]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/entry/entry_64.S
x86/ldt: Make the LDT mapping RO
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <linux/err.h>
41
42 #include "calling.h"
43
44 .code64
45 .section .entry.text, "ax"
46
47 #ifdef CONFIG_PARAVIRT
48 ENTRY(native_usergs_sysret64)
49 UNWIND_HINT_EMPTY
50 swapgs
51 sysretq
52 END(native_usergs_sysret64)
53 #endif /* CONFIG_PARAVIRT */
54
55 .macro TRACE_IRQS_IRETQ
56 #ifdef CONFIG_TRACE_IRQFLAGS
57 bt $9, EFLAGS(%rsp) /* interrupts off? */
58 jnc 1f
59 TRACE_IRQS_ON
60 1:
61 #endif
62 .endm
63
64 /*
65 * When dynamic function tracer is enabled it will add a breakpoint
66 * to all locations that it is about to modify, sync CPUs, update
67 * all the code, sync CPUs, then remove the breakpoints. In this time
68 * if lockdep is enabled, it might jump back into the debug handler
69 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
70 *
71 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
72 * make sure the stack pointer does not get reset back to the top
73 * of the debug stack, and instead just reuses the current stack.
74 */
75 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
76
77 .macro TRACE_IRQS_OFF_DEBUG
78 call debug_stack_set_zero
79 TRACE_IRQS_OFF
80 call debug_stack_reset
81 .endm
82
83 .macro TRACE_IRQS_ON_DEBUG
84 call debug_stack_set_zero
85 TRACE_IRQS_ON
86 call debug_stack_reset
87 .endm
88
89 .macro TRACE_IRQS_IRETQ_DEBUG
90 bt $9, EFLAGS(%rsp) /* interrupts off? */
91 jnc 1f
92 TRACE_IRQS_ON_DEBUG
93 1:
94 .endm
95
96 #else
97 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
98 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
99 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
100 #endif
101
102 /*
103 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
104 *
105 * This is the only entry point used for 64-bit system calls. The
106 * hardware interface is reasonably well designed and the register to
107 * argument mapping Linux uses fits well with the registers that are
108 * available when SYSCALL is used.
109 *
110 * SYSCALL instructions can be found inlined in libc implementations as
111 * well as some other programs and libraries. There are also a handful
112 * of SYSCALL instructions in the vDSO used, for example, as a
113 * clock_gettimeofday fallback.
114 *
115 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
116 * then loads new ss, cs, and rip from previously programmed MSRs.
117 * rflags gets masked by a value from another MSR (so CLD and CLAC
118 * are not needed). SYSCALL does not save anything on the stack
119 * and does not change rsp.
120 *
121 * Registers on entry:
122 * rax system call number
123 * rcx return address
124 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
125 * rdi arg0
126 * rsi arg1
127 * rdx arg2
128 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
129 * r8 arg4
130 * r9 arg5
131 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
132 *
133 * Only called from user space.
134 *
135 * When user can change pt_regs->foo always force IRET. That is because
136 * it deals with uncanonical addresses better. SYSRET has trouble
137 * with them due to bugs in both AMD and Intel CPUs.
138 */
139
140 .pushsection .entry_trampoline, "ax"
141
142 /*
143 * The code in here gets remapped into cpu_entry_area's trampoline. This means
144 * that the assembler and linker have the wrong idea as to where this code
145 * lives (and, in fact, it's mapped more than once, so it's not even at a
146 * fixed address). So we can't reference any symbols outside the entry
147 * trampoline and expect it to work.
148 *
149 * Instead, we carefully abuse %rip-relative addressing.
