]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/entry/entry_64.S
x86/entry/64: Remove unneeded kernel CR3 switching
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <asm/nospec-branch.h>
41 #include <linux/err.h>
42
43 #include "calling.h"
44
45 .code64
46 .section .entry.text, "ax"
47
48 #ifdef CONFIG_PARAVIRT
49 SYM_CODE_START(native_usergs_sysret64)
50 UNWIND_HINT_EMPTY
51 swapgs
52 sysretq
53 SYM_CODE_END(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_FLAGS flags:req
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 .macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67 .endm
68
69 /*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82 .macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_OFF
85 call debug_stack_reset
86 .endm
87
88 .macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
90 TRACE_IRQS_ON
91 call debug_stack_reset
92 .endm
93
94 .macro TRACE_IRQS_IRETQ_DEBUG
95 btl $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
97 TRACE_IRQS_ON_DEBUG
98 1:
99 .endm
100
101 #else
102 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
105 #endif
106
107 /*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax system call number
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi arg0
131 * rsi arg1
132 * rdx arg2
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8 arg4
135 * r9 arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145 SYM_CODE_START(entry_SYSCALL_64)
146 UNWIND_HINT_EMPTY
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
152
153 swapgs
154 /* tss.sp2 is scratch space. */
155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 /* Construct struct pt_regs on stack */
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
165 SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
166 pushq %rax /* pt_regs->orig_ax */
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169
170 TRACE_IRQS_OFF
171
172 /* IRQs are off. */
173 movq %rax, %rdi
174 movq %rsp, %rsi
175 call do_syscall_64 /* returns with IRQs disabled */
176
177 TRACE_IRQS_ON /* return enables interrupts */
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
183 */
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
193 * the kernel, since userspace controls RSP.
194 *
195 * If width of "canonical tail" ever becomes variable, this will need
196 * to be updated to remain correct on both old and new CPUs.
197 *
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
200 */
201 #ifdef CONFIG_X86_5LEVEL
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204 #else
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207 #endif
208
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
211 jne swapgs_restore_regs_and_return_to_usermode
212
213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
214 jne swapgs_restore_regs_and_return_to_usermode
215
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
218 jne swapgs_restore_regs_and_return_to_usermode
219
220 /*
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
230 *
231 * movq $stuck_here, %rcx
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239 jnz swapgs_restore_regs_and_return_to_usermode
240
241 /* nothing to check for RSP */
242
243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
244 jne swapgs_restore_regs_and_return_to_usermode
245
246 /*
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
249 */
250 syscall_return_via_sysret:
251 /* rcx and r11 are already restored (see code above) */
252 POP_REGS pop_rdi=0 skip_r11rcx=1
253
254 /*
255 * Now all regs are restored except RSP and RDI.
256 * Save old stack pointer and switch to trampoline stack.
257 */
258 movq %rsp, %rdi
259 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
260 UNWIND_HINT_EMPTY
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
269 STACKLEAK_ERASE_NOCLOBBER
270
271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272
273 popq %rdi
274 popq %rsp
275 USERGS_SYSRET64
276 SYM_CODE_END(entry_SYSCALL_64)
277
278 /*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282 SYM_FUNC_START(__switch_to_asm)
283 /*
284 * Save callee-saved registers
285 * This must match the order in inactive_task_frame
286 */
287 pushq %rbp
288 pushq %rbx
289 pushq %r12
290 pushq %r13
291 pushq %r14
292 pushq %r15
293
294 /* switch stack */
295 movq %rsp, TASK_threadsp(%rdi)
296 movq TASK_threadsp(%rsi), %rsp
297
298 #ifdef CONFIG_STACKPROTECTOR
299 movq TASK_stack_canary(%rsi), %rbx
300 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
301 #endif
302
303 #ifdef CONFIG_RETPOLINE
304 /*
305 * When switching from a shallower to a deeper call stack
306 * the RSB may either underflow or use entries populated
307 * with userspace addresses. On CPUs where those concerns
308 * exist, overwrite the RSB with entries which capture
309 * speculative execution to prevent attack.
310 */
311 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
312 #endif
313
314 /* restore callee-saved registers */
315 popq %r15
316 popq %r14
317 popq %r13
318 popq %r12
319 popq %rbx
320 popq %rbp
321
322 jmp __switch_to
323 SYM_FUNC_END(__switch_to_asm)
324
325 /*
326 * A newly forked process directly context switches into this address.
327 *
328 * rax: prev task we switched from
329 * rbx: kernel thread func (NULL for user thread)
330 * r12: kernel thread arg
331 */
332 SYM_CODE_START(ret_from_fork)
333 UNWIND_HINT_EMPTY
334 movq %rax, %rdi
335 call schedule_tail /* rdi: 'prev' task parameter */
336
337 testq %rbx, %rbx /* from kernel_thread? */
338 jnz 1f /* kernel threads are uncommon */
339
340 2:
341 UNWIND_HINT_REGS
342 movq %rsp, %rdi
343 call syscall_return_slowpath /* returns with IRQs disabled */
344 TRACE_IRQS_ON /* user mode is traced as IRQS on */
345 jmp swapgs_restore_regs_and_return_to_usermode
346
347 1:
348 /* kernel thread */
349 UNWIND_HINT_EMPTY
350 movq %r12, %rdi
351 CALL_NOSPEC rbx
352 /*
353 * A kernel thread is allowed to return here after successfully
354 * calling do_execve(). Exit to userspace to complete the execve()
355 * syscall.
356 */
357 movq $0, RAX(%rsp)
358 jmp 2b
359 SYM_CODE_END(ret_from_fork)
360
361 /*
362 * Build the entry stubs with some assembler magic.
363 * We pack 1 stub into every 8-byte block.
364 */
365 .align 8
366 SYM_CODE_START(irq_entries_start)
367 vector=FIRST_EXTERNAL_VECTOR
368 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
369 UNWIND_HINT_IRET_REGS
370 pushq $(~vector+0x80) /* Note: always in signed byte range */
371 jmp common_interrupt
372 .align 8
373 vector=vector+1
374 .endr
375 SYM_CODE_END(irq_entries_start)
376
377 .align 8
378 SYM_CODE_START(spurious_entries_start)
379 vector=FIRST_SYSTEM_VECTOR
380 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
381 UNWIND_HINT_IRET_REGS
382 pushq $(~vector+0x80) /* Note: always in signed byte range */
383 jmp common_spurious
384 .align 8
385 vector=vector+1
386 .endr
387 SYM_CODE_END(spurious_entries_start)
388
389 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
390 #ifdef CONFIG_DEBUG_ENTRY
391 pushq %rax
392 SAVE_FLAGS(CLBR_RAX)
393 testl $X86_EFLAGS_IF, %eax
394 jz .Lokay_\@
395 ud2
396 .Lokay_\@:
397 popq %rax
398 #endif
399 .endm
400
401 /*
402 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
403 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
404 * Requires kernel GSBASE.
