */
1022 ENTRY(paranoid_entry)
1023 cld
1024 SAVE_C_REGS 8
1025 SAVE_EXTRA_REGS 8
1026 ENCODE_FRAME_POINTER 8
1027 movl $1, %ebx
1028 movl $MSR_GS_BASE, %ecx
1029 rdmsr
1030 testl %edx, %edx
1031 js 1f /* negative -> in kernel */
1032 SWAPGS
1033 xorl %ebx, %ebx
1034 1: ret
1035 END(paranoid_entry)
1036
1037 /*
1038 * "Paranoid" exit path from exception stack. This is invoked
1039 * only on return from non-NMI IST interrupts that came
1040 * from kernel space.
1041 *
1042 * We may be returning to very strange contexts (e.g. very early
1043 * in syscall entry), so checking for preemption here would
1044 * be complicated. Fortunately, we there's no good reason
1045 * to try to handle preemption here.
1046 *
1047 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1048 */
1049 ENTRY(paranoid_exit)
1050 DISABLE_INTERRUPTS(CLBR_ANY)
1051 TRACE_IRQS_OFF_DEBUG
1052 testl %ebx, %ebx /* swapgs needed? */
1053 jnz paranoid_exit_no_swapgs
1054 TRACE_IRQS_IRETQ
1055 SWAPGS_UNSAFE_STACK
1056 jmp paranoid_exit_restore
1057 paranoid_exit_no_swapgs:
1058 TRACE_IRQS_IRETQ_DEBUG
1059 paranoid_exit_restore:
1060 RESTORE_EXTRA_REGS
1061 RESTORE_C_REGS
1062 REMOVE_PT_GPREGS_FROM_STACK 8
1063 INTERRUPT_RETURN
1064 END(paranoid_exit)
1065
1066 /*
1067 * Save all registers in pt_regs, and switch gs if needed.
1068 * Return: EBX=0: came from user mode; EBX=1: otherwise
1069 */
1070 ENTRY(error_entry)
1071 cld
1072 SAVE_C_REGS 8
1073 SAVE_EXTRA_REGS 8
1074 ENCODE_FRAME_POINTER 8
1075 xorl %ebx, %ebx
1076 testb $3, CS+8(%rsp)
1077 jz .Lerror_kernelspace
1078
1079 /*
1080 * We entered from user mode or we're pretending to have entered
1081 * from user mode due to an IRET fault.
1082 */
1083 SWAPGS
1084
1085 .Lerror_entry_from_usermode_after_swapgs:
1086 /*
1087 * We need to tell lockdep that IRQs are off. We can't do this until
1088 * we fix gsbase, and we should do it before enter_from_user_mode
1089 * (which can take locks).
1090 */
1091 TRACE_IRQS_OFF
1092 CALL_enter_from_user_mode
1093 ret
1094
1095 .Lerror_entry_done:
1096 TRACE_IRQS_OFF
1097 ret
1098
1099 /*
1100 * There are two places in the kernel that can potentially fault with
1101 * usergs. Handle them here. B stepping K8s sometimes report a
1102 * truncated RIP for IRET exceptions returning to compat mode. Check
1103 * for these here too.
1104 */
1105 .Lerror_kernelspace:
1106 incl %ebx
1107 leaq native_irq_return_iret(%rip), %rcx
1108 cmpq %rcx, RIP+8(%rsp)
1109 je .Lerror_bad_iret
1110 movl %ecx, %eax /* zero extend */
1111 cmpq %rax, RIP+8(%rsp)
1112 je .Lbstep_iret
1113 cmpq $.Lgs_change, RIP+8(%rsp)
1114 jne .Lerror_entry_done
1115
1116 /*
1117 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1118 * gsbase and proceed. We'll fix up the exception and land in
1119 * .Lgs_change's error handler with kernel gsbase.
1120 */
1121 SWAPGS
1122 jmp .Lerror_entry_done
1123
1124 .Lbstep_iret:
1125 /* Fix truncated RIP */
1126 movq %rcx, RIP+8(%rsp)
1127 /* fall through */
1128
1129 .Lerror_bad_iret:
1130 /*
1131 * We came from an IRET to user mode, so we have user gsbase.
1132 * Switch to kernel gsbase:
1133 */
1134 SWAPGS
1135
1136 /*
1137 * Pretend that the exception came from user mode: set up pt_regs
1138 * as if we faulted immediately after IRET and clear EBX so that
1139 * error_exit knows that we will be returning to user mode.
