]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/entry/entry_64.S
Merge remote-tracking branches 'regulator/topic/lp8788', 'regulator/topic/mt6311...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <linux/err.h>
39
40 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41 #include <linux/elf-em.h>
42 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43 #define __AUDIT_ARCH_64BIT 0x80000000
44 #define __AUDIT_ARCH_LE 0x40000000
45
46 .code64
47 .section .entry.text, "ax"
48
49 #ifdef CONFIG_PARAVIRT
50 ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53 ENDPROC(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_IRETQ
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 /*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78 .macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82 .endm
83
84 .macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88 .endm
89
90 .macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
94 1:
95 .endm
96
97 #else
98 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101 #endif
102
103 /*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
113 * rax system call number
114 * rcx return address
115 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
116 * rdi arg0
117 * rsi arg1
118 * rdx arg2
119 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
120 * r8 arg4
121 * r9 arg5
122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123 *
124 * Only called from user space.
125 *
126 * When user can change pt_regs->foo always force IRET. That is because
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
129 */
130
131 ENTRY(entry_SYSCALL_64)
132 /*
133 * Interrupts are off on entry.
134 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135 * it is too small to ever cause noticeable irq latency.
136 */
137 SWAPGS_UNSAFE_STACK
138 /*
139 * A hypervisor implementation might want to use a label
140 * after the swapgs, so that it can do the swapgs
141 * for the guest and jump here on syscall.
142 */
143 GLOBAL(entry_SYSCALL_64_after_swapgs)
144
145 movq %rsp, PER_CPU_VAR(rsp_scratch)
146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147
148 /* Construct struct pt_regs on stack */
149 pushq $__USER_DS /* pt_regs->ss */
150 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
151 /*
152 * Re-enable interrupts.
153 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154 * must execute atomically in the face of possible interrupt-driven
155 * task preemption. We must enable interrupts only after we're done
156 * with using rsp_scratch:
157 */
158 ENABLE_INTERRUPTS(CLBR_NONE)
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
174 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175 jnz tracesys
176 entry_SYSCALL_64_fastpath:
177 #if __SYSCALL_MASK == ~0
178 cmpq $__NR_syscall_max, %rax
179 #else
180 andl $__SYSCALL_MASK, %eax
181 cmpl $__NR_syscall_max, %eax
182 #endif
183 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
184 movq %r10, %rcx
185 call *sys_call_table(, %rax, 8)
186 movq %rax, RAX(%rsp)
187 1:
188 /*
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
191 */
192 LOCKDEP_SYS_EXIT
193 /*
194 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195 * it is too small to ever cause noticeable irq latency.
196 */
197 DISABLE_INTERRUPTS(CLBR_NONE)
198
199 /*
200 * We must check ti flags with interrupts (or at least preemption)
201 * off because we must *never* return to userspace without
202 * processing exit work that is enqueued if we're preempted here.
203 * In particular, returning to userspace with any of the one-shot
204 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205 * very bad.
206 */
207 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
209
210 RESTORE_C_REGS_EXCEPT_RCX_R11
211 movq RIP(%rsp), %rcx
212 movq EFLAGS(%rsp), %r11
213 movq RSP(%rsp), %rsp
214 /*
215 * 64-bit SYSRET restores rip from rcx,
216 * rflags from r11 (but RF and VM bits are forced to 0),
217 * cs and ss are loaded from MSRs.
218 * Restoration of rflags re-enables interrupts.
219 *
220 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221 * descriptor is not reinitialized. This means that we should
222 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223 * exit the kernel, and re-enter using an interrupt vector. (All
224 * interrupt entries on x86_64 set SS to NULL.) We prevent that
225 * from happening by reloading SS in __switch_to. (Actually
226 * detecting the failure in 64-bit userspace is tricky but can be
227 * done.)
228 */
229 USERGS_SYSRET64
230
231 GLOBAL(int_ret_from_sys_call_irqs_off)
232 TRACE_IRQS_ON
233 ENABLE_INTERRUPTS(CLBR_NONE)
234 jmp int_ret_from_sys_call
235
236 /* Do syscall entry tracing */
237 tracesys:
238 movq %rsp, %rdi
239 movl $AUDIT_ARCH_X86_64, %esi
240 call syscall_trace_enter_phase1
241 test %rax, %rax
242 jnz tracesys_phase2 /* if needed, run the slow path */
243 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
244 movq ORIG_RAX(%rsp), %rax
245 jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
246
247 tracesys_phase2:
248 SAVE_EXTRA_REGS
249 movq %rsp, %rdi
250 movl $AUDIT_ARCH_X86_64, %esi
251 movq %rax, %rdx
252 call syscall_trace_enter_phase2
253
254 /*
255 * Reload registers from stack in case ptrace changed them.
256 * We don't reload %rax because syscall_trace_entry_phase2() returned
257 * the value it wants us to use in the table lookup.
258 */
259 RESTORE_C_REGS_EXCEPT_RAX
260 RESTORE_EXTRA_REGS
261 #if __SYSCALL_MASK == ~0
262 cmpq $__NR_syscall_max, %rax
263 #else
264 andl $__SYSCALL_MASK, %eax
265 cmpl $__NR_syscall_max, %eax
266 #endif
267 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
268 movq %r10, %rcx /* fixup for C */
269 call *sys_call_table(, %rax, 8)
270 movq %rax, RAX(%rsp)
271 1:
272 /* Use IRET because user could have changed pt_regs->foo */
273
274 /*
275 * Syscall return path ending with IRET.
276 * Has correct iret frame.
277 */
278 GLOBAL(int_ret_from_sys_call)
279 SAVE_EXTRA_REGS
280 movq %rsp, %rdi
281 call syscall_return_slowpath /* returns with IRQs disabled */
282 RESTORE_EXTRA_REGS
283 TRACE_IRQS_IRETQ /* we're about to change IF */
284
285 /*
286 * Try to use SYSRET instead of IRET if we're returning to
287 * a completely clean 64-bit userspace context.