150 * _entry_trampoline(%rip) refers to the start of the remapped) entry
151 * trampoline. We can thus find cpu_entry_area with this macro:
152 */
153
154 #define CPU_ENTRY_AREA \
155 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
156
157 /* The top word of the SYSENTER stack is hot and is usable as scratch space. */
158 #define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
159 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
160
161 ENTRY(entry_SYSCALL_64_trampoline)
162 UNWIND_HINT_EMPTY
163 swapgs
164
165 /* Stash the user RSP. */
166 movq %rsp, RSP_SCRATCH
167
168 /* Note: using %rsp as a scratch reg. */
169 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
170
171 /* Load the top of the task stack into RSP */
172 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
173
174 /* Start building the simulated IRET frame. */
175 pushq $__USER_DS /* pt_regs->ss */
176 pushq RSP_SCRATCH /* pt_regs->sp */
177 pushq %r11 /* pt_regs->flags */
178 pushq $__USER_CS /* pt_regs->cs */
179 pushq %rcx /* pt_regs->ip */
180
181 /*
182 * x86 lacks a near absolute jump, and we can't jump to the real
183 * entry text with a relative jump. We could push the target
184 * address and then use retq, but this destroys the pipeline on
185 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
186 * spill RDI and restore it in a second-stage trampoline.
187 */
188 pushq %rdi
189 movq $entry_SYSCALL_64_stage2, %rdi
190 jmp *%rdi
191 END(entry_SYSCALL_64_trampoline)
192
193 .popsection
194
195 ENTRY(entry_SYSCALL_64_stage2)
196 UNWIND_HINT_EMPTY
197 popq %rdi
198 jmp entry_SYSCALL_64_after_hwframe
199 END(entry_SYSCALL_64_stage2)
200
201 ENTRY(entry_SYSCALL_64)
202 UNWIND_HINT_EMPTY
203 /*
204 * Interrupts are off on entry.
205 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
206 * it is too small to ever cause noticeable irq latency.
207 */
208
209 swapgs
210 /*
211 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
212 * is not required to switch CR3.
213 */
214 movq %rsp, PER_CPU_VAR(rsp_scratch)
215 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
216
217 TRACE_IRQS_OFF
218
219 /* Construct struct pt_regs on stack */
220 pushq $__USER_DS /* pt_regs->ss */
221 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
222 pushq %r11 /* pt_regs->flags */
223 pushq $__USER_CS /* pt_regs->cs */
224 pushq %rcx /* pt_regs->ip */
225 GLOBAL(entry_SYSCALL_64_after_hwframe)
226 pushq %rax /* pt_regs->orig_ax */
227 pushq %rdi /* pt_regs->di */
228 pushq %rsi /* pt_regs->si */
229 pushq %rdx /* pt_regs->dx */
230 pushq %rcx /* pt_regs->cx */
231 pushq $-ENOSYS /* pt_regs->ax */
232 pushq %r8 /* pt_regs->r8 */
233 pushq %r9 /* pt_regs->r9 */
234 pushq %r10 /* pt_regs->r10 */
235 pushq %r11 /* pt_regs->r11 */
236 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
237 UNWIND_HINT_REGS extra=0
238
239 /*
240 * If we need to do entry work or if we guess we'll need to do
241 * exit work, go straight to the slow path.
242 */
243 movq PER_CPU_VAR(current_task), %r11
244 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
245 jnz entry_SYSCALL64_slow_path
246
247 entry_SYSCALL_64_fastpath:
248 /*
249 * Easy case: enable interrupts and issue the syscall. If the syscall
250 * needs pt_regs, we'll call a stub that disables interrupts again
251 * and jumps to the slow path.
252 */
253 TRACE_IRQS_ON
254 ENABLE_INTERRUPTS(CLBR_NONE)
255 #if __SYSCALL_MASK == ~0
256 cmpq $__NR_syscall_max, %rax
257 #else
258 andl $__SYSCALL_MASK, %eax
259 cmpl $__NR_syscall_max, %eax
260 #endif
261 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
262 movq %r10, %rcx
263
264 /*
265 * This call instruction is handled specially in stub_ptregs_64.
266 * It might end up jumping to the slow path. If it jumps, RAX
267 * and all argument registers are clobbered.
268 */
269 call *sys_call_table(, %rax, 8)
270 .Lentry_SYSCALL_64_after_fastpath_call:
271
272 movq %rax, RAX(%rsp)
273 1:
274
275 /*
276 * If we get here, then we know that pt_regs is clean for SYSRET64.