1140 */
1141 mov %rsp, %rdi
1142 call fixup_bad_iret
1143 mov %rax, %rsp
1144 decl %ebx
1145 jmp .Lerror_entry_from_usermode_after_swapgs
1146 END(error_entry)
1147
1148
1149 /*
1150 * On entry, EBX is a "return to kernel mode" flag:
1151 * 1: already in kernel mode, don't need SWAPGS
1152 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1153 */
1154 ENTRY(error_exit)
1155 DISABLE_INTERRUPTS(CLBR_ANY)
1156 TRACE_IRQS_OFF
1157 testl %ebx, %ebx
1158 jnz retint_kernel
1159 jmp retint_user
1160 END(error_exit)
1161
1162 /* Runs on exception stack */
1163 ENTRY(nmi)
1164 /*
1165 * Fix up the exception frame if we're on Xen.
1166 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1167 * one value to the stack on native, so it may clobber the rdx
1168 * scratch slot, but it won't clobber any of the important
1169 * slots past it.
1170 *
1171 * Xen is a different story, because the Xen frame itself overlaps
1172 * the "NMI executing" variable.
1173 */
1174 PARAVIRT_ADJUST_EXCEPTION_FRAME
1175
1176 /*
1177 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1178 * the iretq it performs will take us out of NMI context.
1179 * This means that we can have nested NMIs where the next
1180 * NMI is using the top of the stack of the previous NMI. We
1181 * can't let it execute because the nested NMI will corrupt the
1182 * stack of the previous NMI. NMI handlers are not re-entrant
1183 * anyway.
1184 *
1185 * To handle this case we do the following:
1186 * Check the a special location on the stack that contains
1187 * a variable that is set when NMIs are executing.
1188 * The interrupted task's stack is also checked to see if it
1189 * is an NMI stack.
1190 * If the variable is not set and the stack is not the NMI
1191 * stack then:
1192 * o Set the special variable on the stack
1193 * o Copy the interrupt frame into an "outermost" location on the
1194 * stack
1195 * o Copy the interrupt frame into an "iret" location on the stack
1196 * o Continue processing the NMI
1197 * If the variable is set or the previous stack is the NMI stack:
1198 * o Modify the "iret" location to jump to the repeat_nmi
1199 * o return back to the first NMI
1200 *
1201 * Now on exit of the first NMI, we first clear the stack variable
1202 * The NMI stack will tell any nested NMIs at that point that it is
1203 * nested. Then we pop the stack normally with iret, and if there was
1204 * a nested NMI that updated the copy interrupt stack frame, a
1205 * jump will be made to the repeat_nmi code that will handle the second
1206 * NMI.
1207 *
1208 * However, espfix prevents us from directly returning to userspace
1209 * with a single IRET instruction. Similarly, IRET to user mode
1210 * can fault. We therefore handle NMIs from user space like
1211 * other IST entries.
1212 */
1213
1214 ASM_CLAC
1215
1216 /* Use %rdx as our temp variable throughout */
1217 pushq %rdx
1218
1219 testb $3, CS-RIP+8(%rsp)
1220 jz .Lnmi_from_kernel
1221
1222 /*
1223 * NMI from user mode. We need to run on the thread stack, but we
1224 * can't go through the normal entry paths: NMIs are masked, and
1225 * we don't want to enable interrupts, because then we'll end
1226 * up in an awkward situation in which IRQs are on but NMIs
1227 * are off.
1228 *
1229 * We also must not push anything to the stack before switching
1230 * stacks lest we corrupt the "NMI executing" variable.
1231 */
1232
1233 SWAPGS_UNSAFE_STACK
1234 cld
1235 movq %rsp, %rdx
1236 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1237 pushq 5*8(%rdx) /* pt_regs->ss */
1238 pushq 4*8(%rdx) /* pt_regs->rsp */
1239 pushq 3*8(%rdx) /* pt_regs->flags */
1240 pushq 2*8(%rdx) /* pt_regs->cs */
1241 pushq 1*8(%rdx) /* pt_regs->rip */
1242 pushq $-1 /* pt_regs->orig_ax */
1243 pushq %rdi /* pt_regs->di */
1244 pushq %rsi /* pt_regs->si */
1245 pushq (%rdx) /* pt_regs->dx */
1246 pushq %rcx /* pt_regs->cx */
1247 pushq %rax /* pt_regs->ax */
1248 pushq %r8 /* pt_regs->r8 */
1249 pushq %r9 /* pt_regs->r9 */
1250 pushq %r10 /* pt_regs->r10 */
1251 pushq %r11 /* pt_regs->r11 */
1252 pushq %rbx /* pt_regs->rbx */
1253 pushq %rbp /* pt_regs->rbp */
1254 pushq %r12 /* pt_regs->r12 */
1255 pushq %r13 /* pt_regs->r13 */
1256 pushq %r14 /* pt_regs->r14 */
1257 pushq %r15 /* pt_regs->r15 */
1258 ENCODE_FRAME_POINTER
1259
1260 /*
1261 * At this point we no longer need to worry about stack damage
1262 * due to nesting -- we're on the normal thread stack and we're
1263 * done with the NMI stack.