288 */
289 movq RCX(%rsp), %rcx
290 movq RIP(%rsp), %r11
291 cmpq %rcx, %r11 /* RCX == RIP */
292 jne opportunistic_sysret_failed
293
294 /*
295 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296 * in kernel space. This essentially lets the user take over
297 * the kernel, since userspace controls RSP.
298 *
299 * If width of "canonical tail" ever becomes variable, this will need
300 * to be updated to remain correct on both old and new CPUs.
301 */
302 .ifne __VIRTUAL_MASK_SHIFT - 47
303 .error "virtual address width changed -- SYSRET checks need update"
304 .endif
305
306 /* Change top 16 bits to be the sign-extension of 47th bit */
307 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
309
310 /* If this changed %rcx, it was not canonical */
311 cmpq %rcx, %r11
312 jne opportunistic_sysret_failed
313
314 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
315 jne opportunistic_sysret_failed
316
317 movq R11(%rsp), %r11
318 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
319 jne opportunistic_sysret_failed
320
321 /*
322 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
323 * restoring TF results in a trap from userspace immediately after
324 * SYSRET. This would cause an infinite loop whenever #DB happens
325 * with register state that satisfies the opportunistic SYSRET
326 * conditions. For example, single-stepping this user code:
327 *
328 * movq $stuck_here, %rcx
329 * pushfq
330 * popq %r11
331 * stuck_here:
332 *
333 * would never get past 'stuck_here'.
334 */
335 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336 jnz opportunistic_sysret_failed
337
338 /* nothing to check for RSP */
339
340 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
341 jne opportunistic_sysret_failed
342
343 /*
344 * We win! This label is here just for ease of understanding
345 * perf profiles. Nothing jumps here.
346 */
347 syscall_return_via_sysret:
348 /* rcx and r11 are already restored (see code above) */
349 RESTORE_C_REGS_EXCEPT_RCX_R11
350 movq RSP(%rsp), %rsp
351 USERGS_SYSRET64
352
353 opportunistic_sysret_failed:
354 SWAPGS
355 jmp restore_c_regs_and_iret
356 END(entry_SYSCALL_64)
357
358
359 .macro FORK_LIKE func
360 ENTRY(stub_\func)
361 SAVE_EXTRA_REGS 8
362 jmp sys_\func
363 END(stub_\func)
364 .endm
365
366 FORK_LIKE clone
367 FORK_LIKE fork
368 FORK_LIKE vfork
369
370 ENTRY(stub_execve)
371 call sys_execve
372 return_from_execve:
373 testl %eax, %eax
374 jz 1f
375 /* exec failed, can use fast SYSRET code path in this case */
376 ret
377 1:
378 /* must use IRET code path (pt_regs->cs may have changed) */
379 addq $8, %rsp
380 ZERO_EXTRA_REGS
381 movq %rax, RAX(%rsp)
382 jmp int_ret_from_sys_call
383 END(stub_execve)
384 /*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388 .align 8
389 GLOBAL(stub_execveat)
390 call sys_execveat
391 jmp return_from_execve
392 END(stub_execveat)
393
394 #if defined(CONFIG_X86_X32_ABI)
395 .align 8
396 GLOBAL(stub_x32_execve)
397 call compat_sys_execve
398 jmp return_from_execve
399 END(stub_x32_execve)
400 .align 8
401 GLOBAL(stub_x32_execveat)
402 call compat_sys_execveat
403 jmp return_from_execve
404 END(stub_x32_execveat)
405 #endif
406
407 /*
408 * sigreturn is special because it needs to restore all registers on return.
409 * This cannot be done with SYSRET, so use the IRET return path instead.
410 */
411 ENTRY(stub_rt_sigreturn)
412 /*
413 * SAVE_EXTRA_REGS result is not normally needed:
414 * sigreturn overwrites all pt_regs->GPREGS.
415 * But sigreturn can fail (!), and there is no easy way to detect that.
416 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
417 * we SAVE_EXTRA_REGS here.
418 */
419 SAVE_EXTRA_REGS 8
420 call sys_rt_sigreturn
421 return_from_stub:
422 addq $8, %rsp
423 RESTORE_EXTRA_REGS
424 movq %rax, RAX(%rsp)
425 jmp int_ret_from_sys_call
426 END(stub_rt_sigreturn)
427
428 #ifdef CONFIG_X86_X32_ABI
429 ENTRY(stub_x32_rt_sigreturn)
430 SAVE_EXTRA_REGS 8
431 call sys32_x32_rt_sigreturn
432 jmp return_from_stub
433 END(stub_x32_rt_sigreturn)
434 #endif
435
436 /*
437 * A newly forked process directly context switches into this address.
438 *
439 * rdi: prev task we switched from
440 */
441 ENTRY(ret_from_fork)
442
443 LOCK ; btr $TIF_FORK, TI_flags(%r8)
444
445 pushq $0x0002
446 popfq /* reset kernel eflags */
447
448 call schedule_tail /* rdi: 'prev' task parameter */
449
450 RESTORE_EXTRA_REGS
451
452 testb $3, CS(%rsp) /* from kernel_thread? */
453
454 /*
455 * By the time we get here, we have no idea whether our pt_regs,
456 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
457 * the slow path, or one of the 32-bit compat paths.
458 * Use IRET code path to return, since it can safely handle
459 * all of the above.
460 */
461 jnz int_ret_from_sys_call
462
463 /*
464 * We came from kernel_thread
465 * nb: we depend on RESTORE_EXTRA_REGS above
466 */
467 movq %rbp, %rdi
468 call *%rbx
469 movl $0, RAX(%rsp)
470 RESTORE_EXTRA_REGS
471 jmp int_ret_from_sys_call
472 END(ret_from_fork)
473
474 /*
475 * Build the entry stubs with some assembler magic.