405 *
406 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
407 */
408 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
409 DEBUG_ENTRY_ASSERT_IRQS_OFF
410
411 .if \save_ret
412 /*
413 * If save_ret is set, the original stack contains one additional
414 * entry -- the return address. Therefore, move the address one
415 * entry below %rsp to \old_rsp.
416 */
417 leaq 8(%rsp), \old_rsp
418 .else
419 movq %rsp, \old_rsp
420 .endif
421
422 .if \regs
423 UNWIND_HINT_REGS base=\old_rsp
424 .endif
425
426 incl PER_CPU_VAR(irq_count)
427 jnz .Lirq_stack_push_old_rsp_\@
428
429 /*
430 * Right now, if we just incremented irq_count to zero, we've
431 * claimed the IRQ stack but we haven't switched to it yet.
432 *
433 * If anything is added that can interrupt us here without using IST,
434 * it must be *extremely* careful to limit its stack usage. This
435 * could include kprobes and a hypothetical future IST-less #DB
436 * handler.
437 *
438 * The OOPS unwinder relies on the word at the top of the IRQ
439 * stack linking back to the previous RSP for the entire time we're
440 * on the IRQ stack. For this to work reliably, we need to write
441 * it before we actually move ourselves to the IRQ stack.
442 */
443
444 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
445 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
446
447 #ifdef CONFIG_DEBUG_ENTRY
448 /*
449 * If the first movq above becomes wrong due to IRQ stack layout
450 * changes, the only way we'll notice is if we try to unwind right
451 * here. Assert that we set up the stack right to catch this type
452 * of bug quickly.
453 */
454 cmpq -8(%rsp), \old_rsp
455 je .Lirq_stack_okay\@
456 ud2
457 .Lirq_stack_okay\@:
458 #endif
459
460 .Lirq_stack_push_old_rsp_\@:
461 pushq \old_rsp
462
463 .if \regs
464 UNWIND_HINT_REGS indirect=1
465 .endif
466
467 .if \save_ret
468 /*
469 * Push the return address to the stack. This return address can
470 * be found at the "real" original RSP, which was offset by 8 at
471 * the beginning of this macro.
472 */
473 pushq -8(\old_rsp)
474 .endif
475 .endm
476
477 /*
478 * Undoes ENTER_IRQ_STACK.
479 */
480 .macro LEAVE_IRQ_STACK regs=1
481 DEBUG_ENTRY_ASSERT_IRQS_OFF
482 /* We need to be off the IRQ stack before decrementing irq_count. */
483 popq %rsp
484
485 .if \regs
486 UNWIND_HINT_REGS
487 .endif
488
489 /*
490 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
491 * the irq stack but we're not on it.
492 */
493
494 decl PER_CPU_VAR(irq_count)
495 .endm
496
497 /*
498 * Interrupt entry helper function.
499 *
500 * Entry runs with interrupts off. Stack layout at entry:
501 * +----------------------------------------------------+
502 * | regs->ss |
503 * | regs->rsp |
504 * | regs->eflags |
505 * | regs->cs |
506 * | regs->ip |
507 * +----------------------------------------------------+
508 * | regs->orig_ax = ~(interrupt number) |
509 * +----------------------------------------------------+
510 * | return address |
511 * +----------------------------------------------------+
512 */
513 SYM_CODE_START(interrupt_entry)
514 UNWIND_HINT_IRET_REGS offset=16
515 ASM_CLAC
516 cld
517
518 testb $3, CS-ORIG_RAX+8(%rsp)
519 jz 1f
520 SWAPGS
521 FENCE_SWAPGS_USER_ENTRY
522 /*
523 * Switch to the thread stack. The IRET frame and orig_ax are
524 * on the stack, as well as the return address. RDI..R12 are
525 * not (yet) on the stack and space has not (yet) been
526 * allocated for them.
527 */
528 pushq %rdi
529
530 /* Need to switch before accessing the thread stack. */
531 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
532 movq %rsp, %rdi
533 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
534
535 /*
536 * We have RDI, return address, and orig_ax on the stack on
537 * top of the IRET frame. That means offset=24
538 */
539 UNWIND_HINT_IRET_REGS base=%rdi offset=24
540
541 pushq 7*8(%rdi) /* regs->ss */
542 pushq 6*8(%rdi) /* regs->rsp */
543 pushq 5*8(%rdi) /* regs->eflags */
544 pushq 4*8(%rdi) /* regs->cs */
545 pushq 3*8(%rdi) /* regs->ip */
546 UNWIND_HINT_IRET_REGS
547 pushq 2*8(%rdi) /* regs->orig_ax */
548 pushq 8(%rdi) /* return address */
549
550 movq (%rdi), %rdi
551 jmp 2f
552 1:
553 FENCE_SWAPGS_KERNEL_ENTRY
554 2:
555 PUSH_AND_CLEAR_REGS save_ret=1
556 ENCODE_FRAME_POINTER 8
557
558 testb $3, CS+8(%rsp)
559 jz 1f
560
561 /*
562 * IRQ from user mode.
563 *
564 * We need to tell lockdep that IRQs are off. We can't do this until
565 * we fix gsbase, and we should do it before enter_from_user_mode
566 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
567 * the simplest way to handle it is to just call it twice if
568 * we enter from user mode. There's no reason to optimize this since
569 * TRACE_IRQS_OFF is a no-op if lockdep is off.
570 */
571 TRACE_IRQS_OFF
572
573 CALL_enter_from_user_mode
574
575 1:
576 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
577 /* We entered an interrupt context - irqs are off: */
578 TRACE_IRQS_OFF
579
580 ret
581 SYM_CODE_END(interrupt_entry)
582 _ASM_NOKPROBE(interrupt_entry)
583
584
585 /* Interrupt entry/exit. */
586
587 /*
588 * The interrupt stubs push (~vector+0x80) onto the stack and
589 * then jump to common_spurious/interrupt.