1264 */
1265
1266 movq %rsp, %rdi
1267 movq $-1, %rsi
1268 call do_nmi
1269
1270 /*
1271 * Return back to user mode. We must *not* do the normal exit
1272 * work, because we don't want to enable interrupts.
1273 */
1274 SWAPGS
1275 jmp restore_regs_and_iret
1276
1277 .Lnmi_from_kernel:
1278 /*
1279 * Here's what our stack frame will look like:
1280 * +---------------------------------------------------------+
1281 * | original SS |
1282 * | original Return RSP |
1283 * | original RFLAGS |
1284 * | original CS |
1285 * | original RIP |
1286 * +---------------------------------------------------------+
1287 * | temp storage for rdx |
1288 * +---------------------------------------------------------+
1289 * | "NMI executing" variable |
1290 * +---------------------------------------------------------+
1291 * | iret SS } Copied from "outermost" frame |
1292 * | iret Return RSP } on each loop iteration; overwritten |
1293 * | iret RFLAGS } by a nested NMI to force another |
1294 * | iret CS } iteration if needed. |
1295 * | iret RIP } |
1296 * +---------------------------------------------------------+
1297 * | outermost SS } initialized in first_nmi; |
1298 * | outermost Return RSP } will not be changed before |
1299 * | outermost RFLAGS } NMI processing is done. |
1300 * | outermost CS } Copied to "iret" frame on each |
1301 * | outermost RIP } iteration. |
1302 * +---------------------------------------------------------+
1303 * | pt_regs |
1304 * +---------------------------------------------------------+
1305 *
1306 * The "original" frame is used by hardware. Before re-enabling
1307 * NMIs, we need to be done with it, and we need to leave enough
1308 * space for the asm code here.
1309 *
1310 * We return by executing IRET while RSP points to the "iret" frame.
1311 * That will either return for real or it will loop back into NMI
1312 * processing.
1313 *
1314 * The "outermost" frame is copied to the "iret" frame on each
1315 * iteration of the loop, so each iteration starts with the "iret"
1316 * frame pointing to the final return target.
1317 */
1318
1319 /*
1320 * Determine whether we're a nested NMI.
1321 *
1322 * If we interrupted kernel code between repeat_nmi and
1323 * end_repeat_nmi, then we are a nested NMI. We must not
1324 * modify the "iret" frame because it's being written by
1325 * the outer NMI. That's okay; the outer NMI handler is
1326 * about to about to call do_nmi anyway, so we can just
1327 * resume the outer NMI.
1328 */
1329
1330 movq $repeat_nmi, %rdx
1331 cmpq 8(%rsp), %rdx
1332 ja 1f
1333 movq $end_repeat_nmi, %rdx
1334 cmpq 8(%rsp), %rdx
1335 ja nested_nmi_out
1336 1:
1337
1338 /*
1339 * Now check "NMI executing". If it's set, then we're nested.
1340 * This will not detect if we interrupted an outer NMI just
1341 * before IRET.
1342 */
1343 cmpl $1, -8(%rsp)
1344 je nested_nmi
1345
1346 /*
1347 * Now test if the previous stack was an NMI stack. This covers
1348 * the case where we interrupt an outer NMI after it clears
1349 * "NMI executing" but before IRET. We need to be careful, though:
1350 * there is one case in which RSP could point to the NMI stack
1351 * despite there being no NMI active: naughty userspace controls
1352 * RSP at the very beginning of the SYSCALL targets. We can
1353 * pull a fast one on naughty userspace, though: we program
1354 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1355 * if it controls the kernel's RSP. We set DF before we clear
1356 * "NMI executing".
1357 */
1358 lea 6*8(%rsp), %rdx
1359 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1360 cmpq %rdx, 4*8(%rsp)
1361 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1362 ja first_nmi
1363
1364 subq $EXCEPTION_STKSZ, %rdx
1365 cmpq %rdx, 4*8(%rsp)
1366 /* If it is below the NMI stack, it is a normal NMI */
1367 jb first_nmi
1368
1369 /* Ah, it is within the NMI stack. */
1370
1371 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1372 jz first_nmi /* RSP was user controlled. */
1373
1374 /* This is a nested NMI. */
1375
1376 nested_nmi:
1377 /*
1378 * Modify the "iret" frame to point to repeat_nmi, forcing another
1379 * iteration of NMI handling.