476 * We pack 1 stub into every 8-byte block.
477 */
478 .align 8
479 ENTRY(irq_entries_start)
480 vector=FIRST_EXTERNAL_VECTOR
481 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
482 pushq $(~vector+0x80) /* Note: always in signed byte range */
483 vector=vector+1
484 jmp common_interrupt
485 .align 8
486 .endr
487 END(irq_entries_start)
488
489 /*
490 * Interrupt entry/exit.
491 *
492 * Interrupt entry points save only callee clobbered registers in fast path.
493 *
494 * Entry runs with interrupts off.
495 */
496
497 /* 0(%rsp): ~(interrupt number) */
498 .macro interrupt func
499 cld
500 ALLOC_PT_GPREGS_ON_STACK
501 SAVE_C_REGS
502 SAVE_EXTRA_REGS
503
504 testb $3, CS(%rsp)
505 jz 1f
506
507 /*
508 * IRQ from user mode. Switch to kernel gsbase and inform context
509 * tracking that we're in kernel mode.
510 */
511 SWAPGS
512
513 /*
514 * We need to tell lockdep that IRQs are off. We can't do this until
515 * we fix gsbase, and we should do it before enter_from_user_mode
516 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
517 * the simplest way to handle it is to just call it twice if
518 * we enter from user mode. There's no reason to optimize this since
519 * TRACE_IRQS_OFF is a no-op if lockdep is off.
520 */
521 TRACE_IRQS_OFF
522
523 #ifdef CONFIG_CONTEXT_TRACKING
524 call enter_from_user_mode
525 #endif
526
527 1:
528 /*
529 * Save previous stack pointer, optionally switch to interrupt stack.
530 * irq_count is used to check if a CPU is already on an interrupt stack
531 * or not. While this is essentially redundant with preempt_count it is
532 * a little cheaper to use a separate counter in the PDA (short of
533 * moving irq_enter into assembly, which would be too much work)
534 */
535 movq %rsp, %rdi
536 incl PER_CPU_VAR(irq_count)
537 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
538 pushq %rdi
539 /* We entered an interrupt context - irqs are off: */
540 TRACE_IRQS_OFF
541
542 call \func /* rdi points to pt_regs */
543 .endm
544
545 /*
546 * The interrupt stubs push (~vector+0x80) onto the stack and
547 * then jump to common_interrupt.
548 */
549 .p2align CONFIG_X86_L1_CACHE_SHIFT
550 common_interrupt:
551 ASM_CLAC
552 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
553 interrupt do_IRQ
554 /* 0(%rsp): old RSP */
555 ret_from_intr:
556 DISABLE_INTERRUPTS(CLBR_NONE)
557 TRACE_IRQS_OFF
558 decl PER_CPU_VAR(irq_count)
559
560 /* Restore saved previous stack */
561 popq %rsp
562
563 testb $3, CS(%rsp)
564 jz retint_kernel
565
566 /* Interrupt came from user space */
567 GLOBAL(retint_user)
568 mov %rsp,%rdi
569 call prepare_exit_to_usermode
570 TRACE_IRQS_IRETQ
571 SWAPGS
572 jmp restore_regs_and_iret
573
574 /* Returning to kernel space */
575 retint_kernel:
576 #ifdef CONFIG_PREEMPT
577 /* Interrupts are off */
578 /* Check if we need preemption */
579 bt $9, EFLAGS(%rsp) /* were interrupts off? */
580 jnc 1f
581 0: cmpl $0, PER_CPU_VAR(__preempt_count)
582 jnz 1f
583 call preempt_schedule_irq
584 jmp 0b
585 1:
586 #endif
587 /*
588 * The iretq could re-enable interrupts:
589 */
590 TRACE_IRQS_IRETQ
591
592 /*
593 * At this label, code paths which return to kernel and to user,
594 * which come from interrupts/exception and from syscalls, merge.
595 */
596 GLOBAL(restore_regs_and_iret)
597 RESTORE_EXTRA_REGS
598 restore_c_regs_and_iret:
599 RESTORE_C_REGS
600 REMOVE_PT_GPREGS_FROM_STACK 8
601 INTERRUPT_RETURN
602
603 ENTRY(native_iret)
604 /*
605 * Are we returning to a stack segment from the LDT? Note: in
606 * 64-bit mode SS:RSP on the exception stack is always valid.
607 */
608 #ifdef CONFIG_X86_ESPFIX64
609 testb $4, (SS-RIP)(%rsp)
610 jnz native_irq_return_ldt
611 #endif
612
613 .global native_irq_return_iret
614 native_irq_return_iret:
615 /*
616 * This may fault. Non-paranoid faults on return to userspace are
617 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
618 * Double-faults due to espfix64 are handled in do_double_fault.
619 * Other faults here are fatal.
620 */
621 iretq
622
623 #ifdef CONFIG_X86_ESPFIX64
624 native_irq_return_ldt:
625 pushq %rax
626 pushq %rdi
627 SWAPGS
628 movq PER_CPU_VAR(espfix_waddr), %rdi
629 movq %rax, (0*8)(%rdi) /* RAX */
630 movq (2*8)(%rsp), %rax /* RIP */
631 movq %rax, (1*8)(%rdi)
632 movq (3*8)(%rsp), %rax /* CS */
633 movq %rax, (2*8)(%rdi)
634 movq (4*8)(%rsp), %rax /* RFLAGS */
635 movq %rax, (3*8)(%rdi)
636 movq (6*8)(%rsp), %rax /* SS */
637 movq %rax, (5*8)(%rdi)
638 movq (5*8)(%rsp), %rax /* RSP */
639 movq %rax, (4*8)(%rdi)
640 andl $0xffff0000, %eax
641 popq %rdi
642 orq PER_CPU_VAR(espfix_stack), %rax
643 SWAPGS
644 movq %rax, %rsp
645 popq %rax
646 jmp native_irq_return_iret
647 #endif
648 END(common_interrupt)
649
650 /*
651 * APIC interrupts.