590 */
591 SYM_CODE_START_LOCAL(common_spurious)
592 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
593 call interrupt_entry
594 UNWIND_HINT_REGS indirect=1
595 call smp_spurious_interrupt /* rdi points to pt_regs */
596 jmp ret_from_intr
597 SYM_CODE_END(common_spurious)
598 _ASM_NOKPROBE(common_spurious)
599
600 /* common_interrupt is a hotpath. Align it */
601 .p2align CONFIG_X86_L1_CACHE_SHIFT
602 SYM_CODE_START_LOCAL(common_interrupt)
603 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
604 call interrupt_entry
605 UNWIND_HINT_REGS indirect=1
606 call do_IRQ /* rdi points to pt_regs */
607 /* 0(%rsp): old RSP */
608 ret_from_intr:
609 DISABLE_INTERRUPTS(CLBR_ANY)
610 TRACE_IRQS_OFF
611
612 LEAVE_IRQ_STACK
613
614 testb $3, CS(%rsp)
615 jz retint_kernel
616
617 /* Interrupt came from user space */
618 .Lretint_user:
619 mov %rsp,%rdi
620 call prepare_exit_to_usermode
621 TRACE_IRQS_ON
622
623 SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
624 #ifdef CONFIG_DEBUG_ENTRY
625 /* Assert that pt_regs indicates user mode. */
626 testb $3, CS(%rsp)
627 jnz 1f
628 ud2
629 1:
630 #endif
631 POP_REGS pop_rdi=0
632
633 /*
634 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
635 * Save old stack pointer and switch to trampoline stack.
636 */
637 movq %rsp, %rdi
638 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
639 UNWIND_HINT_EMPTY
640
641 /* Copy the IRET frame to the trampoline stack. */
642 pushq 6*8(%rdi) /* SS */
643 pushq 5*8(%rdi) /* RSP */
644 pushq 4*8(%rdi) /* EFLAGS */
645 pushq 3*8(%rdi) /* CS */
646 pushq 2*8(%rdi) /* RIP */
647
648 /* Push user RDI on the trampoline stack. */
649 pushq (%rdi)
650
651 /*
652 * We are on the trampoline stack. All regs except RDI are live.
653 * We can do future final exit work right here.
654 */
655 STACKLEAK_ERASE_NOCLOBBER
656
657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658
659 /* Restore RDI. */
660 popq %rdi
661 SWAPGS
662 INTERRUPT_RETURN
663
664
665 /* Returning to kernel space */
666 retint_kernel:
667 #ifdef CONFIG_PREEMPTION
668 /* Interrupts are off */
669 /* Check if we need preemption */
670 btl $9, EFLAGS(%rsp) /* were interrupts off? */
671 jnc 1f
672 cmpl $0, PER_CPU_VAR(__preempt_count)
673 jnz 1f
674 call preempt_schedule_irq
675 1:
676 #endif
677 /*
678 * The iretq could re-enable interrupts:
679 */
680 TRACE_IRQS_IRETQ
681
682 SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
683 #ifdef CONFIG_DEBUG_ENTRY
684 /* Assert that pt_regs indicates kernel mode. */
685 testb $3, CS(%rsp)
686 jz 1f
687 ud2
688 1:
689 #endif
690 POP_REGS
691 addq $8, %rsp /* skip regs->orig_ax */
692 /*
693 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
694 * when returning from IPI handler.
695 */
696 INTERRUPT_RETURN
697
698 SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
699 UNWIND_HINT_IRET_REGS
700 /*
701 * Are we returning to a stack segment from the LDT? Note: in
702 * 64-bit mode SS:RSP on the exception stack is always valid.
703 */
704 #ifdef CONFIG_X86_ESPFIX64
705 testb $4, (SS-RIP)(%rsp)
706 jnz native_irq_return_ldt
707 #endif
708
709 SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
710 /*
711 * This may fault. Non-paranoid faults on return to userspace are
712 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
713 * Double-faults due to espfix64 are handled in do_double_fault.
714 * Other faults here are fatal.
715 */
716 iretq
717
718 #ifdef CONFIG_X86_ESPFIX64
719 native_irq_return_ldt:
720 /*
721 * We are running with user GSBASE. All GPRs contain their user
722 * values. We have a percpu ESPFIX stack that is eight slots
723 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
724 * of the ESPFIX stack.
725 *
726 * We clobber RAX and RDI in this code. We stash RDI on the
727 * normal stack and RAX on the ESPFIX stack.
728 *
729 * The ESPFIX stack layout we set up looks like this:
730 *
731 * --- top of ESPFIX stack ---
732 * SS
733 * RSP
734 * RFLAGS
735 * CS
736 * RIP <-- RSP points here when we're done
737 * RAX <-- espfix_waddr points here
738 * --- bottom of ESPFIX stack ---
739 */
740
741 pushq %rdi /* Stash user RDI */
742 SWAPGS /* to kernel GS */
743 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
744
745 movq PER_CPU_VAR(espfix_waddr), %rdi
746 movq %rax, (0*8)(%rdi) /* user RAX */
747 movq (1*8)(%rsp), %rax /* user RIP */
748 movq %rax, (1*8)(%rdi)
749 movq (2*8)(%rsp), %rax /* user CS */
750 movq %rax, (2*8)(%rdi)
751 movq (3*8)(%rsp), %rax /* user RFLAGS */
752 movq %rax, (3*8)(%rdi)
753 movq (5*8)(%rsp), %rax /* user SS */
754 movq %rax, (5*8)(%rdi)
755 movq (4*8)(%rsp), %rax /* user RSP */
756 movq %rax, (4*8)(%rdi)
757 /* Now RAX == RSP. */
758
759 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
760
761 /*
762 * espfix_stack[31:16] == 0. The page tables are set up such that
763 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
764 * espfix_waddr for any X. That is, there are 65536 RO aliases of
765 * the same page. Set up RSP so that RSP[31:16] contains the
766 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
767 * still points to an RO alias of the ESPFIX stack.
768 */
769 orq PER_CPU_VAR(espfix_stack), %rax
770
771 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
772 SWAPGS /* to user GS */
773 popq %rdi /* Restore user RDI */
774
775 movq %rax, %rsp
776 UNWIND_HINT_IRET_REGS offset=8
777
778 /*
779 * At this point, we cannot write to the stack any more, but we can
780 * still read.
781 */
782 popq %rax /* Restore user RAX */
783
784 /*
785 * RSP now points to an ordinary IRET frame, except that the page
786 * is read-only and RSP[31:16] are preloaded with the userspace
787 * values. We can now IRET back to userspace.
788 */
789 jmp native_irq_return_iret
790 #endif
791 SYM_CODE_END(common_interrupt)
792 _ASM_NOKPROBE(common_interrupt)
793
794 /*
795 * APIC interrupts.