277 * If we see that no exit work is required (which we are required
278 * to check with IRQs off), then we can go straight to SYSRET64.
279 */
280 DISABLE_INTERRUPTS(CLBR_ANY)
281 TRACE_IRQS_OFF
282 movq PER_CPU_VAR(current_task), %r11
283 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
284 jnz 1f
285
286 LOCKDEP_SYS_EXIT
287 TRACE_IRQS_ON /* user mode is traced as IRQs on */
288 movq RIP(%rsp), %rcx
289 movq EFLAGS(%rsp), %r11
290 addq $6*8, %rsp /* skip extra regs -- they were preserved */
291 UNWIND_HINT_EMPTY
292 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
293
294 1:
295 /*
296 * The fast path looked good when we started, but something changed
297 * along the way and we need to switch to the slow path. Calling
298 * raise(3) will trigger this, for example. IRQs are off.
299 */
300 TRACE_IRQS_ON
301 ENABLE_INTERRUPTS(CLBR_ANY)
302 SAVE_EXTRA_REGS
303 movq %rsp, %rdi
304 call syscall_return_slowpath /* returns with IRQs disabled */
305 jmp return_from_SYSCALL_64
306
307 entry_SYSCALL64_slow_path:
308 /* IRQs are off. */
309 SAVE_EXTRA_REGS
310 movq %rsp, %rdi
311 call do_syscall_64 /* returns with IRQs disabled */
312
313 return_from_SYSCALL_64:
314 TRACE_IRQS_IRETQ /* we're about to change IF */
315
316 /*
317 * Try to use SYSRET instead of IRET if we're returning to
318 * a completely clean 64-bit userspace context. If we're not,
319 * go to the slow exit path.
320 */
321 movq RCX(%rsp), %rcx
322 movq RIP(%rsp), %r11
323
324 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
325 jne swapgs_restore_regs_and_return_to_usermode
326
327 /*
328 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
329 * in kernel space. This essentially lets the user take over
330 * the kernel, since userspace controls RSP.
331 *
332 * If width of "canonical tail" ever becomes variable, this will need
333 * to be updated to remain correct on both old and new CPUs.
334 *
335 * Change top bits to match most significant bit (47th or 56th bit
336 * depending on paging mode) in the address.
337 */
338 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
339 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
340
341 /* If this changed %rcx, it was not canonical */
342 cmpq %rcx, %r11
343 jne swapgs_restore_regs_and_return_to_usermode
344
345 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
346 jne swapgs_restore_regs_and_return_to_usermode
347
348 movq R11(%rsp), %r11
349 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
350 jne swapgs_restore_regs_and_return_to_usermode
351
352 /*
353 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
354 * restore RF properly. If the slowpath sets it for whatever reason, we
355 * need to restore it correctly.
356 *
357 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
358 * trap from userspace immediately after SYSRET. This would cause an
359 * infinite loop whenever #DB happens with register state that satisfies
360 * the opportunistic SYSRET conditions. For example, single-stepping
361 * this user code:
362 *
363 * movq $stuck_here, %rcx
364 * pushfq
365 * popq %r11
366 * stuck_here:
367 *
368 * would never get past 'stuck_here'.
369 */
370 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
371 jnz swapgs_restore_regs_and_return_to_usermode
372
373 /* nothing to check for RSP */
374
375 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
376 jne swapgs_restore_regs_and_return_to_usermode
377
378 /*
379 * We win! This label is here just for ease of understanding
380 * perf profiles. Nothing jumps here.
381 */
382 syscall_return_via_sysret:
383 /* rcx and r11 are already restored (see code above) */
384 UNWIND_HINT_EMPTY
385 POP_EXTRA_REGS
386 .Lpop_c_regs_except_rcx_r11_and_sysret:
387 popq %rsi /* skip r11 */
388 popq %r10
389 popq %r9
390 popq %r8
391 popq %rax
392 popq %rsi /* skip rcx */
393 popq %rdx
394 popq %rsi
395
396 /*
397 * Now all regs are restored except RSP and RDI.
