]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/entry/entry_64.S
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <asm/nospec-branch.h>
41 #include <linux/err.h>
42
43 #include "calling.h"
44
45 .code64
46 .section .entry.text, "ax"
47
48 #ifdef CONFIG_PARAVIRT
49 ENTRY(native_usergs_sysret64)
50 UNWIND_HINT_EMPTY
51 swapgs
52 sysretq
53 END(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_FLAGS flags:req
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 .macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67 .endm
68
69 /*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82 .macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_OFF
85 call debug_stack_reset
86 .endm
87
88 .macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
90 TRACE_IRQS_ON
91 call debug_stack_reset
92 .endm
93
94 .macro TRACE_IRQS_IRETQ_DEBUG
95 btl $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
97 TRACE_IRQS_ON_DEBUG
98 1:
99 .endm
100
101 #else
102 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
105 #endif
106
107 /*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax system call number
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi arg0
131 * rsi arg1
132 * rdx arg2
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8 arg4
135 * r9 arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145 ENTRY(entry_SYSCALL_64)
146 UNWIND_HINT_EMPTY
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
152
153 swapgs
154 /* tss.sp2 is scratch space. */
155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 /* Construct struct pt_regs on stack */
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
165 GLOBAL(entry_SYSCALL_64_after_hwframe)
166 pushq %rax /* pt_regs->orig_ax */
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169
170 TRACE_IRQS_OFF
171
172 /* IRQs are off. */
173 movq %rax, %rdi
174 movq %rsp, %rsi
175 call do_syscall_64 /* returns with IRQs disabled */
176
177 TRACE_IRQS_IRETQ /* we're about to change IF */
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
183 */
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
193 * the kernel, since userspace controls RSP.
194 *
195 * If width of "canonical tail" ever becomes variable, this will need
196 * to be updated to remain correct on both old and new CPUs.
197 *
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
200 */
201 #ifdef CONFIG_X86_5LEVEL
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204 #else
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207 #endif
208
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
211 jne swapgs_restore_regs_and_return_to_usermode
212
213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
214 jne swapgs_restore_regs_and_return_to_usermode
215
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
218 jne swapgs_restore_regs_and_return_to_usermode
219
220 /*
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
230 *
231 * movq $stuck_here, %rcx
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239 jnz swapgs_restore_regs_and_return_to_usermode
240
241 /* nothing to check for RSP */
242
243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
244 jne swapgs_restore_regs_and_return_to_usermode
245
246 /*
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
249 */
250 syscall_return_via_sysret:
251 /* rcx and r11 are already restored (see code above) */
252 UNWIND_HINT_EMPTY
253 POP_REGS pop_rdi=0 skip_r11rcx=1
254
255 /*
256 * Now all regs are restored except RSP and RDI.
257 * Save old stack pointer and switch to trampoline stack.
258 */
259 movq %rsp, %rdi
260 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
269 STACKLEAK_ERASE_NOCLOBBER
270
271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272
273 popq %rdi
274 popq %rsp
275 USERGS_SYSRET64
276 END(entry_SYSCALL_64)
277
278 /*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282 ENTRY(__switch_to_asm)
283 UNWIND_HINT_FUNC
284 /*
285 * Save callee-saved registers
286 * This must match the order in inactive_task_frame
287 */
288 pushq %rbp
289 pushq %rbx
290 pushq %r12
291 pushq %r13
292 pushq %r14
293 pushq %r15
294
295 /* switch stack */
296 movq %rsp, TASK_threadsp(%rdi)
297 movq TASK_threadsp(%rsi), %rsp
298
299 #ifdef CONFIG_STACKPROTECTOR
300 movq TASK_stack_canary(%rsi), %rbx
301 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
302 #endif
303
304 #ifdef CONFIG_RETPOLINE
305 /*
306 * When switching from a shallower to a deeper call stack
307 * the RSB may either underflow or use entries populated
308 * with userspace addresses. On CPUs where those concerns
309 * exist, overwrite the RSB with entries which capture
310 * speculative execution to prevent attack.
311 */
312 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313 #endif
314
315 /* restore callee-saved registers */
316 popq %r15
317 popq %r14
318 popq %r13
319 popq %r12
320 popq %rbx
321 popq %rbp
322
323 jmp __switch_to
324 END(__switch_to_asm)
325
326 /*
327 * A newly forked process directly context switches into this address.
328 *
329 * rax: prev task we switched from
330 * rbx: kernel thread func (NULL for user thread)
331 * r12: kernel thread arg
332 */
333 ENTRY(ret_from_fork)
334 UNWIND_HINT_EMPTY
335 movq %rax, %rdi
336 call schedule_tail /* rdi: 'prev' task parameter */
337
338 testq %rbx, %rbx /* from kernel_thread? */
339 jnz 1f /* kernel threads are uncommon */
340
341 2:
342 UNWIND_HINT_REGS
343 movq %rsp, %rdi
344 call syscall_return_slowpath /* returns with IRQs disabled */
345 TRACE_IRQS_ON /* user mode is traced as IRQS on */
346 jmp swapgs_restore_regs_and_return_to_usermode
347
348 1:
349 /* kernel thread */
350 UNWIND_HINT_EMPTY
351 movq %r12, %rdi
352 CALL_NOSPEC %rbx
353 /*
354 * A kernel thread is allowed to return here after successfully
355 * calling do_execve(). Exit to userspace to complete the execve()
356 * syscall.
357 */
358 movq $0, RAX(%rsp)
359 jmp 2b
360 END(ret_from_fork)
361
362 /*
363 * Build the entry stubs with some assembler magic.
364 * We pack 1 stub into every 8-byte block.
365 */
366 .align 8
367 ENTRY(irq_entries_start)
368 vector=FIRST_EXTERNAL_VECTOR
369 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370 UNWIND_HINT_IRET_REGS
371 pushq $(~vector+0x80) /* Note: always in signed byte range */
372 jmp common_interrupt
373 .align 8
374 vector=vector+1
375 .endr
376 END(irq_entries_start)
377
378 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
379 #ifdef CONFIG_DEBUG_ENTRY
380 pushq %rax
381 SAVE_FLAGS(CLBR_RAX)
382 testl $X86_EFLAGS_IF, %eax
383 jz .Lokay_\@
384 ud2
385 .Lokay_\@:
386 popq %rax
387 #endif
388 .endm
389
390 /*
391 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
392 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
393 * Requires kernel GSBASE.