796 */
797 .macro apicinterrupt3 num sym do_sym
798 SYM_CODE_START(\sym)
799 UNWIND_HINT_IRET_REGS
800 pushq $~(\num)
801 call interrupt_entry
802 UNWIND_HINT_REGS indirect=1
803 call \do_sym /* rdi points to pt_regs */
804 jmp ret_from_intr
805 SYM_CODE_END(\sym)
806 _ASM_NOKPROBE(\sym)
807 .endm
808
809 /* Make sure APIC interrupt handlers end up in the irqentry section: */
810 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
811 #define POP_SECTION_IRQENTRY .popsection
812
813 .macro apicinterrupt num sym do_sym
814 PUSH_SECTION_IRQENTRY
815 apicinterrupt3 \num \sym \do_sym
816 POP_SECTION_IRQENTRY
817 .endm
818
819 #ifdef CONFIG_SMP
820 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
821 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
822 #endif
823
824 #ifdef CONFIG_X86_UV
825 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
826 #endif
827
828 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
829 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
830
831 #ifdef CONFIG_HAVE_KVM
832 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
833 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
834 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
835 #endif
836
837 #ifdef CONFIG_X86_MCE_THRESHOLD
838 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
839 #endif
840
841 #ifdef CONFIG_X86_MCE_AMD
842 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
843 #endif
844
845 #ifdef CONFIG_X86_THERMAL_VECTOR
846 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
847 #endif
848
849 #ifdef CONFIG_SMP
850 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
851 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
852 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
853 #endif
854
855 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
856 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
857
858 #ifdef CONFIG_IRQ_WORK
859 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
860 #endif
861
862 /*
863 * Exception entry points.
864 */
865 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
866
867 .macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
868
869 .if \paranoid
870 call paranoid_entry
871 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
872 .else
873 call error_entry
874 .endif
875 UNWIND_HINT_REGS
876
877 .if \read_cr2
878 /*
879 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
880 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
881 * GET_CR2_INTO can clobber RAX.
882 */
883 GET_CR2_INTO(%r12);
884 .endif
885
886 .if \shift_ist != -1
887 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
888 .else
889 TRACE_IRQS_OFF
890 .endif
891
892 .if \paranoid == 0
893 testb $3, CS(%rsp)
894 jz .Lfrom_kernel_no_context_tracking_\@
895 CALL_enter_from_user_mode
896 .Lfrom_kernel_no_context_tracking_\@:
897 .endif
898
899 movq %rsp, %rdi /* pt_regs pointer */
900
901 .if \has_error_code
902 movq ORIG_RAX(%rsp), %rsi /* get error code */
903 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
904 .else
905 xorl %esi, %esi /* no error code */
906 .endif
907
908 .if \shift_ist != -1
909 subq $\ist_offset, CPU_TSS_IST(\shift_ist)
910 .endif
911
912 .if \read_cr2
913 movq %r12, %rdx /* Move CR2 into 3rd argument */
914 .endif
915
916 call \do_sym
917
918 .if \shift_ist != -1
919 addq $\ist_offset, CPU_TSS_IST(\shift_ist)
920 .endif
921
922 .if \paranoid
923 /* this procedure expect "no swapgs" flag in ebx */
924 jmp paranoid_exit
925 .else
926 jmp error_exit
927 .endif
928
929 .endm
930
931 /**
932 * idtentry - Generate an IDT entry stub
933 * @sym: Name of the generated entry point
934 * @do_sym: C function to be called
935 * @has_error_code: True if this IDT vector has an error code on the stack
936 * @paranoid: non-zero means that this vector may be invoked from
937 * kernel mode with user GSBASE and/or user CR3.
938 * 2 is special -- see below.
939 * @shift_ist: Set to an IST index if entries from kernel mode should
940 * decrement the IST stack so that nested entries get a
941 * fresh stack. (This is for #DB, which has a nasty habit
942 * of recursing.)
943 * @create_gap: create a 6-word stack gap when coming from kernel mode.
944 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code
945 *
946 * idtentry generates an IDT stub that sets up a usable kernel context,
947 * creates struct pt_regs, and calls @do_sym. The stub has the following
948 * special behaviors:
949 *
950 * On an entry from user mode, the stub switches from the trampoline or
951 * IST stack to the normal thread stack. On an exit to user mode, the
952 * normal exit-to-usermode path is invoked.
953 *
954 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
955 * whereas we omit the preemption check if @paranoid != 0. This is purely
956 * because the implementation is simpler this way. The kernel only needs
957 * to check for asynchronous kernel preemption when IRQ handlers return.
958 *
959 * If @paranoid == 0, then the stub will handle IRET faults by pretending
960 * that the fault came from user mode. It will handle gs_change faults by
961 * pretending that the fault happened with kernel GSBASE. Since this handling
962 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
963 * @paranoid == 0. This special handling will do the wrong thing for
964 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
965 *
966 * @paranoid == 2 is special: the stub will never switch stacks. This is for
967 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
968 */
969 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
970 SYM_CODE_START(\sym)
971 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
972
973 /* Sanity check */
974 .if \shift_ist != -1 && \paranoid != 1
975 .error "using shift_ist requires paranoid=1"
976 .endif
977
978 .if \create_gap && \paranoid
979 .error "using create_gap requires paranoid=0"
980 .endif
981
982 ASM_CLAC
983
984 .if \has_error_code == 0
985 pushq $-1 /* ORIG_RAX: no syscall to restart */
986 .endif
987
988 .if \paranoid == 1
989 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
990 jnz .Lfrom_usermode_switch_stack_\@
991 .endif
992
993 .if \create_gap == 1
994 /*
995 * If coming from kernel space, create a 6-word gap to allow the
996 * int3 handler to emulate a call instruction.
997 */
998 testb $3, CS-ORIG_RAX(%rsp)
999 jnz .Lfrom_usermode_no_gap_\@
1000 .rept 6
1001 pushq 5*8(%rsp)
1002 .endr
1003 UNWIND_HINT_IRET_REGS offset=8
1004 .Lfrom_usermode_no_gap_\@:
1005 .endif
1006
1007 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1008
1009 .if \paranoid == 1
1010 /*
1011 * Entry from userspace. Switch stacks and treat it
1012 * as a normal entry. This means that paranoid handlers
1013 * run in real process context if user_mode(regs).