652 */
653 .macro apicinterrupt3 num sym do_sym
654 ENTRY(\sym)
655 ASM_CLAC
656 pushq $~(\num)
657 .Lcommon_\sym:
658 interrupt \do_sym
659 jmp ret_from_intr
660 END(\sym)
661 .endm
662
663 #ifdef CONFIG_TRACING
664 #define trace(sym) trace_##sym
665 #define smp_trace(sym) smp_trace_##sym
666
667 .macro trace_apicinterrupt num sym
668 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
669 .endm
670 #else
671 .macro trace_apicinterrupt num sym do_sym
672 .endm
673 #endif
674
675 .macro apicinterrupt num sym do_sym
676 apicinterrupt3 \num \sym \do_sym
677 trace_apicinterrupt \num \sym
678 .endm
679
680 #ifdef CONFIG_SMP
681 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
682 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
683 #endif
684
685 #ifdef CONFIG_X86_UV
686 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
687 #endif
688
689 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
690 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
691
692 #ifdef CONFIG_HAVE_KVM
693 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
694 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
695 #endif
696
697 #ifdef CONFIG_X86_MCE_THRESHOLD
698 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
699 #endif
700
701 #ifdef CONFIG_X86_MCE_AMD
702 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
703 #endif
704
705 #ifdef CONFIG_X86_THERMAL_VECTOR
706 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
707 #endif
708
709 #ifdef CONFIG_SMP
710 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
711 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
712 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
713 #endif
714
715 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
716 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
717
718 #ifdef CONFIG_IRQ_WORK
719 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
720 #endif
721
722 /*
723 * Exception entry points.
724 */
725 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
726
727 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
728 ENTRY(\sym)
729 /* Sanity check */
730 .if \shift_ist != -1 && \paranoid == 0
731 .error "using shift_ist requires paranoid=1"
732 .endif
733
734 ASM_CLAC
735 PARAVIRT_ADJUST_EXCEPTION_FRAME
736
737 .ifeq \has_error_code
738 pushq $-1 /* ORIG_RAX: no syscall to restart */
739 .endif
740
741 ALLOC_PT_GPREGS_ON_STACK
742
743 .if \paranoid
744 .if \paranoid == 1
745 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
746 jnz 1f
747 .endif
748 call paranoid_entry
749 .else
750 call error_entry
751 .endif
752 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
753
754 .if \paranoid
755 .if \shift_ist != -1
756 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
757 .else
758 TRACE_IRQS_OFF
759 .endif
760 .endif
761
762 movq %rsp, %rdi /* pt_regs pointer */
763
764 .if \has_error_code
765 movq ORIG_RAX(%rsp), %rsi /* get error code */
766 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
767 .else
768 xorl %esi, %esi /* no error code */
769 .endif
770
771 .if \shift_ist != -1
772 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
773 .endif
774
775 call \do_sym
776
777 .if \shift_ist != -1
778 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
779 .endif
780
781 /* these procedures expect "no swapgs" flag in ebx */
782 .if \paranoid
783 jmp paranoid_exit
784 .else
785 jmp error_exit
786 .endif
787
788 .if \paranoid == 1
789 /*
790 * Paranoid entry from userspace. Switch stacks and treat it
791 * as a normal entry. This means that paranoid handlers
792 * run in real process context if user_mode(regs).
793 */
794 1:
795 call error_entry
796
797
798 movq %rsp, %rdi /* pt_regs pointer */
799 call sync_regs
800 movq %rax, %rsp /* switch stack */
801
802 movq %rsp, %rdi /* pt_regs pointer */
803
804 .if \has_error_code
805 movq ORIG_RAX(%rsp), %rsi /* get error code */
806 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
807 .else
808 xorl %esi, %esi /* no error code */
809 .endif
810
811 call \do_sym
812
813 jmp error_exit /* %ebx: no swapgs flag */
814 .endif
815 END(\sym)
816 .endm
817
818 #ifdef CONFIG_TRACING
819 .macro trace_idtentry sym do_sym has_error_code:req
820 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
821 idtentry \sym \do_sym has_error_code=\has_error_code
822 .endm
823 #else
824 .macro trace_idtentry sym do_sym has_error_code:req
825 idtentry \sym \do_sym has_error_code=\has_error_code
826 .endm
827 #endif
828
829 idtentry divide_error do_divide_error has_error_code=0
830 idtentry overflow do_overflow has_error_code=0
831 idtentry bounds do_bounds has_error_code=0
832 idtentry invalid_op do_invalid_op has_error_code=0
833 idtentry device_not_available do_device_not_available has_error_code=0
834 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
835 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
836 idtentry invalid_TSS do_invalid_TSS has_error_code=1
837 idtentry segment_not_present do_segment_not_present has_error_code=1
838 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
839 idtentry coprocessor_error do_coprocessor_error has_error_code=0
840 idtentry alignment_check do_alignment_check has_error_code=1
841 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
842
843
844 /*
845 * Reload gs selector with exception handling
846 * edi: new selector
847 */
848 ENTRY(native_load_gs_index)
849 pushfq
850 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
851 SWAPGS
852 gs_change:
853 movl %edi, %gs
854 2: mfence /* workaround */
855 SWAPGS
856 popfq
857 ret
858 END(native_load_gs_index)
859
860 _ASM_EXTABLE(gs_change, bad_gs)
861 .section .fixup, "ax"
862 /* running with kernelgs */
863 bad_gs:
864 SWAPGS /* switch back to user gs */
865 xorl %eax, %eax
866 movl %eax, %gs
867 jmp 2b
868 .previous
869
870 /* Call softirq on interrupt stack. Interrupts are off. */
871 ENTRY(do_softirq_own_stack)
872 pushq %rbp
873 mov %rsp, %rbp
874 incl PER_CPU_VAR(irq_count)
875 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
876 push %rbp /* frame pointer backlink */
877 call __do_softirq
878 leaveq
879 decl PER_CPU_VAR(irq_count)
880 ret
881 END(do_softirq_own_stack)
882
883 #ifdef CONFIG_XEN
884 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
885
886 /*
887 * A note on the "critical region" in our callback handler.