394 *
395 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
396 */
397 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
398 DEBUG_ENTRY_ASSERT_IRQS_OFF
399
400 .if \save_ret
401 /*
402 * If save_ret is set, the original stack contains one additional
403 * entry -- the return address. Therefore, move the address one
404 * entry below %rsp to \old_rsp.
405 */
406 leaq 8(%rsp), \old_rsp
407 .else
408 movq %rsp, \old_rsp
409 .endif
410
411 .if \regs
412 UNWIND_HINT_REGS base=\old_rsp
413 .endif
414
415 incl PER_CPU_VAR(irq_count)
416 jnz .Lirq_stack_push_old_rsp_\@
417
418 /*
419 * Right now, if we just incremented irq_count to zero, we've
420 * claimed the IRQ stack but we haven't switched to it yet.
421 *
422 * If anything is added that can interrupt us here without using IST,
423 * it must be *extremely* careful to limit its stack usage. This
424 * could include kprobes and a hypothetical future IST-less #DB
425 * handler.
426 *
427 * The OOPS unwinder relies on the word at the top of the IRQ
428 * stack linking back to the previous RSP for the entire time we're
429 * on the IRQ stack. For this to work reliably, we need to write
430 * it before we actually move ourselves to the IRQ stack.
431 */
432
433 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
434 movq PER_CPU_VAR(irq_stack_ptr), %rsp
435
436 #ifdef CONFIG_DEBUG_ENTRY
437 /*
438 * If the first movq above becomes wrong due to IRQ stack layout
439 * changes, the only way we'll notice is if we try to unwind right
440 * here. Assert that we set up the stack right to catch this type
441 * of bug quickly.
442 */
443 cmpq -8(%rsp), \old_rsp
444 je .Lirq_stack_okay\@
445 ud2
446 .Lirq_stack_okay\@:
447 #endif
448
449 .Lirq_stack_push_old_rsp_\@:
450 pushq \old_rsp
451
452 .if \regs
453 UNWIND_HINT_REGS indirect=1
454 .endif
455
456 .if \save_ret
457 /*
458 * Push the return address to the stack. This return address can
459 * be found at the "real" original RSP, which was offset by 8 at
460 * the beginning of this macro.
461 */
462 pushq -8(\old_rsp)
463 .endif
464 .endm
465
466 /*
467 * Undoes ENTER_IRQ_STACK.
468 */
469 .macro LEAVE_IRQ_STACK regs=1
470 DEBUG_ENTRY_ASSERT_IRQS_OFF
471 /* We need to be off the IRQ stack before decrementing irq_count. */
472 popq %rsp
473
474 .if \regs
475 UNWIND_HINT_REGS
476 .endif
477
478 /*
479 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
480 * the irq stack but we're not on it.
481 */
482
483 decl PER_CPU_VAR(irq_count)
484 .endm
485
486 /*
487 * Interrupt entry helper function.
488 *
489 * Entry runs with interrupts off. Stack layout at entry:
490 * +----------------------------------------------------+
491 * | regs->ss |
492 * | regs->rsp |
493 * | regs->eflags |
494 * | regs->cs |
495 * | regs->ip |
496 * +----------------------------------------------------+
497 * | regs->orig_ax = ~(interrupt number) |
498 * +----------------------------------------------------+
499 * | return address |
500 * +----------------------------------------------------+
501 */
502 ENTRY(interrupt_entry)
503 UNWIND_HINT_FUNC
504 ASM_CLAC
505 cld
506
507 testb $3, CS-ORIG_RAX+8(%rsp)
508 jz 1f
509 SWAPGS
510
511 /*
512 * Switch to the thread stack. The IRET frame and orig_ax are
513 * on the stack, as well as the return address. RDI..R12 are
514 * not (yet) on the stack and space has not (yet) been
515 * allocated for them.
516 */
517 pushq %rdi
518
519 /* Need to switch before accessing the thread stack. */
520 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
521 movq %rsp, %rdi
522 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
523
524 /*
525 * We have RDI, return address, and orig_ax on the stack on
526 * top of the IRET frame. That means offset=24
527 */
528 UNWIND_HINT_IRET_REGS base=%rdi offset=24
529
530 pushq 7*8(%rdi) /* regs->ss */
531 pushq 6*8(%rdi) /* regs->rsp */
532 pushq 5*8(%rdi) /* regs->eflags */
533 pushq 4*8(%rdi) /* regs->cs */
534 pushq 3*8(%rdi) /* regs->ip */
535 pushq 2*8(%rdi) /* regs->orig_ax */
536 pushq 8(%rdi) /* return address */
537 UNWIND_HINT_FUNC
538
539 movq (%rdi), %rdi
540 1:
541
542 PUSH_AND_CLEAR_REGS save_ret=1
543 ENCODE_FRAME_POINTER 8
544
545 testb $3, CS+8(%rsp)
546 jz 1f
547
548 /*
549 * IRQ from user mode.
550 *
551 * We need to tell lockdep that IRQs are off. We can't do this until
552 * we fix gsbase, and we should do it before enter_from_user_mode
553 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
554 * the simplest way to handle it is to just call it twice if
555 * we enter from user mode. There's no reason to optimize this since
556 * TRACE_IRQS_OFF is a no-op if lockdep is off.
557 */
558 TRACE_IRQS_OFF
559
560 CALL_enter_from_user_mode
561
562 1:
563 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
564 /* We entered an interrupt context - irqs are off: */
565 TRACE_IRQS_OFF
566
567 ret
568 END(interrupt_entry)
569
570
571 /* Interrupt entry/exit. */
572
573 /*
574 * The interrupt stubs push (~vector+0x80) onto the stack and
575 * then jump to common_interrupt.