1014 */
1015 .Lfrom_usermode_switch_stack_\@:
1016 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1017 .endif
1018
1019 _ASM_NOKPROBE(\sym)
1020 SYM_CODE_END(\sym)
1021 .endm
1022
1023 idtentry divide_error do_divide_error has_error_code=0
1024 idtentry overflow do_overflow has_error_code=0
1025 idtentry bounds do_bounds has_error_code=0
1026 idtentry invalid_op do_invalid_op has_error_code=0
1027 idtentry device_not_available do_device_not_available has_error_code=0
1028 idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
1029 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1030 idtentry invalid_TSS do_invalid_TSS has_error_code=1
1031 idtentry segment_not_present do_segment_not_present has_error_code=1
1032 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1033 idtentry coprocessor_error do_coprocessor_error has_error_code=0
1034 idtentry alignment_check do_alignment_check has_error_code=1
1035 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1036
1037
1038 /*
1039 * Reload gs selector with exception handling
1040 * edi: new selector
1041 */
1042 SYM_FUNC_START(native_load_gs_index)
1043 FRAME_BEGIN
1044 pushfq
1045 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1046 TRACE_IRQS_OFF
1047 SWAPGS
1048 .Lgs_change:
1049 movl %edi, %gs
1050 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1051 SWAPGS
1052 TRACE_IRQS_FLAGS (%rsp)
1053 popfq
1054 FRAME_END
1055 ret
1056 SYM_FUNC_END(native_load_gs_index)
1057 EXPORT_SYMBOL(native_load_gs_index)
1058
1059 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1060 .section .fixup, "ax"
1061 /* running with kernelgs */
1062 SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
1063 SWAPGS /* switch back to user gs */
1064 .macro ZAP_GS
1065 /* This can't be a string because the preprocessor needs to see it. */
1066 movl $__USER_DS, %eax
1067 movl %eax, %gs
1068 .endm
1069 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1070 xorl %eax, %eax
1071 movl %eax, %gs
1072 jmp 2b
1073 SYM_CODE_END(.Lbad_gs)
1074 .previous
1075
1076 /* Call softirq on interrupt stack. Interrupts are off. */
1077 SYM_FUNC_START(do_softirq_own_stack)
1078 pushq %rbp
1079 mov %rsp, %rbp
1080 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1081 call __do_softirq
1082 LEAVE_IRQ_STACK regs=0
1083 leaveq
1084 ret
1085 SYM_FUNC_END(do_softirq_own_stack)
1086
1087 #ifdef CONFIG_XEN_PV
1088 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1089
1090 /*
1091 * A note on the "critical region" in our callback handler.
1092 * We want to avoid stacking callback handlers due to events occurring
1093 * during handling of the last event. To do this, we keep events disabled
1094 * until we've done all processing. HOWEVER, we must enable events before
1095 * popping the stack frame (can't be done atomically) and so it would still
1096 * be possible to get enough handler activations to overflow the stack.
1097 * Although unlikely, bugs of that kind are hard to track down, so we'd
1098 * like to avoid the possibility.
1099 * So, on entry to the handler we detect whether we interrupted an
1100 * existing activation in its critical region -- if so, we pop the current
1101 * activation and restart the handler using the previous one.
1102 */
1103 /* do_hypervisor_callback(struct *pt_regs) */
1104 SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
1105
1106 /*
1107 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1108 * see the correct pointer to the pt_regs
1109 */
1110 UNWIND_HINT_FUNC
1111 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1112 UNWIND_HINT_REGS
1113
1114 ENTER_IRQ_STACK old_rsp=%r10
1115 call xen_evtchn_do_upcall
1116 LEAVE_IRQ_STACK
1117
1118 #ifndef CONFIG_PREEMPTION
1119 call xen_maybe_preempt_hcall
1120 #endif
1121 jmp error_exit
1122 SYM_CODE_END(xen_do_hypervisor_callback)
1123
1124 /*
1125 * Hypervisor uses this for application faults while it executes.
1126 * We get here for two reasons:
1127 * 1. Fault while reloading DS, ES, FS or GS
1128 * 2. Fault while executing IRET
1129 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1130 * registers that could be reloaded and zeroed the others.
1131 * Category 2 we fix up by killing the current process. We cannot use the
1132 * normal Linux return path in this case because if we use the IRET hypercall
1133 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1134 * We distinguish between categories by comparing each saved segment register
1135 * with its current contents: any discrepancy means we in category 1.
1136 */
1137 SYM_CODE_START(xen_failsafe_callback)
1138 UNWIND_HINT_EMPTY
1139 movl %ds, %ecx
1140 cmpw %cx, 0x10(%rsp)
1141 jne 1f
1142 movl %es, %ecx
1143 cmpw %cx, 0x18(%rsp)
1144 jne 1f
1145 movl %fs, %ecx
1146 cmpw %cx, 0x20(%rsp)
1147 jne 1f
1148 movl %gs, %ecx
1149 cmpw %cx, 0x28(%rsp)
1150 jne 1f
1151 /* All segments match their saved values => Category 2 (Bad IRET). */
1152 movq (%rsp), %rcx
1153 movq 8(%rsp), %r11
1154 addq $0x30, %rsp
1155 pushq $0 /* RIP */
1156 UNWIND_HINT_IRET_REGS offset=8
1157 jmp general_protection
1158 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1159 movq (%rsp), %rcx
1160 movq 8(%rsp), %r11
1161 addq $0x30, %rsp
1162 UNWIND_HINT_IRET_REGS
1163 pushq $-1 /* orig_ax = -1 => not a system call */
1164 PUSH_AND_CLEAR_REGS
1165 ENCODE_FRAME_POINTER
1166 jmp error_exit
1167 SYM_CODE_END(xen_failsafe_callback)
1168 #endif /* CONFIG_XEN_PV */
1169
1170 #ifdef CONFIG_XEN_PVHVM
1171 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1172 xen_hvm_callback_vector xen_evtchn_do_upcall
1173 #endif
1174
1175
1176 #if IS_ENABLED(CONFIG_HYPERV)
1177 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1178 hyperv_callback_vector hyperv_vector_handler
1179
1180 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1181 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1182
1183 apicinterrupt3 HYPERV_STIMER0_VECTOR \
1184 hv_stimer0_callback_vector hv_stimer0_vector_handler
1185 #endif /* CONFIG_HYPERV */
1186
1187 #if IS_ENABLED(CONFIG_ACRN_GUEST)
1188 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1189 acrn_hv_callback_vector acrn_hv_vector_handler
1190 #endif
1191
1192 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1193 idtentry int3 do_int3 has_error_code=0 create_gap=1
1194 idtentry stack_segment do_stack_segment has_error_code=1
1195
1196 #ifdef CONFIG_XEN_PV
1197 idtentry xennmi do_nmi has_error_code=0
1198 idtentry xendebug do_debug has_error_code=0
1199 #endif
1200
1201 idtentry general_protection do_general_protection has_error_code=1
1202 idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
1203
1204 #ifdef CONFIG_X86_MCE
1205 idtentry machine_check do_mce has_error_code=0 paranoid=1
1206 #endif
1207
1208 /*
1209 * Save all registers in pt_regs, and switch gs if needed.