888 * We want to avoid stacking callback handlers due to events occurring
889 * during handling of the last event. To do this, we keep events disabled
890 * until we've done all processing. HOWEVER, we must enable events before
891 * popping the stack frame (can't be done atomically) and so it would still
892 * be possible to get enough handler activations to overflow the stack.
893 * Although unlikely, bugs of that kind are hard to track down, so we'd
894 * like to avoid the possibility.
895 * So, on entry to the handler we detect whether we interrupted an
896 * existing activation in its critical region -- if so, we pop the current
897 * activation and restart the handler using the previous one.
898 */
899 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
900
901 /*
902 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
903 * see the correct pointer to the pt_regs
904 */
905 movq %rdi, %rsp /* we don't return, adjust the stack frame */
906 11: incl PER_CPU_VAR(irq_count)
907 movq %rsp, %rbp
908 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
909 pushq %rbp /* frame pointer backlink */
910 call xen_evtchn_do_upcall
911 popq %rsp
912 decl PER_CPU_VAR(irq_count)
913 #ifndef CONFIG_PREEMPT
914 call xen_maybe_preempt_hcall
915 #endif
916 jmp error_exit
917 END(xen_do_hypervisor_callback)
918
919 /*
920 * Hypervisor uses this for application faults while it executes.
921 * We get here for two reasons:
922 * 1. Fault while reloading DS, ES, FS or GS
923 * 2. Fault while executing IRET
924 * Category 1 we do not need to fix up as Xen has already reloaded all segment
925 * registers that could be reloaded and zeroed the others.
926 * Category 2 we fix up by killing the current process. We cannot use the
927 * normal Linux return path in this case because if we use the IRET hypercall
928 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
929 * We distinguish between categories by comparing each saved segment register
930 * with its current contents: any discrepancy means we in category 1.
931 */
932 ENTRY(xen_failsafe_callback)
933 movl %ds, %ecx
934 cmpw %cx, 0x10(%rsp)
935 jne 1f
936 movl %es, %ecx
937 cmpw %cx, 0x18(%rsp)
938 jne 1f
939 movl %fs, %ecx
940 cmpw %cx, 0x20(%rsp)
941 jne 1f
942 movl %gs, %ecx
943 cmpw %cx, 0x28(%rsp)
944 jne 1f
945 /* All segments match their saved values => Category 2 (Bad IRET). */
946 movq (%rsp), %rcx
947 movq 8(%rsp), %r11
948 addq $0x30, %rsp
949 pushq $0 /* RIP */
950 pushq %r11
951 pushq %rcx
952 jmp general_protection
953 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
954 movq (%rsp), %rcx
955 movq 8(%rsp), %r11
956 addq $0x30, %rsp
957 pushq $-1 /* orig_ax = -1 => not a system call */
958 ALLOC_PT_GPREGS_ON_STACK
959 SAVE_C_REGS
960 SAVE_EXTRA_REGS
961 jmp error_exit
962 END(xen_failsafe_callback)
963
964 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
965 xen_hvm_callback_vector xen_evtchn_do_upcall
966
967 #endif /* CONFIG_XEN */
968
969 #if IS_ENABLED(CONFIG_HYPERV)
970 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
971 hyperv_callback_vector hyperv_vector_handler
972 #endif /* CONFIG_HYPERV */
973
974 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
975 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
976 idtentry stack_segment do_stack_segment has_error_code=1
977
978 #ifdef CONFIG_XEN
979 idtentry xen_debug do_debug has_error_code=0
980 idtentry xen_int3 do_int3 has_error_code=0
981 idtentry xen_stack_segment do_stack_segment has_error_code=1
982 #endif
983
984 idtentry general_protection do_general_protection has_error_code=1
985 trace_idtentry page_fault do_page_fault has_error_code=1
986
987 #ifdef CONFIG_KVM_GUEST
988 idtentry async_page_fault do_async_page_fault has_error_code=1
989 #endif
990
991 #ifdef CONFIG_X86_MCE
992 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
993 #endif
994
995 /*
996 * Save all registers in pt_regs, and switch gs if needed.
997 * Use slow, but surefire "are we in kernel?" check.
998 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
999 */
1000 ENTRY(paranoid_entry)
1001 cld
1002 SAVE_C_REGS 8
1003 SAVE_EXTRA_REGS 8
1004 movl $1, %ebx
1005 movl $MSR_GS_BASE, %ecx
1006 rdmsr
1007 testl %edx, %edx
1008 js 1f /* negative -> in kernel */
1009 SWAPGS
1010 xorl %ebx, %ebx
1011 1: ret
1012 END(paranoid_entry)
1013
1014 /*
1015 * "Paranoid" exit path from exception stack. This is invoked
1016 * only on return from non-NMI IST interrupts that came
1017 * from kernel space.
1018 *
1019 * We may be returning to very strange contexts (e.g. very early
1020 * in syscall entry), so checking for preemption here would
1021 * be complicated. Fortunately, we there's no good reason
1022 * to try to handle preemption here.