1380 */
1381 subq $8, %rsp
1382 leaq -10*8(%rsp), %rdx
1383 pushq $__KERNEL_DS
1384 pushq %rdx
1385 pushfq
1386 pushq $__KERNEL_CS
1387 pushq $repeat_nmi
1388
1389 /* Put stack back */
1390 addq $(6*8), %rsp
1391
1392 nested_nmi_out:
1393 popq %rdx
1394
1395 /* We are returning to kernel mode, so this cannot result in a fault. */
1396 INTERRUPT_RETURN
1397
1398 first_nmi:
1399 /* Restore rdx. */
1400 movq (%rsp), %rdx
1401
1402 /* Make room for "NMI executing". */
1403 pushq $0
1404
1405 /* Leave room for the "iret" frame */
1406 subq $(5*8), %rsp
1407
1408 /* Copy the "original" frame to the "outermost" frame */
1409 .rept 5
1410 pushq 11*8(%rsp)
1411 .endr
1412
1413 /* Everything up to here is safe from nested NMIs */
1414
1415 #ifdef CONFIG_DEBUG_ENTRY
1416 /*
1417 * For ease of testing, unmask NMIs right away. Disabled by
1418 * default because IRET is very expensive.
1419 */
1420 pushq $0 /* SS */
1421 pushq %rsp /* RSP (minus 8 because of the previous push) */
1422 addq $8, (%rsp) /* Fix up RSP */
1423 pushfq /* RFLAGS */
1424 pushq $__KERNEL_CS /* CS */
1425 pushq $1f /* RIP */
1426 INTERRUPT_RETURN /* continues at repeat_nmi below */
1427 1:
1428 #endif
1429
1430 repeat_nmi:
1431 /*
1432 * If there was a nested NMI, the first NMI's iret will return
1433 * here. But NMIs are still enabled and we can take another
1434 * nested NMI. The nested NMI checks the interrupted RIP to see
1435 * if it is between repeat_nmi and end_repeat_nmi, and if so
1436 * it will just return, as we are about to repeat an NMI anyway.
1437 * This makes it safe to copy to the stack frame that a nested
1438 * NMI will update.
1439 *
1440 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1441 * we're repeating an NMI, gsbase has the same value that it had on
1442 * the first iteration. paranoid_entry will load the kernel
1443 * gsbase if needed before we call do_nmi. "NMI executing"
1444 * is zero.
1445 */
1446 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1447
1448 /*
1449 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1450 * here must not modify the "iret" frame while we're writing to
1451 * it or it will end up containing garbage.
1452 */
1453 addq $(10*8), %rsp
1454 .rept 5
1455 pushq -6*8(%rsp)
1456 .endr
1457 subq $(5*8), %rsp
1458 end_repeat_nmi:
1459
1460 /*
1461 * Everything below this point can be preempted by a nested NMI.
1462 * If this happens, then the inner NMI will change the "iret"
1463 * frame to point back to repeat_nmi.
1464 */
1465 pushq $-1 /* ORIG_RAX: no syscall to restart */
1466 ALLOC_PT_GPREGS_ON_STACK
1467
1468 /*
1469 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1470 * as we should not be calling schedule in NMI context.
1471 * Even with normal interrupts enabled. An NMI should not be
1472 * setting NEED_RESCHED or anything that normal interrupts and
1473 * exceptions might do.
1474 */
1475 call paranoid_entry
1476
1477 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1478 movq %rsp, %rdi
1479 movq $-1, %rsi
1480 call do_nmi
1481
1482 testl %ebx, %ebx /* swapgs needed? */
1483 jnz nmi_restore
1484 nmi_swapgs:
1485 SWAPGS_UNSAFE_STACK
1486 nmi_restore:
1487 RESTORE_EXTRA_REGS
1488 RESTORE_C_REGS
1489
1490 /* Point RSP at the "iret" frame. */
1491 REMOVE_PT_GPREGS_FROM_STACK 6*8
1492
1493 /*
1494 * Clear "NMI executing". Set DF first so that we can easily
1495 * distinguish the remaining code between here and IRET from
1496 * the SYSCALL entry and exit paths. On a native kernel, we
1497 * could just inspect RIP, but, on paravirt kernels,
1498 * INTERRUPT_RETURN can translate into a jump into a
1499 * hypercall page.
1500 */
1501 std
1502 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1503
1504 /*
1505 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1506 * stack in a single instruction. We are returning to kernel
1507 * mode, so this cannot result in a fault.
1508 */
1509 INTERRUPT_RETURN
1510 END(nmi)
1511
1512 ENTRY(ignore_sysret)
1513 mov $-ENOSYS, %eax
1514 sysret
1515 END(ignore_sysret)
1516
1517 ENTRY(rewind_stack_do_exit)
1518 /* Prevent any naive code from trying to unwind to our caller. */
1519 xorl %ebp, %ebp
1520
1521 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1522 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1523
1524 call do_exit
1525 1: jmp 1b
1526 END(rewind_stack_do_exit)