1210 * Use slow, but surefire "are we in kernel?" check.
1211 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1212 */
1213 SYM_CODE_START_LOCAL(paranoid_entry)
1214 UNWIND_HINT_FUNC
1215 cld
1216 PUSH_AND_CLEAR_REGS save_ret=1
1217 ENCODE_FRAME_POINTER 8
1218 movl $1, %ebx
1219 movl $MSR_GS_BASE, %ecx
1220 rdmsr
1221 testl %edx, %edx
1222 js 1f /* negative -> in kernel */
1223 SWAPGS
1224 xorl %ebx, %ebx
1225
1226 1:
1227 /*
1228 * Always stash CR3 in %r14. This value will be restored,
1229 * verbatim, at exit. Needed if paranoid_entry interrupted
1230 * another entry that already switched to the user CR3 value
1231 * but has not yet returned to userspace.
1232 *
1233 * This is also why CS (stashed in the "iret frame" by the
1234 * hardware at entry) can not be used: this may be a return
1235 * to kernel code, but with a user CR3 value.
1236 */
1237 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1238
1239 /*
1240 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1241 * unconditional CR3 write, even in the PTI case. So do an lfence
1242 * to prevent GS speculation, regardless of whether PTI is enabled.
1243 */
1244 FENCE_SWAPGS_KERNEL_ENTRY
1245
1246 ret
1247 SYM_CODE_END(paranoid_entry)
1248
1249 /*
1250 * "Paranoid" exit path from exception stack. This is invoked
1251 * only on return from non-NMI IST interrupts that came
1252 * from kernel space.
1253 *
1254 * We may be returning to very strange contexts (e.g. very early
1255 * in syscall entry), so checking for preemption here would
1256 * be complicated. Fortunately, we there's no good reason
1257 * to try to handle preemption here.
1258 *
1259 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1260 */
1261 SYM_CODE_START_LOCAL(paranoid_exit)
1262 UNWIND_HINT_REGS
1263 DISABLE_INTERRUPTS(CLBR_ANY)
1264 TRACE_IRQS_OFF_DEBUG
1265 testl %ebx, %ebx /* swapgs needed? */
1266 jnz .Lparanoid_exit_no_swapgs
1267 TRACE_IRQS_IRETQ
1268 /* Always restore stashed CR3 value (see paranoid_entry) */
1269 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1270 SWAPGS_UNSAFE_STACK
1271 jmp restore_regs_and_return_to_kernel
1272 .Lparanoid_exit_no_swapgs:
1273 TRACE_IRQS_IRETQ_DEBUG
1274 /* Always restore stashed CR3 value (see paranoid_entry) */
1275 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1276 jmp restore_regs_and_return_to_kernel
1277 SYM_CODE_END(paranoid_exit)
1278
1279 /*
1280 * Save all registers in pt_regs, and switch GS if needed.
1281 */
1282 SYM_CODE_START_LOCAL(error_entry)
1283 UNWIND_HINT_FUNC
1284 cld
1285 PUSH_AND_CLEAR_REGS save_ret=1
1286 ENCODE_FRAME_POINTER 8
1287 testb $3, CS+8(%rsp)
1288 jz .Lerror_kernelspace
1289
1290 /*
1291 * We entered from user mode or we're pretending to have entered
1292 * from user mode due to an IRET fault.
1293 */
1294 SWAPGS
1295 FENCE_SWAPGS_USER_ENTRY
1296 /* We have user CR3. Change to kernel CR3. */
1297 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1298
1299 .Lerror_entry_from_usermode_after_swapgs:
1300 /* Put us onto the real thread stack. */
1301 popq %r12 /* save return addr in %12 */
1302 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1303 call sync_regs
1304 movq %rax, %rsp /* switch stack */
1305 ENCODE_FRAME_POINTER
1306 pushq %r12
1307 ret
1308
1309 .Lerror_entry_done_lfence:
1310 FENCE_SWAPGS_KERNEL_ENTRY
1311 .Lerror_entry_done:
1312 ret
1313
1314 /*
1315 * There are two places in the kernel that can potentially fault with
1316 * usergs. Handle them here. B stepping K8s sometimes report a
1317 * truncated RIP for IRET exceptions returning to compat mode. Check
1318 * for these here too.
1319 */
1320 .Lerror_kernelspace:
1321 leaq native_irq_return_iret(%rip), %rcx
1322 cmpq %rcx, RIP+8(%rsp)
1323 je .Lerror_bad_iret
1324 movl %ecx, %eax /* zero extend */
1325 cmpq %rax, RIP+8(%rsp)
1326 je .Lbstep_iret
1327 cmpq $.Lgs_change, RIP+8(%rsp)
1328 jne .Lerror_entry_done_lfence
1329
1330 /*
1331 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1332 * gsbase and proceed. We'll fix up the exception and land in
1333 * .Lgs_change's error handler with kernel gsbase.
1334 */
1335 SWAPGS
1336 FENCE_SWAPGS_USER_ENTRY
1337 jmp .Lerror_entry_done
1338
1339 .Lbstep_iret:
1340 /* Fix truncated RIP */
1341 movq %rcx, RIP+8(%rsp)
1342 /* fall through */
1343
1344 .Lerror_bad_iret:
1345 /*
1346 * We came from an IRET to user mode, so we have user
1347 * gsbase and CR3. Switch to kernel gsbase and CR3:
1348 */
1349 SWAPGS
1350 FENCE_SWAPGS_USER_ENTRY
1351 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1352
1353 /*
1354 * Pretend that the exception came from user mode: set up pt_regs
1355 * as if we faulted immediately after IRET.
1356 */
1357 mov %rsp, %rdi
1358 call fixup_bad_iret
1359 mov %rax, %rsp
1360 jmp .Lerror_entry_from_usermode_after_swapgs
1361 SYM_CODE_END(error_entry)
1362
1363 SYM_CODE_START_LOCAL(error_exit)
1364 UNWIND_HINT_REGS
1365 DISABLE_INTERRUPTS(CLBR_ANY)
1366 TRACE_IRQS_OFF
1367 testb $3, CS(%rsp)
1368 jz retint_kernel
1369 jmp .Lretint_user
1370 SYM_CODE_END(error_exit)
1371
1372 /*
1373 * Runs on exception stack. Xen PV does not go through this path at all,
1374 * so we can use real assembly here.