576 */
577 .p2align CONFIG_X86_L1_CACHE_SHIFT
578 common_interrupt:
579 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
580 call interrupt_entry
581 UNWIND_HINT_REGS indirect=1
582 call do_IRQ /* rdi points to pt_regs */
583 /* 0(%rsp): old RSP */
584 ret_from_intr:
585 DISABLE_INTERRUPTS(CLBR_ANY)
586 TRACE_IRQS_OFF
587
588 LEAVE_IRQ_STACK
589
590 testb $3, CS(%rsp)
591 jz retint_kernel
592
593 /* Interrupt came from user space */
594 GLOBAL(retint_user)
595 mov %rsp,%rdi
596 call prepare_exit_to_usermode
597 TRACE_IRQS_IRETQ
598
599 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
600 #ifdef CONFIG_DEBUG_ENTRY
601 /* Assert that pt_regs indicates user mode. */
602 testb $3, CS(%rsp)
603 jnz 1f
604 ud2
605 1:
606 #endif
607 POP_REGS pop_rdi=0
608
609 /*
610 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
611 * Save old stack pointer and switch to trampoline stack.
612 */
613 movq %rsp, %rdi
614 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
615
616 /* Copy the IRET frame to the trampoline stack. */
617 pushq 6*8(%rdi) /* SS */
618 pushq 5*8(%rdi) /* RSP */
619 pushq 4*8(%rdi) /* EFLAGS */
620 pushq 3*8(%rdi) /* CS */
621 pushq 2*8(%rdi) /* RIP */
622
623 /* Push user RDI on the trampoline stack. */
624 pushq (%rdi)
625
626 /*
627 * We are on the trampoline stack. All regs except RDI are live.
628 * We can do future final exit work right here.
629 */
630 STACKLEAK_ERASE_NOCLOBBER
631
632 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
633
634 /* Restore RDI. */
635 popq %rdi
636 SWAPGS
637 INTERRUPT_RETURN
638
639
640 /* Returning to kernel space */
641 retint_kernel:
642 #ifdef CONFIG_PREEMPT
643 /* Interrupts are off */
644 /* Check if we need preemption */
645 btl $9, EFLAGS(%rsp) /* were interrupts off? */
646 jnc 1f
647 0: cmpl $0, PER_CPU_VAR(__preempt_count)
648 jnz 1f
649 call preempt_schedule_irq
650 jmp 0b
651 1:
652 #endif
653 /*
654 * The iretq could re-enable interrupts:
655 */
656 TRACE_IRQS_IRETQ
657
658 GLOBAL(restore_regs_and_return_to_kernel)
659 #ifdef CONFIG_DEBUG_ENTRY
660 /* Assert that pt_regs indicates kernel mode. */
661 testb $3, CS(%rsp)
662 jz 1f
663 ud2
664 1:
665 #endif
666 POP_REGS
667 addq $8, %rsp /* skip regs->orig_ax */
668 /*
669 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
670 * when returning from IPI handler.
671 */
672 INTERRUPT_RETURN
673
674 ENTRY(native_iret)
675 UNWIND_HINT_IRET_REGS
676 /*
677 * Are we returning to a stack segment from the LDT? Note: in
678 * 64-bit mode SS:RSP on the exception stack is always valid.
679 */
680 #ifdef CONFIG_X86_ESPFIX64
681 testb $4, (SS-RIP)(%rsp)
682 jnz native_irq_return_ldt
683 #endif
684
685 .global native_irq_return_iret
686 native_irq_return_iret:
687 /*
688 * This may fault. Non-paranoid faults on return to userspace are
689 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
690 * Double-faults due to espfix64 are handled in do_double_fault.
691 * Other faults here are fatal.
692 */
693 iretq
694
695 #ifdef CONFIG_X86_ESPFIX64
696 native_irq_return_ldt:
697 /*
698 * We are running with user GSBASE. All GPRs contain their user
699 * values. We have a percpu ESPFIX stack that is eight slots
700 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
701 * of the ESPFIX stack.
702 *
703 * We clobber RAX and RDI in this code. We stash RDI on the
704 * normal stack and RAX on the ESPFIX stack.
705 *
706 * The ESPFIX stack layout we set up looks like this:
707 *
708 * --- top of ESPFIX stack ---
709 * SS
710 * RSP
711 * RFLAGS
712 * CS
713 * RIP <-- RSP points here when we're done
714 * RAX <-- espfix_waddr points here
715 * --- bottom of ESPFIX stack ---
716 */
717
718 pushq %rdi /* Stash user RDI */
719 SWAPGS /* to kernel GS */
720 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
721
722 movq PER_CPU_VAR(espfix_waddr), %rdi
723 movq %rax, (0*8)(%rdi) /* user RAX */
724 movq (1*8)(%rsp), %rax /* user RIP */
725 movq %rax, (1*8)(%rdi)
726 movq (2*8)(%rsp), %rax /* user CS */
727 movq %rax, (2*8)(%rdi)
728 movq (3*8)(%rsp), %rax /* user RFLAGS */
729 movq %rax, (3*8)(%rdi)
730 movq (5*8)(%rsp), %rax /* user SS */
731 movq %rax, (5*8)(%rdi)
732 movq (4*8)(%rsp), %rax /* user RSP */
733 movq %rax, (4*8)(%rdi)
734 /* Now RAX == RSP. */
735
736 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
737
738 /*
739 * espfix_stack[31:16] == 0. The page tables are set up such that
740 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
741 * espfix_waddr for any X. That is, there are 65536 RO aliases of
742 * the same page. Set up RSP so that RSP[31:16] contains the
743 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
744 * still points to an RO alias of the ESPFIX stack.
745 */
746 orq PER_CPU_VAR(espfix_stack), %rax
747
748 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
749 SWAPGS /* to user GS */
750 popq %rdi /* Restore user RDI */
751
752 movq %rax, %rsp
753 UNWIND_HINT_IRET_REGS offset=8
754
755 /*
756 * At this point, we cannot write to the stack any more, but we can
757 * still read.
758 */
759 popq %rax /* Restore user RAX */
760
761 /*
762 * RSP now points to an ordinary IRET frame, except that the page
763 * is read-only and RSP[31:16] are preloaded with the userspace
764 * values. We can now IRET back to userspace.
765 */
766 jmp native_irq_return_iret
767 #endif
768 END(common_interrupt)
769
770 /*
771 * APIC interrupts.