1023 *
1024 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1025 */
1026 ENTRY(paranoid_exit)
1027 DISABLE_INTERRUPTS(CLBR_NONE)
1028 TRACE_IRQS_OFF_DEBUG
1029 testl %ebx, %ebx /* swapgs needed? */
1030 jnz paranoid_exit_no_swapgs
1031 TRACE_IRQS_IRETQ
1032 SWAPGS_UNSAFE_STACK
1033 jmp paranoid_exit_restore
1034 paranoid_exit_no_swapgs:
1035 TRACE_IRQS_IRETQ_DEBUG
1036 paranoid_exit_restore:
1037 RESTORE_EXTRA_REGS
1038 RESTORE_C_REGS
1039 REMOVE_PT_GPREGS_FROM_STACK 8
1040 INTERRUPT_RETURN
1041 END(paranoid_exit)
1042
1043 /*
1044 * Save all registers in pt_regs, and switch gs if needed.
1045 * Return: EBX=0: came from user mode; EBX=1: otherwise
1046 */
1047 ENTRY(error_entry)
1048 cld
1049 SAVE_C_REGS 8
1050 SAVE_EXTRA_REGS 8
1051 xorl %ebx, %ebx
1052 testb $3, CS+8(%rsp)
1053 jz .Lerror_kernelspace
1054
1055 .Lerror_entry_from_usermode_swapgs:
1056 /*
1057 * We entered from user mode or we're pretending to have entered
1058 * from user mode due to an IRET fault.
1059 */
1060 SWAPGS
1061
1062 .Lerror_entry_from_usermode_after_swapgs:
1063 /*
1064 * We need to tell lockdep that IRQs are off. We can't do this until
1065 * we fix gsbase, and we should do it before enter_from_user_mode
1066 * (which can take locks).
1067 */
1068 TRACE_IRQS_OFF
1069 #ifdef CONFIG_CONTEXT_TRACKING
1070 call enter_from_user_mode
1071 #endif
1072 ret
1073
1074 .Lerror_entry_done:
1075 TRACE_IRQS_OFF
1076 ret
1077
1078 /*
1079 * There are two places in the kernel that can potentially fault with
1080 * usergs. Handle them here. B stepping K8s sometimes report a
1081 * truncated RIP for IRET exceptions returning to compat mode. Check
1082 * for these here too.
1083 */
1084 .Lerror_kernelspace:
1085 incl %ebx
1086 leaq native_irq_return_iret(%rip), %rcx
1087 cmpq %rcx, RIP+8(%rsp)
1088 je .Lerror_bad_iret
1089 movl %ecx, %eax /* zero extend */
1090 cmpq %rax, RIP+8(%rsp)
1091 je .Lbstep_iret
1092 cmpq $gs_change, RIP+8(%rsp)
1093 jne .Lerror_entry_done
1094
1095 /*
1096 * hack: gs_change can fail with user gsbase. If this happens, fix up
1097 * gsbase and proceed. We'll fix up the exception and land in
1098 * gs_change's error handler with kernel gsbase.
1099 */
1100 jmp .Lerror_entry_from_usermode_swapgs
1101
1102 .Lbstep_iret:
1103 /* Fix truncated RIP */
1104 movq %rcx, RIP+8(%rsp)
1105 /* fall through */
1106
1107 .Lerror_bad_iret:
1108 /*
1109 * We came from an IRET to user mode, so we have user gsbase.
1110 * Switch to kernel gsbase:
1111 */
1112 SWAPGS
1113
1114 /*
1115 * Pretend that the exception came from user mode: set up pt_regs
1116 * as if we faulted immediately after IRET and clear EBX so that
1117 * error_exit knows that we will be returning to user mode.
1118 */
1119 mov %rsp, %rdi
1120 call fixup_bad_iret
1121 mov %rax, %rsp
1122 decl %ebx
1123 jmp .Lerror_entry_from_usermode_after_swapgs
1124 END(error_entry)
1125
1126
1127 /*
1128 * On entry, EBS is a "return to kernel mode" flag:
1129 * 1: already in kernel mode, don't need SWAPGS
1130 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1131 */
1132 ENTRY(error_exit)
1133 movl %ebx, %eax
1134 DISABLE_INTERRUPTS(CLBR_NONE)
1135 TRACE_IRQS_OFF
1136 testl %eax, %eax
1137 jnz retint_kernel
1138 jmp retint_user
1139 END(error_exit)
1140
1141 /* Runs on exception stack */
1142 ENTRY(nmi)
1143 /*
1144 * Fix up the exception frame if we're on Xen.
1145 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1146 * one value to the stack on native, so it may clobber the rdx
1147 * scratch slot, but it won't clobber any of the important
1148 * slots past it.
1149 *
1150 * Xen is a different story, because the Xen frame itself overlaps
1151 * the "NMI executing" variable.
1152 */
1153 PARAVIRT_ADJUST_EXCEPTION_FRAME
1154
1155 /*
1156 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1157 * the iretq it performs will take us out of NMI context.
1158 * This means that we can have nested NMIs where the next
1159 * NMI is using the top of the stack of the previous NMI. We
1160 * can't let it execute because the nested NMI will corrupt the
1161 * stack of the previous NMI. NMI handlers are not re-entrant
1162 * anyway.
1163 *
1164 * To handle this case we do the following:
1165 * Check the a special location on the stack that contains
1166 * a variable that is set when NMIs are executing.
1167 * The interrupted task's stack is also checked to see if it
1168 * is an NMI stack.
1169 * If the variable is not set and the stack is not the NMI
1170 * stack then:
1171 * o Set the special variable on the stack
1172 * o Copy the interrupt frame into an "outermost" location on the
1173 * stack
1174 * o Copy the interrupt frame into an "iret" location on the stack
1175 * o Continue processing the NMI
1176 * If the variable is set or the previous stack is the NMI stack:
1177 * o Modify the "iret" location to jump to the repeat_nmi
1178 * o return back to the first NMI
1179 *
1180 * Now on exit of the first NMI, we first clear the stack variable
1181 * The NMI stack will tell any nested NMIs at that point that it is
1182 * nested. Then we pop the stack normally with iret, and if there was
1183 * a nested NMI that updated the copy interrupt stack frame, a
1184 * jump will be made to the repeat_nmi code that will handle the second
1185 * NMI.