1375 *
1376 * Registers:
1377 * %r14: Used to save/restore the CR3 of the interrupted context
1378 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1379 */
1380 SYM_CODE_START(nmi)
1381 UNWIND_HINT_IRET_REGS
1382
1383 /*
1384 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1385 * the iretq it performs will take us out of NMI context.
1386 * This means that we can have nested NMIs where the next
1387 * NMI is using the top of the stack of the previous NMI. We
1388 * can't let it execute because the nested NMI will corrupt the
1389 * stack of the previous NMI. NMI handlers are not re-entrant
1390 * anyway.
1391 *
1392 * To handle this case we do the following:
1393 * Check the a special location on the stack that contains
1394 * a variable that is set when NMIs are executing.
1395 * The interrupted task's stack is also checked to see if it
1396 * is an NMI stack.
1397 * If the variable is not set and the stack is not the NMI
1398 * stack then:
1399 * o Set the special variable on the stack
1400 * o Copy the interrupt frame into an "outermost" location on the
1401 * stack
1402 * o Copy the interrupt frame into an "iret" location on the stack
1403 * o Continue processing the NMI
1404 * If the variable is set or the previous stack is the NMI stack:
1405 * o Modify the "iret" location to jump to the repeat_nmi
1406 * o return back to the first NMI
1407 *
1408 * Now on exit of the first NMI, we first clear the stack variable
1409 * The NMI stack will tell any nested NMIs at that point that it is
1410 * nested. Then we pop the stack normally with iret, and if there was
1411 * a nested NMI that updated the copy interrupt stack frame, a
1412 * jump will be made to the repeat_nmi code that will handle the second
1413 * NMI.
1414 *
1415 * However, espfix prevents us from directly returning to userspace
1416 * with a single IRET instruction. Similarly, IRET to user mode
1417 * can fault. We therefore handle NMIs from user space like
1418 * other IST entries.
1419 */
1420
1421 ASM_CLAC
1422
1423 /* Use %rdx as our temp variable throughout */
1424 pushq %rdx
1425
1426 testb $3, CS-RIP+8(%rsp)
1427 jz .Lnmi_from_kernel
1428
1429 /*
1430 * NMI from user mode. We need to run on the thread stack, but we
1431 * can't go through the normal entry paths: NMIs are masked, and
1432 * we don't want to enable interrupts, because then we'll end
1433 * up in an awkward situation in which IRQs are on but NMIs
1434 * are off.
1435 *
1436 * We also must not push anything to the stack before switching
1437 * stacks lest we corrupt the "NMI executing" variable.
1438 */
1439
1440 swapgs
1441 cld
1442 FENCE_SWAPGS_USER_ENTRY
1443 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1444 movq %rsp, %rdx
1445 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1446 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1447 pushq 5*8(%rdx) /* pt_regs->ss */
1448 pushq 4*8(%rdx) /* pt_regs->rsp */
1449 pushq 3*8(%rdx) /* pt_regs->flags */
1450 pushq 2*8(%rdx) /* pt_regs->cs */
1451 pushq 1*8(%rdx) /* pt_regs->rip */
1452 UNWIND_HINT_IRET_REGS
1453 pushq $-1 /* pt_regs->orig_ax */
1454 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1455 ENCODE_FRAME_POINTER
1456
1457 /*
1458 * At this point we no longer need to worry about stack damage
1459 * due to nesting -- we're on the normal thread stack and we're
1460 * done with the NMI stack.
1461 */
1462
1463 movq %rsp, %rdi
1464 movq $-1, %rsi
1465 call do_nmi
1466
1467 /*
1468 * Return back to user mode. We must *not* do the normal exit
1469 * work, because we don't want to enable interrupts.
1470 */
1471 jmp swapgs_restore_regs_and_return_to_usermode
1472
1473 .Lnmi_from_kernel:
1474 /*
1475 * Here's what our stack frame will look like:
1476 * +---------------------------------------------------------+
1477 * | original SS |
1478 * | original Return RSP |
1479 * | original RFLAGS |
1480 * | original CS |
1481 * | original RIP |
1482 * +---------------------------------------------------------+
1483 * | temp storage for rdx |
1484 * +---------------------------------------------------------+
1485 * | "NMI executing" variable |
1486 * +---------------------------------------------------------+
1487 * | iret SS } Copied from "outermost" frame |
1488 * | iret Return RSP } on each loop iteration; overwritten |
1489 * | iret RFLAGS } by a nested NMI to force another |
1490 * | iret CS } iteration if needed. |
1491 * | iret RIP } |
1492 * +---------------------------------------------------------+
1493 * | outermost SS } initialized in first_nmi; |
1494 * | outermost Return RSP } will not be changed before |
1495 * | outermost RFLAGS } NMI processing is done. |
1496 * | outermost CS } Copied to "iret" frame on each |
1497 * | outermost RIP } iteration. |
1498 * +---------------------------------------------------------+
1499 * | pt_regs |
1500 * +---------------------------------------------------------+
1501 *
1502 * The "original" frame is used by hardware. Before re-enabling
1503 * NMIs, we need to be done with it, and we need to leave enough
1504 * space for the asm code here.
1505 *
1506 * We return by executing IRET while RSP points to the "iret" frame.
1507 * That will either return for real or it will loop back into NMI
1508 * processing.
1509 *
1510 * The "outermost" frame is copied to the "iret" frame on each
1511 * iteration of the loop, so each iteration starts with the "iret"
1512 * frame pointing to the final return target.
1513 */
1514
1515 /*
1516 * Determine whether we're a nested NMI.
1517 *
1518 * If we interrupted kernel code between repeat_nmi and
1519 * end_repeat_nmi, then we are a nested NMI. We must not
1520 * modify the "iret" frame because it's being written by
1521 * the outer NMI. That's okay; the outer NMI handler is
1522 * about to about to call do_nmi anyway, so we can just
1523 * resume the outer NMI.
1524 */
1525
1526 movq $repeat_nmi, %rdx
1527 cmpq 8(%rsp), %rdx
1528 ja 1f
1529 movq $end_repeat_nmi, %rdx
1530 cmpq 8(%rsp), %rdx
1531 ja nested_nmi_out
1532 1:
1533
1534 /*
1535 * Now check "NMI executing". If it's set, then we're nested.
1536 * This will not detect if we interrupted an outer NMI just
1537 * before IRET.
1538 */
1539 cmpl $1, -8(%rsp)
1540 je nested_nmi
1541
1542 /*
1543 * Now test if the previous stack was an NMI stack. This covers
1544 * the case where we interrupt an outer NMI after it clears
1545 * "NMI executing" but before IRET. We need to be careful, though:
1546 * there is one case in which RSP could point to the NMI stack
1547 * despite there being no NMI active: naughty userspace controls
1548 * RSP at the very beginning of the SYSCALL targets. We can
1549 * pull a fast one on naughty userspace, though: we program
1550 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1551 * if it controls the kernel's RSP. We set DF before we clear
1552 * "NMI executing".