772 */
773 .macro apicinterrupt3 num sym do_sym
774 ENTRY(\sym)
775 UNWIND_HINT_IRET_REGS
776 pushq $~(\num)
777 .Lcommon_\sym:
778 call interrupt_entry
779 UNWIND_HINT_REGS indirect=1
780 call \do_sym /* rdi points to pt_regs */
781 jmp ret_from_intr
782 END(\sym)
783 .endm
784
785 /* Make sure APIC interrupt handlers end up in the irqentry section: */
786 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
787 #define POP_SECTION_IRQENTRY .popsection
788
789 .macro apicinterrupt num sym do_sym
790 PUSH_SECTION_IRQENTRY
791 apicinterrupt3 \num \sym \do_sym
792 POP_SECTION_IRQENTRY
793 .endm
794
795 #ifdef CONFIG_SMP
796 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
797 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
798 #endif
799
800 #ifdef CONFIG_X86_UV
801 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
802 #endif
803
804 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
805 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
806
807 #ifdef CONFIG_HAVE_KVM
808 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
809 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
810 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
811 #endif
812
813 #ifdef CONFIG_X86_MCE_THRESHOLD
814 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
815 #endif
816
817 #ifdef CONFIG_X86_MCE_AMD
818 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
819 #endif
820
821 #ifdef CONFIG_X86_THERMAL_VECTOR
822 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
823 #endif
824
825 #ifdef CONFIG_SMP
826 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
827 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
828 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
829 #endif
830
831 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
832 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
833
834 #ifdef CONFIG_IRQ_WORK
835 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
836 #endif
837
838 /*
839 * Exception entry points.
840 */
841 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
842
843 /**
844 * idtentry - Generate an IDT entry stub
845 * @sym: Name of the generated entry point
846 * @do_sym: C function to be called
847 * @has_error_code: True if this IDT vector has an error code on the stack
848 * @paranoid: non-zero means that this vector may be invoked from
849 * kernel mode with user GSBASE and/or user CR3.
850 * 2 is special -- see below.
851 * @shift_ist: Set to an IST index if entries from kernel mode should
852 * decrement the IST stack so that nested entries get a
853 * fresh stack. (This is for #DB, which has a nasty habit
854 * of recursing.)
855 *
856 * idtentry generates an IDT stub that sets up a usable kernel context,
857 * creates struct pt_regs, and calls @do_sym. The stub has the following
858 * special behaviors:
859 *
860 * On an entry from user mode, the stub switches from the trampoline or
861 * IST stack to the normal thread stack. On an exit to user mode, the
862 * normal exit-to-usermode path is invoked.
863 *
864 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
865 * whereas we omit the preemption check if @paranoid != 0. This is purely
866 * because the implementation is simpler this way. The kernel only needs
867 * to check for asynchronous kernel preemption when IRQ handlers return.
868 *
869 * If @paranoid == 0, then the stub will handle IRET faults by pretending
870 * that the fault came from user mode. It will handle gs_change faults by
871 * pretending that the fault happened with kernel GSBASE. Since this handling
872 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
873 * @paranoid == 0. This special handling will do the wrong thing for
874 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
875 *
876 * @paranoid == 2 is special: the stub will never switch stacks. This is for
877 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
878 */
879 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
880 ENTRY(\sym)
881 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
882
883 /* Sanity check */
884 .if \shift_ist != -1 && \paranoid == 0
885 .error "using shift_ist requires paranoid=1"
886 .endif
887
888 ASM_CLAC
889
890 .if \has_error_code == 0
891 pushq $-1 /* ORIG_RAX: no syscall to restart */
892 .endif
893
894 .if \paranoid == 1
895 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
896 jnz .Lfrom_usermode_switch_stack_\@
897 .endif
898
899 .if \paranoid
900 call paranoid_entry
901 .else
902 call error_entry
903 .endif
904 UNWIND_HINT_REGS
905 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
906
907 .if \paranoid
908 .if \shift_ist != -1
909 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
910 .else
911 TRACE_IRQS_OFF
912 .endif
913 .endif
914
915 movq %rsp, %rdi /* pt_regs pointer */
916
917 .if \has_error_code
918 movq ORIG_RAX(%rsp), %rsi /* get error code */
919 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
920 .else
921 xorl %esi, %esi /* no error code */
922 .endif
923
924 .if \shift_ist != -1
925 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
926 .endif
927
928 call \do_sym
929
930 .if \shift_ist != -1
931 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
932 .endif
933
934 /* these procedures expect "no swapgs" flag in ebx */
935 .if \paranoid
936 jmp paranoid_exit
937 .else
938 jmp error_exit
939 .endif
940
941 .if \paranoid == 1
942 /*
943 * Entry from userspace. Switch stacks and treat it
944 * as a normal entry. This means that paranoid handlers
945 * run in real process context if user_mode(regs).
946 */
947 .Lfrom_usermode_switch_stack_\@:
948 call error_entry
949
950 movq %rsp, %rdi /* pt_regs pointer */
951
952 .if \has_error_code
953 movq ORIG_RAX(%rsp), %rsi /* get error code */
954 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
955 .else
956 xorl %esi, %esi /* no error code */
957 .endif
958
959 call \do_sym
960
961 jmp error_exit
962 .endif
963 END(\sym)
964 .endm
965
966 idtentry divide_error do_divide_error has_error_code=0
967 idtentry overflow do_overflow has_error_code=0
968 idtentry bounds do_bounds has_error_code=0
969 idtentry invalid_op do_invalid_op has_error_code=0
970 idtentry device_not_available do_device_not_available has_error_code=0
971 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
972 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
973 idtentry invalid_TSS do_invalid_TSS has_error_code=1
974 idtentry segment_not_present do_segment_not_present has_error_code=1
975 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
976 idtentry coprocessor_error do_coprocessor_error has_error_code=0
977 idtentry alignment_check do_alignment_check has_error_code=1
978 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
979
980
981 /*
982 * Reload gs selector with exception handling
983 * edi: new selector
984 */
985 ENTRY(native_load_gs_index)
986 FRAME_BEGIN
987 pushfq
988 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
989 TRACE_IRQS_OFF
990 SWAPGS
991 .Lgs_change:
992 movl %edi, %gs
993 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
994 SWAPGS
995 TRACE_IRQS_FLAGS (%rsp)
996 popfq
997 FRAME_END
998 ret
999 ENDPROC(native_load_gs_index)
1000 EXPORT_SYMBOL(native_load_gs_index)
1001
1002 _ASM_EXTABLE(.Lgs_change, bad_gs)
1003 .section .fixup, "ax"
1004 /* running with kernelgs */
1005 bad_gs:
1006 SWAPGS /* switch back to user gs */
1007 .macro ZAP_GS
1008 /* This can't be a string because the preprocessor needs to see it. */
1009 movl $__USER_DS, %eax
1010 movl %eax, %gs
1011 .endm
1012 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1013 xorl %eax, %eax
1014 movl %eax, %gs
1015 jmp 2b
1016 .previous
1017
1018 /* Call softirq on interrupt stack. Interrupts are off. */
1019 ENTRY(do_softirq_own_stack)
1020 pushq %rbp
1021 mov %rsp, %rbp
1022 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1023 call __do_softirq
1024 LEAVE_IRQ_STACK regs=0
1025 leaveq
1026 ret
1027 ENDPROC(do_softirq_own_stack)
1028
1029 #ifdef CONFIG_XEN_PV
1030 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1031
1032 /*
1033 * A note on the "critical region" in our callback handler.