398 * Save old stack pointer and switch to trampoline stack.
399 */
400 movq %rsp, %rdi
401 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
402
403 pushq RSP-RDI(%rdi) /* RSP */
404 pushq (%rdi) /* RDI */
405
406 /*
407 * We are on the trampoline stack. All regs except RDI are live.
408 * We can do future final exit work right here.
409 */
410 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
411
412 popq %rdi
413 popq %rsp
414 USERGS_SYSRET64
415 END(entry_SYSCALL_64)
416
417 ENTRY(stub_ptregs_64)
418 /*
419 * Syscalls marked as needing ptregs land here.
420 * If we are on the fast path, we need to save the extra regs,
421 * which we achieve by trying again on the slow path. If we are on
422 * the slow path, the extra regs are already saved.
423 *
424 * RAX stores a pointer to the C function implementing the syscall.
425 * IRQs are on.
426 */
427 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
428 jne 1f
429
430 /*
431 * Called from fast path -- disable IRQs again, pop return address
432 * and jump to slow path
433 */
434 DISABLE_INTERRUPTS(CLBR_ANY)
435 TRACE_IRQS_OFF
436 popq %rax
437 UNWIND_HINT_REGS extra=0
438 jmp entry_SYSCALL64_slow_path
439
440 1:
441 jmp *%rax /* Called from C */
442 END(stub_ptregs_64)
443
444 .macro ptregs_stub func
445 ENTRY(ptregs_\func)
446 UNWIND_HINT_FUNC
447 leaq \func(%rip), %rax
448 jmp stub_ptregs_64
449 END(ptregs_\func)
450 .endm
451
452 /* Instantiate ptregs_stub for each ptregs-using syscall */
453 #define __SYSCALL_64_QUAL_(sym)
454 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
455 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
456 #include <asm/syscalls_64.h>
457
458 /*
459 * %rdi: prev task
460 * %rsi: next task
461 */
462 ENTRY(__switch_to_asm)
463 UNWIND_HINT_FUNC
464 /*
465 * Save callee-saved registers
466 * This must match the order in inactive_task_frame
467 */
468 pushq %rbp
469 pushq %rbx
470 pushq %r12
471 pushq %r13
472 pushq %r14
473 pushq %r15
474
475 /* switch stack */
476 movq %rsp, TASK_threadsp(%rdi)
477 movq TASK_threadsp(%rsi), %rsp
478
479 #ifdef CONFIG_CC_STACKPROTECTOR
480 movq TASK_stack_canary(%rsi), %rbx
481 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
482 #endif
483
484 /* restore callee-saved registers */
485 popq %r15
486 popq %r14
487 popq %r13
488 popq %r12
489 popq %rbx
490 popq %rbp
491
492 jmp __switch_to
493 END(__switch_to_asm)
494
495 /*
496 * A newly forked process directly context switches into this address.
497 *
498 * rax: prev task we switched from
499 * rbx: kernel thread func (NULL for user thread)
500 * r12: kernel thread arg
501 */
502 ENTRY(ret_from_fork)
503 UNWIND_HINT_EMPTY
504 movq %rax, %rdi
505 call schedule_tail /* rdi: 'prev' task parameter */
506
507 testq %rbx, %rbx /* from kernel_thread? */
508 jnz 1f /* kernel threads are uncommon */
509
510 2:
511 UNWIND_HINT_REGS
512 movq %rsp, %rdi
513 call syscall_return_slowpath /* returns with IRQs disabled */
514 TRACE_IRQS_ON /* user mode is traced as IRQS on */
515 jmp swapgs_restore_regs_and_return_to_usermode
516
517 1:
518 /* kernel thread */
519 movq %r12, %rdi
520 call *%rbx
521 /*
522 * A kernel thread is allowed to return here after successfully
523 * calling do_execve(). Exit to userspace to complete the execve()
524 * syscall.