1186 *
1187 * However, espfix prevents us from directly returning to userspace
1188 * with a single IRET instruction. Similarly, IRET to user mode
1189 * can fault. We therefore handle NMIs from user space like
1190 * other IST entries.
1191 */
1192
1193 /* Use %rdx as our temp variable throughout */
1194 pushq %rdx
1195
1196 testb $3, CS-RIP+8(%rsp)
1197 jz .Lnmi_from_kernel
1198
1199 /*
1200 * NMI from user mode. We need to run on the thread stack, but we
1201 * can't go through the normal entry paths: NMIs are masked, and
1202 * we don't want to enable interrupts, because then we'll end
1203 * up in an awkward situation in which IRQs are on but NMIs
1204 * are off.
1205 *
1206 * We also must not push anything to the stack before switching
1207 * stacks lest we corrupt the "NMI executing" variable.
1208 */
1209
1210 SWAPGS_UNSAFE_STACK
1211 cld
1212 movq %rsp, %rdx
1213 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1214 pushq 5*8(%rdx) /* pt_regs->ss */
1215 pushq 4*8(%rdx) /* pt_regs->rsp */
1216 pushq 3*8(%rdx) /* pt_regs->flags */
1217 pushq 2*8(%rdx) /* pt_regs->cs */
1218 pushq 1*8(%rdx) /* pt_regs->rip */
1219 pushq $-1 /* pt_regs->orig_ax */
1220 pushq %rdi /* pt_regs->di */
1221 pushq %rsi /* pt_regs->si */
1222 pushq (%rdx) /* pt_regs->dx */
1223 pushq %rcx /* pt_regs->cx */
1224 pushq %rax /* pt_regs->ax */
1225 pushq %r8 /* pt_regs->r8 */
1226 pushq %r9 /* pt_regs->r9 */
1227 pushq %r10 /* pt_regs->r10 */
1228 pushq %r11 /* pt_regs->r11 */
1229 pushq %rbx /* pt_regs->rbx */
1230 pushq %rbp /* pt_regs->rbp */
1231 pushq %r12 /* pt_regs->r12 */
1232 pushq %r13 /* pt_regs->r13 */
1233 pushq %r14 /* pt_regs->r14 */
1234 pushq %r15 /* pt_regs->r15 */
1235
1236 /*
1237 * At this point we no longer need to worry about stack damage
1238 * due to nesting -- we're on the normal thread stack and we're
1239 * done with the NMI stack.
1240 */
1241
1242 movq %rsp, %rdi
1243 movq $-1, %rsi
1244 call do_nmi
1245
1246 /*
1247 * Return back to user mode. We must *not* do the normal exit
1248 * work, because we don't want to enable interrupts. Fortunately,
1249 * do_nmi doesn't modify pt_regs.
1250 */
1251 SWAPGS
1252 jmp restore_c_regs_and_iret
1253
1254 .Lnmi_from_kernel:
1255 /*
1256 * Here's what our stack frame will look like:
1257 * +---------------------------------------------------------+
1258 * | original SS |
1259 * | original Return RSP |
1260 * | original RFLAGS |
1261 * | original CS |
1262 * | original RIP |
1263 * +---------------------------------------------------------+
1264 * | temp storage for rdx |
1265 * +---------------------------------------------------------+
1266 * | "NMI executing" variable |
1267 * +---------------------------------------------------------+
1268 * | iret SS } Copied from "outermost" frame |
1269 * | iret Return RSP } on each loop iteration; overwritten |
1270 * | iret RFLAGS } by a nested NMI to force another |
1271 * | iret CS } iteration if needed. |
1272 * | iret RIP } |
1273 * +---------------------------------------------------------+
1274 * | outermost SS } initialized in first_nmi; |
1275 * | outermost Return RSP } will not be changed before |
1276 * | outermost RFLAGS } NMI processing is done. |
1277 * | outermost CS } Copied to "iret" frame on each |
1278 * | outermost RIP } iteration. |
1279 * +---------------------------------------------------------+
1280 * | pt_regs |
1281 * +---------------------------------------------------------+
1282 *
1283 * The "original" frame is used by hardware. Before re-enabling
1284 * NMIs, we need to be done with it, and we need to leave enough
1285 * space for the asm code here.
1286 *
1287 * We return by executing IRET while RSP points to the "iret" frame.
1288 * That will either return for real or it will loop back into NMI
1289 * processing.
1290 *
1291 * The "outermost" frame is copied to the "iret" frame on each
1292 * iteration of the loop, so each iteration starts with the "iret"
1293 * frame pointing to the final return target.
1294 */
1295
1296 /*
1297 * Determine whether we're a nested NMI.
1298 *
1299 * If we interrupted kernel code between repeat_nmi and
1300 * end_repeat_nmi, then we are a nested NMI. We must not
1301 * modify the "iret" frame because it's being written by
1302 * the outer NMI. That's okay; the outer NMI handler is
1303 * about to about to call do_nmi anyway, so we can just
1304 * resume the outer NMI.
1305 */
1306
1307 movq $repeat_nmi, %rdx
1308 cmpq 8(%rsp), %rdx
1309 ja 1f
1310 movq $end_repeat_nmi, %rdx
1311 cmpq 8(%rsp), %rdx
1312 ja nested_nmi_out
1313 1:
1314
1315 /*
1316 * Now check "NMI executing". If it's set, then we're nested.
1317 * This will not detect if we interrupted an outer NMI just
1318 * before IRET.