1034 * We want to avoid stacking callback handlers due to events occurring
1035 * during handling of the last event. To do this, we keep events disabled
1036 * until we've done all processing. HOWEVER, we must enable events before
1037 * popping the stack frame (can't be done atomically) and so it would still
1038 * be possible to get enough handler activations to overflow the stack.
1039 * Although unlikely, bugs of that kind are hard to track down, so we'd
1040 * like to avoid the possibility.
1041 * So, on entry to the handler we detect whether we interrupted an
1042 * existing activation in its critical region -- if so, we pop the current
1043 * activation and restart the handler using the previous one.
1044 */
1045 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1046
1047 /*
1048 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1049 * see the correct pointer to the pt_regs
1050 */
1051 UNWIND_HINT_FUNC
1052 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1053 UNWIND_HINT_REGS
1054
1055 ENTER_IRQ_STACK old_rsp=%r10
1056 call xen_evtchn_do_upcall
1057 LEAVE_IRQ_STACK
1058
1059 #ifndef CONFIG_PREEMPT
1060 call xen_maybe_preempt_hcall
1061 #endif
1062 jmp error_exit
1063 END(xen_do_hypervisor_callback)
1064
1065 /*
1066 * Hypervisor uses this for application faults while it executes.
1067 * We get here for two reasons:
1068 * 1. Fault while reloading DS, ES, FS or GS
1069 * 2. Fault while executing IRET
1070 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1071 * registers that could be reloaded and zeroed the others.
1072 * Category 2 we fix up by killing the current process. We cannot use the
1073 * normal Linux return path in this case because if we use the IRET hypercall
1074 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1075 * We distinguish between categories by comparing each saved segment register
1076 * with its current contents: any discrepancy means we in category 1.
1077 */
1078 ENTRY(xen_failsafe_callback)
1079 UNWIND_HINT_EMPTY
1080 movl %ds, %ecx
1081 cmpw %cx, 0x10(%rsp)
1082 jne 1f
1083 movl %es, %ecx
1084 cmpw %cx, 0x18(%rsp)
1085 jne 1f
1086 movl %fs, %ecx
1087 cmpw %cx, 0x20(%rsp)
1088 jne 1f
1089 movl %gs, %ecx
1090 cmpw %cx, 0x28(%rsp)
1091 jne 1f
1092 /* All segments match their saved values => Category 2 (Bad IRET). */
1093 movq (%rsp), %rcx
1094 movq 8(%rsp), %r11
1095 addq $0x30, %rsp
1096 pushq $0 /* RIP */
1097 UNWIND_HINT_IRET_REGS offset=8
1098 jmp general_protection
1099 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1100 movq (%rsp), %rcx
1101 movq 8(%rsp), %r11
1102 addq $0x30, %rsp
1103 UNWIND_HINT_IRET_REGS
1104 pushq $-1 /* orig_ax = -1 => not a system call */
1105 PUSH_AND_CLEAR_REGS
1106 ENCODE_FRAME_POINTER
1107 jmp error_exit
1108 END(xen_failsafe_callback)
1109 #endif /* CONFIG_XEN_PV */
1110
1111 #ifdef CONFIG_XEN_PVHVM
1112 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1113 xen_hvm_callback_vector xen_evtchn_do_upcall
1114 #endif
1115
1116
1117 #if IS_ENABLED(CONFIG_HYPERV)
1118 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1119 hyperv_callback_vector hyperv_vector_handler
1120
1121 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1122 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1123
1124 apicinterrupt3 HYPERV_STIMER0_VECTOR \
1125 hv_stimer0_callback_vector hv_stimer0_vector_handler
1126 #endif /* CONFIG_HYPERV */
1127
1128 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1129 idtentry int3 do_int3 has_error_code=0
1130 idtentry stack_segment do_stack_segment has_error_code=1
1131
1132 #ifdef CONFIG_XEN_PV
1133 idtentry xennmi do_nmi has_error_code=0
1134 idtentry xendebug do_debug has_error_code=0
1135 idtentry xenint3 do_int3 has_error_code=0
1136 #endif
1137
1138 idtentry general_protection do_general_protection has_error_code=1
1139 idtentry page_fault do_page_fault has_error_code=1
1140
1141 #ifdef CONFIG_KVM_GUEST
1142 idtentry async_page_fault do_async_page_fault has_error_code=1
1143 #endif
1144
1145 #ifdef CONFIG_X86_MCE
1146 idtentry machine_check do_mce has_error_code=0 paranoid=1
1147 #endif
1148
1149 /*
1150 * Save all registers in pt_regs, and switch gs if needed.
1151 * Use slow, but surefire "are we in kernel?" check.