1553 */
1554 lea 6*8(%rsp), %rdx
1555 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1556 cmpq %rdx, 4*8(%rsp)
1557 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1558 ja first_nmi
1559
1560 subq $EXCEPTION_STKSZ, %rdx
1561 cmpq %rdx, 4*8(%rsp)
1562 /* If it is below the NMI stack, it is a normal NMI */
1563 jb first_nmi
1564
1565 /* Ah, it is within the NMI stack. */
1566
1567 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1568 jz first_nmi /* RSP was user controlled. */
1569
1570 /* This is a nested NMI. */
1571
1572 nested_nmi:
1573 /*
1574 * Modify the "iret" frame to point to repeat_nmi, forcing another
1575 * iteration of NMI handling.
1576 */
1577 subq $8, %rsp
1578 leaq -10*8(%rsp), %rdx
1579 pushq $__KERNEL_DS
1580 pushq %rdx
1581 pushfq
1582 pushq $__KERNEL_CS
1583 pushq $repeat_nmi
1584
1585 /* Put stack back */
1586 addq $(6*8), %rsp
1587
1588 nested_nmi_out:
1589 popq %rdx
1590
1591 /* We are returning to kernel mode, so this cannot result in a fault. */
1592 iretq
1593
1594 first_nmi:
1595 /* Restore rdx. */
1596 movq (%rsp), %rdx
1597
1598 /* Make room for "NMI executing". */
1599 pushq $0
1600
1601 /* Leave room for the "iret" frame */
1602 subq $(5*8), %rsp
1603
1604 /* Copy the "original" frame to the "outermost" frame */
1605 .rept 5
1606 pushq 11*8(%rsp)
1607 .endr
1608 UNWIND_HINT_IRET_REGS
1609
1610 /* Everything up to here is safe from nested NMIs */
1611
1612 #ifdef CONFIG_DEBUG_ENTRY
1613 /*
1614 * For ease of testing, unmask NMIs right away. Disabled by
1615 * default because IRET is very expensive.
1616 */
1617 pushq $0 /* SS */
1618 pushq %rsp /* RSP (minus 8 because of the previous push) */
1619 addq $8, (%rsp) /* Fix up RSP */
1620 pushfq /* RFLAGS */
1621 pushq $__KERNEL_CS /* CS */
1622 pushq $1f /* RIP */
1623 iretq /* continues at repeat_nmi below */
1624 UNWIND_HINT_IRET_REGS
1625 1:
1626 #endif
1627
1628 repeat_nmi:
1629 /*
1630 * If there was a nested NMI, the first NMI's iret will return
1631 * here. But NMIs are still enabled and we can take another
1632 * nested NMI. The nested NMI checks the interrupted RIP to see
1633 * if it is between repeat_nmi and end_repeat_nmi, and if so
1634 * it will just return, as we are about to repeat an NMI anyway.
1635 * This makes it safe to copy to the stack frame that a nested
1636 * NMI will update.
1637 *
1638 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1639 * we're repeating an NMI, gsbase has the same value that it had on
1640 * the first iteration. paranoid_entry will load the kernel
1641 * gsbase if needed before we call do_nmi. "NMI executing"
1642 * is zero.
1643 */
1644 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1645
1646 /*
1647 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1648 * here must not modify the "iret" frame while we're writing to
1649 * it or it will end up containing garbage.
1650 */
1651 addq $(10*8), %rsp
1652 .rept 5
1653 pushq -6*8(%rsp)
1654 .endr
1655 subq $(5*8), %rsp
1656 end_repeat_nmi:
1657
1658 /*
1659 * Everything below this point can be preempted by a nested NMI.
1660 * If this happens, then the inner NMI will change the "iret"
1661 * frame to point back to repeat_nmi.
1662 */
1663 pushq $-1 /* ORIG_RAX: no syscall to restart */
1664
1665 /*
1666 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1667 * as we should not be calling schedule in NMI context.
1668 * Even with normal interrupts enabled. An NMI should not be
1669 * setting NEED_RESCHED or anything that normal interrupts and
1670 * exceptions might do.
1671 */
1672 call paranoid_entry
1673 UNWIND_HINT_REGS
1674
1675 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1676 movq %rsp, %rdi
1677 movq $-1, %rsi
1678 call do_nmi
1679
1680 /* Always restore stashed CR3 value (see paranoid_entry) */
1681 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1682
1683 testl %ebx, %ebx /* swapgs needed? */
1684 jnz nmi_restore
1685 nmi_swapgs:
1686 SWAPGS_UNSAFE_STACK
1687 nmi_restore:
1688 POP_REGS
1689
1690 /*
1691 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1692 * at the "iret" frame.
1693 */
1694 addq $6*8, %rsp
1695
1696 /*
1697 * Clear "NMI executing". Set DF first so that we can easily
1698 * distinguish the remaining code between here and IRET from
1699 * the SYSCALL entry and exit paths.
1700 *
1701 * We arguably should just inspect RIP instead, but I (Andy) wrote
1702 * this code when I had the misapprehension that Xen PV supported
1703 * NMIs, and Xen PV would break that approach.
1704 */
1705 std
1706 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1707
1708 /*
1709 * iretq reads the "iret" frame and exits the NMI stack in a
1710 * single instruction. We are returning to kernel mode, so this
1711 * cannot result in a fault. Similarly, we don't need to worry
1712 * about espfix64 on the way back to kernel mode.
1713 */
1714 iretq
1715 SYM_CODE_END(nmi)
1716
1717 #ifndef CONFIG_IA32_EMULATION
1718 /*
1719 * This handles SYSCALL from 32-bit code. There is no way to program
1720 * MSRs to fully disable 32-bit SYSCALL.
1721 */
1722 SYM_CODE_START(ignore_sysret)
1723 UNWIND_HINT_EMPTY
1724 mov $-ENOSYS, %eax
1725 sysretl
1726 SYM_CODE_END(ignore_sysret)
1727 #endif
1728
1729 SYM_CODE_START(rewind_stack_do_exit)
1730 UNWIND_HINT_FUNC
1731 /* Prevent any naive code from trying to unwind to our caller. */
1732 xorl %ebp, %ebp
1733
1734 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1735 leaq -PTREGS_SIZE(%rax), %rsp
1736 UNWIND_HINT_REGS
1737
1738 call do_exit
1739 SYM_CODE_END(rewind_stack_do_exit)