1319 */
1320 cmpl $1, -8(%rsp)
1321 je nested_nmi
1322
1323 /*
1324 * Now test if the previous stack was an NMI stack. This covers
1325 * the case where we interrupt an outer NMI after it clears
1326 * "NMI executing" but before IRET. We need to be careful, though:
1327 * there is one case in which RSP could point to the NMI stack
1328 * despite there being no NMI active: naughty userspace controls
1329 * RSP at the very beginning of the SYSCALL targets. We can
1330 * pull a fast one on naughty userspace, though: we program
1331 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1332 * if it controls the kernel's RSP. We set DF before we clear
1333 * "NMI executing".
1334 */
1335 lea 6*8(%rsp), %rdx
1336 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1337 cmpq %rdx, 4*8(%rsp)
1338 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1339 ja first_nmi
1340
1341 subq $EXCEPTION_STKSZ, %rdx
1342 cmpq %rdx, 4*8(%rsp)
1343 /* If it is below the NMI stack, it is a normal NMI */
1344 jb first_nmi
1345
1346 /* Ah, it is within the NMI stack. */
1347
1348 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1349 jz first_nmi /* RSP was user controlled. */
1350
1351 /* This is a nested NMI. */
1352
1353 nested_nmi:
1354 /*
1355 * Modify the "iret" frame to point to repeat_nmi, forcing another
1356 * iteration of NMI handling.
1357 */
1358 subq $8, %rsp
1359 leaq -10*8(%rsp), %rdx
1360 pushq $__KERNEL_DS
1361 pushq %rdx
1362 pushfq
1363 pushq $__KERNEL_CS
1364 pushq $repeat_nmi
1365
1366 /* Put stack back */
1367 addq $(6*8), %rsp
1368
1369 nested_nmi_out:
1370 popq %rdx
1371
1372 /* We are returning to kernel mode, so this cannot result in a fault. */
1373 INTERRUPT_RETURN
1374
1375 first_nmi:
1376 /* Restore rdx. */
1377 movq (%rsp), %rdx
1378
1379 /* Make room for "NMI executing". */
1380 pushq $0
1381
1382 /* Leave room for the "iret" frame */
1383 subq $(5*8), %rsp
1384
1385 /* Copy the "original" frame to the "outermost" frame */
1386 .rept 5
1387 pushq 11*8(%rsp)
1388 .endr
1389
1390 /* Everything up to here is safe from nested NMIs */
1391
1392 #ifdef CONFIG_DEBUG_ENTRY
1393 /*
1394 * For ease of testing, unmask NMIs right away. Disabled by
1395 * default because IRET is very expensive.
1396 */
1397 pushq $0 /* SS */
1398 pushq %rsp /* RSP (minus 8 because of the previous push) */
1399 addq $8, (%rsp) /* Fix up RSP */
1400 pushfq /* RFLAGS */
1401 pushq $__KERNEL_CS /* CS */
1402 pushq $1f /* RIP */
1403 INTERRUPT_RETURN /* continues at repeat_nmi below */
1404 1:
1405 #endif
1406
1407 repeat_nmi:
1408 /*
1409 * If there was a nested NMI, the first NMI's iret will return
1410 * here. But NMIs are still enabled and we can take another
1411 * nested NMI. The nested NMI checks the interrupted RIP to see
1412 * if it is between repeat_nmi and end_repeat_nmi, and if so
1413 * it will just return, as we are about to repeat an NMI anyway.
1414 * This makes it safe to copy to the stack frame that a nested
1415 * NMI will update.
1416 *
1417 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1418 * we're repeating an NMI, gsbase has the same value that it had on
1419 * the first iteration. paranoid_entry will load the kernel
1420 * gsbase if needed before we call do_nmi. "NMI executing"
1421 * is zero.
1422 */
1423 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1424
1425 /*
1426 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1427 * here must not modify the "iret" frame while we're writing to
1428 * it or it will end up containing garbage.
1429 */
1430 addq $(10*8), %rsp
1431 .rept 5
1432 pushq -6*8(%rsp)
1433 .endr
1434 subq $(5*8), %rsp
1435 end_repeat_nmi:
1436
1437 /*
1438 * Everything below this point can be preempted by a nested NMI.
1439 * If this happens, then the inner NMI will change the "iret"
1440 * frame to point back to repeat_nmi.
1441 */
1442 pushq $-1 /* ORIG_RAX: no syscall to restart */
1443 ALLOC_PT_GPREGS_ON_STACK
1444
1445 /*
1446 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1447 * as we should not be calling schedule in NMI context.
1448 * Even with normal interrupts enabled. An NMI should not be
1449 * setting NEED_RESCHED or anything that normal interrupts and
1450 * exceptions might do.
1451 */
1452 call paranoid_entry
1453
1454 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1455 movq %rsp, %rdi
1456 movq $-1, %rsi
1457 call do_nmi
1458
1459 testl %ebx, %ebx /* swapgs needed? */
1460 jnz nmi_restore
1461 nmi_swapgs:
1462 SWAPGS_UNSAFE_STACK
1463 nmi_restore:
1464 RESTORE_EXTRA_REGS
1465 RESTORE_C_REGS
1466
1467 /* Point RSP at the "iret" frame. */
1468 REMOVE_PT_GPREGS_FROM_STACK 6*8
1469
1470 /*
1471 * Clear "NMI executing". Set DF first so that we can easily
1472 * distinguish the remaining code between here and IRET from
1473 * the SYSCALL entry and exit paths. On a native kernel, we
1474 * could just inspect RIP, but, on paravirt kernels,
1475 * INTERRUPT_RETURN can translate into a jump into a
1476 * hypercall page.
1477 */
1478 std
1479 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1480
1481 /*
1482 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1483 * stack in a single instruction. We are returning to kernel
1484 * mode, so this cannot result in a fault.
1485 */
1486 INTERRUPT_RETURN
1487 END(nmi)
1488
1489 ENTRY(ignore_sysret)
1490 mov $-ENOSYS, %eax
1491 sysret
1492 END(ignore_sysret)