1152 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1153 */
1154 ENTRY(paranoid_entry)
1155 UNWIND_HINT_FUNC
1156 cld
1157 PUSH_AND_CLEAR_REGS save_ret=1
1158 ENCODE_FRAME_POINTER 8
1159 movl $1, %ebx
1160 movl $MSR_GS_BASE, %ecx
1161 rdmsr
1162 testl %edx, %edx
1163 js 1f /* negative -> in kernel */
1164 SWAPGS
1165 xorl %ebx, %ebx
1166
1167 1:
1168 /*
1169 * Always stash CR3 in %r14. This value will be restored,
1170 * verbatim, at exit. Needed if paranoid_entry interrupted
1171 * another entry that already switched to the user CR3 value
1172 * but has not yet returned to userspace.
1173 *
1174 * This is also why CS (stashed in the "iret frame" by the
1175 * hardware at entry) can not be used: this may be a return
1176 * to kernel code, but with a user CR3 value.
1177 */
1178 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1179
1180 ret
1181 END(paranoid_entry)
1182
1183 /*
1184 * "Paranoid" exit path from exception stack. This is invoked
1185 * only on return from non-NMI IST interrupts that came
1186 * from kernel space.
1187 *
1188 * We may be returning to very strange contexts (e.g. very early
1189 * in syscall entry), so checking for preemption here would
1190 * be complicated. Fortunately, we there's no good reason
1191 * to try to handle preemption here.
1192 *
1193 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1194 */
1195 ENTRY(paranoid_exit)
1196 UNWIND_HINT_REGS
1197 DISABLE_INTERRUPTS(CLBR_ANY)
1198 TRACE_IRQS_OFF_DEBUG
1199 testl %ebx, %ebx /* swapgs needed? */
1200 jnz .Lparanoid_exit_no_swapgs
1201 TRACE_IRQS_IRETQ
1202 /* Always restore stashed CR3 value (see paranoid_entry) */
1203 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1204 SWAPGS_UNSAFE_STACK
1205 jmp .Lparanoid_exit_restore
1206 .Lparanoid_exit_no_swapgs:
1207 TRACE_IRQS_IRETQ_DEBUG
1208 /* Always restore stashed CR3 value (see paranoid_entry) */
1209 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1210 .Lparanoid_exit_restore:
1211 jmp restore_regs_and_return_to_kernel
1212 END(paranoid_exit)
1213
1214 /*
1215 * Save all registers in pt_regs, and switch GS if needed.
1216 */
1217 ENTRY(error_entry)
1218 UNWIND_HINT_FUNC
1219 cld
1220 PUSH_AND_CLEAR_REGS save_ret=1
1221 ENCODE_FRAME_POINTER 8
1222 testb $3, CS+8(%rsp)
1223 jz .Lerror_kernelspace
1224
1225 /*
1226 * We entered from user mode or we're pretending to have entered
1227 * from user mode due to an IRET fault.
1228 */
1229 SWAPGS
1230 /* We have user CR3. Change to kernel CR3. */
1231 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1232
1233 .Lerror_entry_from_usermode_after_swapgs:
1234 /* Put us onto the real thread stack. */
1235 popq %r12 /* save return addr in %12 */
1236 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1237 call sync_regs
1238 movq %rax, %rsp /* switch stack */
1239 ENCODE_FRAME_POINTER
1240 pushq %r12
1241
1242 /*
1243 * We need to tell lockdep that IRQs are off. We can't do this until
1244 * we fix gsbase, and we should do it before enter_from_user_mode
1245 * (which can take locks).
1246 */
1247 TRACE_IRQS_OFF
1248 CALL_enter_from_user_mode
1249 ret
1250
1251 .Lerror_entry_done:
1252 TRACE_IRQS_OFF
1253 ret
1254
1255 /*
1256 * There are two places in the kernel that can potentially fault with
1257 * usergs. Handle them here. B stepping K8s sometimes report a
1258 * truncated RIP for IRET exceptions returning to compat mode. Check
1259 * for these here too.
1260 */
1261 .Lerror_kernelspace:
1262 leaq native_irq_return_iret(%rip), %rcx
1263 cmpq %rcx, RIP+8(%rsp)
1264 je .Lerror_bad_iret
1265 movl %ecx, %eax /* zero extend */
1266 cmpq %rax, RIP+8(%rsp)
1267 je .Lbstep_iret
1268 cmpq $.Lgs_change, RIP+8(%rsp)
1269 jne .Lerror_entry_done
1270
1271 /*
1272 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1273 * gsbase and proceed. We'll fix up the exception and land in
1274 * .Lgs_change's error handler with kernel gsbase.
1275 */
1276 SWAPGS
1277 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1278 jmp .Lerror_entry_done
1279
1280 .Lbstep_iret:
1281 /* Fix truncated RIP */
1282 movq %rcx, RIP+8(%rsp)
1283 /* fall through */
1284
1285 .Lerror_bad_iret:
1286 /*
1287 * We came from an IRET to user mode, so we have user
1288 * gsbase and CR3. Switch to kernel gsbase and CR3:
1289 */
1290 SWAPGS
1291 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1292
1293 /*
1294 * Pretend that the exception came from user mode: set up pt_regs
1295 * as if we faulted immediately after IRET.
1296 */
1297 mov %rsp, %rdi
1298 call fixup_bad_iret
1299 mov %rax, %rsp
1300 jmp .Lerror_entry_from_usermode_after_swapgs
1301 END(error_entry)
1302
1303 ENTRY(error_exit)
1304 UNWIND_HINT_REGS
1305 DISABLE_INTERRUPTS(CLBR_ANY)
1306 TRACE_IRQS_OFF
1307 testb $3, CS(%rsp)
1308 jz retint_kernel
1309 jmp retint_user
1310 END(error_exit)
1311
1312 /*
1313 * Runs on exception stack. Xen PV does not go through this path at all,
1314 * so we can use real assembly here.
1315 *
1316 * Registers:
1317 * %r14: Used to save/restore the CR3 of the interrupted context
1318 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1319 */
1320 ENTRY(nmi)
1321 UNWIND_HINT_IRET_REGS
1322
1323 /*
1324 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1325 * the iretq it performs will take us out of NMI context.
1326 * This means that we can have nested NMIs where the next
1327 * NMI is using the top of the stack of the previous NMI. We
1328 * can't let it execute because the nested NMI will corrupt the
1329 * stack of the previous NMI. NMI handlers are not re-entrant
1330 * anyway.
1331 *
1332 * To handle this case we do the following:
1333 * Check the a special location on the stack that contains
1334 * a variable that is set when NMIs are executing.
1335 * The interrupted task's stack is also checked to see if it
1336 * is an NMI stack.
1337 * If the variable is not set and the stack is not the NMI
1338 * stack then:
1339 * o Set the special variable on the stack
1340 * o Copy the interrupt frame into an "outermost" location on the
1341 * stack
1342 * o Copy the interrupt frame into an "iret" location on the stack
1343 * o Continue processing the NMI
1344 * If the variable is set or the previous stack is the NMI stack:
1345 * o Modify the "iret" location to jump to the repeat_nmi
1346 * o return back to the first NMI
1347 *
1348 * Now on exit of the first NMI, we first clear the stack variable
1349 * The NMI stack will tell any nested NMIs at that point that it is
1350 * nested. Then we pop the stack normally with iret, and if there was
1351 * a nested NMI that updated the copy interrupt stack frame, a
1352 * jump will be made to the repeat_nmi code that will handle the second
1353 * NMI.
1354 *
1355 * However, espfix prevents us from directly returning to userspace
1356 * with a single IRET instruction. Similarly, IRET to user mode
1357 * can fault. We therefore handle NMIs from user space like
1358 * other IST entries.
1359 */
1360
1361 ASM_CLAC
1362
1363 /* Use %rdx as our temp variable throughout */
1364 pushq %rdx
1365
1366 testb $3, CS-RIP+8(%rsp)
1367 jz .Lnmi_from_kernel
1368
1369 /*
1370 * NMI from user mode. We need to run on the thread stack, but we
1371 * can't go through the normal entry paths: NMIs are masked, and
1372 * we don't want to enable interrupts, because then we'll end
1373 * up in an awkward situation in which IRQs are on but NMIs
1374 * are off.
1375 *
1376 * We also must not push anything to the stack before switching
1377 * stacks lest we corrupt the "NMI executing" variable.
1378 */
1379
1380 swapgs
1381 cld
1382 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1383 movq %rsp, %rdx
1384 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1385 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1386 pushq 5*8(%rdx) /* pt_regs->ss */
1387 pushq 4*8(%rdx) /* pt_regs->rsp */
1388 pushq 3*8(%rdx) /* pt_regs->flags */
1389 pushq 2*8(%rdx) /* pt_regs->cs */
1390 pushq 1*8(%rdx) /* pt_regs->rip */
1391 UNWIND_HINT_IRET_REGS
1392 pushq $-1 /* pt_regs->orig_ax */
1393 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1394 ENCODE_FRAME_POINTER
1395
1396 /*
1397 * At this point we no longer need to worry about stack damage
1398 * due to nesting -- we're on the normal thread stack and we're
1399 * done with the NMI stack.
1400 */
1401
1402 movq %rsp, %rdi
1403 movq $-1, %rsi
1404 call do_nmi
1405
1406 /*
1407 * Return back to user mode. We must *not* do the normal exit
1408 * work, because we don't want to enable interrupts.
1409 */
1410 jmp swapgs_restore_regs_and_return_to_usermode
1411
1412 .Lnmi_from_kernel:
1413 /*
1414 * Here's what our stack frame will look like:
1415 * +---------------------------------------------------------+
1416 * | original SS |
1417 * | original Return RSP |
1418 * | original RFLAGS |
1419 * | original CS |
1420 * | original RIP |
1421 * +---------------------------------------------------------+
1422 * | temp storage for rdx |
1423 * +---------------------------------------------------------+
1424 * | "NMI executing" variable |
1425 * +---------------------------------------------------------+
1426 * | iret SS } Copied from "outermost" frame |
1427 * | iret Return RSP } on each loop iteration; overwritten |
1428 * | iret RFLAGS } by a nested NMI to force another |
1429 * | iret CS } iteration if needed. |
1430 * | iret RIP } |
1431 * +---------------------------------------------------------+
1432 * | outermost SS } initialized in first_nmi; |
1433 * | outermost Return RSP } will not be changed before |
1434 * | outermost RFLAGS } NMI processing is done. |
1435 * | outermost CS } Copied to "iret" frame on each |
1436 * | outermost RIP } iteration. |
1437 * +---------------------------------------------------------+
1438 * | pt_regs |
1439 * +---------------------------------------------------------+
1440 *
1441 * The "original" frame is used by hardware. Before re-enabling
1442 * NMIs, we need to be done with it, and we need to leave enough
1443 * space for the asm code here.
1444 *
1445 * We return by executing IRET while RSP points to the "iret" frame.
1446 * That will either return for real or it will loop back into NMI
1447 * processing.
1448 *
1449 * The "outermost" frame is copied to the "iret" frame on each
1450 * iteration of the loop, so each iteration starts with the "iret"
1451 * frame pointing to the final return target.
1452 */
1453
1454 /*
1455 * Determine whether we're a nested NMI.
1456 *
1457 * If we interrupted kernel code between repeat_nmi and
1458 * end_repeat_nmi, then we are a nested NMI. We must not
1459 * modify the "iret" frame because it's being written by
1460 * the outer NMI. That's okay; the outer NMI handler is
1461 * about to about to call do_nmi anyway, so we can just
1462 * resume the outer NMI.
1463 */
1464
1465 movq $repeat_nmi, %rdx
1466 cmpq 8(%rsp), %rdx
1467 ja 1f
1468 movq $end_repeat_nmi, %rdx
1469 cmpq 8(%rsp), %rdx
1470 ja nested_nmi_out
1471 1:
1472
1473 /*
1474 * Now check "NMI executing". If it's set, then we're nested.
1475 * This will not detect if we interrupted an outer NMI just
1476 * before IRET.
1477 */
1478 cmpl $1, -8(%rsp)
1479 je nested_nmi
1480
1481 /*
1482 * Now test if the previous stack was an NMI stack. This covers
1483 * the case where we interrupt an outer NMI after it clears
1484 * "NMI executing" but before IRET. We need to be careful, though:
1485 * there is one case in which RSP could point to the NMI stack
1486 * despite there being no NMI active: naughty userspace controls
1487 * RSP at the very beginning of the SYSCALL targets. We can
1488 * pull a fast one on naughty userspace, though: we program
1489 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1490 * if it controls the kernel's RSP. We set DF before we clear
1491 * "NMI executing".
1492 */
1493 lea 6*8(%rsp), %rdx
1494 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1495 cmpq %rdx, 4*8(%rsp)
1496 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1497 ja first_nmi
1498
1499 subq $EXCEPTION_STKSZ, %rdx
1500 cmpq %rdx, 4*8(%rsp)
1501 /* If it is below the NMI stack, it is a normal NMI */
1502 jb first_nmi
1503
1504 /* Ah, it is within the NMI stack. */
1505
1506 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1507 jz first_nmi /* RSP was user controlled. */
1508
1509 /* This is a nested NMI. */
1510
1511 nested_nmi:
1512 /*
1513 * Modify the "iret" frame to point to repeat_nmi, forcing another
1514 * iteration of NMI handling.
1515 */
1516 subq $8, %rsp
1517 leaq -10*8(%rsp), %rdx
1518 pushq $__KERNEL_DS
1519 pushq %rdx
1520 pushfq
1521 pushq $__KERNEL_CS
1522 pushq $repeat_nmi
1523
1524 /* Put stack back */
1525 addq $(6*8), %rsp
1526
1527 nested_nmi_out:
1528 popq %rdx
1529
1530 /* We are returning to kernel mode, so this cannot result in a fault. */
1531 iretq
1532
1533 first_nmi:
1534 /* Restore rdx. */
1535 movq (%rsp), %rdx
1536
1537 /* Make room for "NMI executing". */
1538 pushq $0
1539
1540 /* Leave room for the "iret" frame */
1541 subq $(5*8), %rsp
1542
1543 /* Copy the "original" frame to the "outermost" frame */
1544 .rept 5
1545 pushq 11*8(%rsp)
1546 .endr
1547 UNWIND_HINT_IRET_REGS
1548
1549 /* Everything up to here is safe from nested NMIs */
1550
1551 #ifdef CONFIG_DEBUG_ENTRY
1552 /*
1553 * For ease of testing, unmask NMIs right away. Disabled by
1554 * default because IRET is very expensive.
1555 */
1556 pushq $0 /* SS */
1557 pushq %rsp /* RSP (minus 8 because of the previous push) */
1558 addq $8, (%rsp) /* Fix up RSP */
1559 pushfq /* RFLAGS */
1560 pushq $__KERNEL_CS /* CS */
1561 pushq $1f /* RIP */
1562 iretq /* continues at repeat_nmi below */
1563 UNWIND_HINT_IRET_REGS
1564 1:
1565 #endif
1566
1567 repeat_nmi:
1568 /*
1569 * If there was a nested NMI, the first NMI's iret will return
1570 * here. But NMIs are still enabled and we can take another
1571 * nested NMI. The nested NMI checks the interrupted RIP to see
1572 * if it is between repeat_nmi and end_repeat_nmi, and if so
1573 * it will just return, as we are about to repeat an NMI anyway.
1574 * This makes it safe to copy to the stack frame that a nested
1575 * NMI will update.
1576 *
1577 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1578 * we're repeating an NMI, gsbase has the same value that it had on
1579 * the first iteration. paranoid_entry will load the kernel
1580 * gsbase if needed before we call do_nmi. "NMI executing"
1581 * is zero.
1582 */
1583 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1584
1585 /*
1586 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1587 * here must not modify the "iret" frame while we're writing to
1588 * it or it will end up containing garbage.
1589 */
1590 addq $(10*8), %rsp
1591 .rept 5
1592 pushq -6*8(%rsp)
1593 .endr
1594 subq $(5*8), %rsp
1595 end_repeat_nmi:
1596
1597 /*
1598 * Everything below this point can be preempted by a nested NMI.
1599 * If this happens, then the inner NMI will change the "iret"
1600 * frame to point back to repeat_nmi.
1601 */
1602 pushq $-1 /* ORIG_RAX: no syscall to restart */
1603
1604 /*
1605 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1606 * as we should not be calling schedule in NMI context.
1607 * Even with normal interrupts enabled. An NMI should not be
1608 * setting NEED_RESCHED or anything that normal interrupts and
1609 * exceptions might do.
1610 */
1611 call paranoid_entry
1612 UNWIND_HINT_REGS
1613
1614 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1615 movq %rsp, %rdi
1616 movq $-1, %rsi
1617 call do_nmi
1618
1619 /* Always restore stashed CR3 value (see paranoid_entry) */
1620 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1621
1622 testl %ebx, %ebx /* swapgs needed? */
1623 jnz nmi_restore
1624 nmi_swapgs:
1625 SWAPGS_UNSAFE_STACK
1626 nmi_restore:
1627 POP_REGS
1628
1629 /*
1630 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1631 * at the "iret" frame.
1632 */
1633 addq $6*8, %rsp
1634
1635 /*
1636 * Clear "NMI executing". Set DF first so that we can easily
1637 * distinguish the remaining code between here and IRET from
1638 * the SYSCALL entry and exit paths.
1639 *
1640 * We arguably should just inspect RIP instead, but I (Andy) wrote
1641 * this code when I had the misapprehension that Xen PV supported
1642 * NMIs, and Xen PV would break that approach.
1643 */
1644 std
1645 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1646
1647 /*
1648 * iretq reads the "iret" frame and exits the NMI stack in a
1649 * single instruction. We are returning to kernel mode, so this
1650 * cannot result in a fault. Similarly, we don't need to worry
1651 * about espfix64 on the way back to kernel mode.
1652 */
1653 iretq
1654 END(nmi)
1655
1656 ENTRY(ignore_sysret)
1657 UNWIND_HINT_EMPTY
1658 mov $-ENOSYS, %eax
1659 sysret
1660 END(ignore_sysret)
1661
1662 ENTRY(rewind_stack_do_exit)
1663 UNWIND_HINT_FUNC
1664 /* Prevent any naive code from trying to unwind to our caller. */
1665 xorl %ebp, %ebp
1666
1667 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1668 leaq -PTREGS_SIZE(%rax), %rsp
1669 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1670
1671 call do_exit
1672 END(rewind_stack_do_exit)