525 */
526 movq $0, RAX(%rsp)
527 jmp 2b
528 END(ret_from_fork)
529
530 /*
531 * Build the entry stubs with some assembler magic.
532 * We pack 1 stub into every 8-byte block.
533 */
534 .align 8
535 ENTRY(irq_entries_start)
536 vector=FIRST_EXTERNAL_VECTOR
537 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
538 UNWIND_HINT_IRET_REGS
539 pushq $(~vector+0x80) /* Note: always in signed byte range */
540 jmp common_interrupt
541 .align 8
542 vector=vector+1
543 .endr
544 END(irq_entries_start)
545
546 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
547 #ifdef CONFIG_DEBUG_ENTRY
548 pushq %rax
549 SAVE_FLAGS(CLBR_RAX)
550 testl $X86_EFLAGS_IF, %eax
551 jz .Lokay_\@
552 ud2
553 .Lokay_\@:
554 popq %rax
555 #endif
556 .endm
557
558 /*
559 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
560 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
561 * Requires kernel GSBASE.
562 *
563 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
564 */
565 .macro ENTER_IRQ_STACK regs=1 old_rsp
566 DEBUG_ENTRY_ASSERT_IRQS_OFF
567 movq %rsp, \old_rsp
568
569 .if \regs
570 UNWIND_HINT_REGS base=\old_rsp
571 .endif
572
573 incl PER_CPU_VAR(irq_count)
574 jnz .Lirq_stack_push_old_rsp_\@
575
576 /*
577 * Right now, if we just incremented irq_count to zero, we've
578 * claimed the IRQ stack but we haven't switched to it yet.
579 *
580 * If anything is added that can interrupt us here without using IST,
581 * it must be *extremely* careful to limit its stack usage. This
582 * could include kprobes and a hypothetical future IST-less #DB
583 * handler.
584 *
585 * The OOPS unwinder relies on the word at the top of the IRQ
586 * stack linking back to the previous RSP for the entire time we're
587 * on the IRQ stack. For this to work reliably, we need to write
588 * it before we actually move ourselves to the IRQ stack.
589 */
590
591 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
592 movq PER_CPU_VAR(irq_stack_ptr), %rsp
593
594 #ifdef CONFIG_DEBUG_ENTRY
595 /*
596 * If the first movq above becomes wrong due to IRQ stack layout
597 * changes, the only way we'll notice is if we try to unwind right
598 * here. Assert that we set up the stack right to catch this type
599 * of bug quickly.
600 */
601 cmpq -8(%rsp), \old_rsp
602 je .Lirq_stack_okay\@
603 ud2
604 .Lirq_stack_okay\@:
605 #endif
606
607 .Lirq_stack_push_old_rsp_\@:
608 pushq \old_rsp
609
610 .if \regs
611 UNWIND_HINT_REGS indirect=1
612 .endif
613 .endm
614
615 /*
616 * Undoes ENTER_IRQ_STACK.
617 */
618 .macro LEAVE_IRQ_STACK regs=1
619 DEBUG_ENTRY_ASSERT_IRQS_OFF
620 /* We need to be off the IRQ stack before decrementing irq_count. */
621 popq %rsp
622
623 .if \regs
624 UNWIND_HINT_REGS
625 .endif
626
627 /*
628 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
629 * the irq stack but we're not on it.
630 */
631
632 decl PER_CPU_VAR(irq_count)
633 .endm
634
635 /*
636 * Interrupt entry/exit.
637 *
638 * Interrupt entry points save only callee clobbered registers in fast path.
639 *
640 * Entry runs with interrupts off.
641 */
642
643 /* 0(%rsp): ~(interrupt number) */
644 .macro interrupt func
645 cld
646
647 testb $3, CS-ORIG_RAX(%rsp)
648 jz 1f
649 SWAPGS
650 call switch_to_thread_stack
651 1:
652
653 ALLOC_PT_GPREGS_ON_STACK
654 SAVE_C_REGS
655 SAVE_EXTRA_REGS
656 ENCODE_FRAME_POINTER
657
658 testb $3, CS(%rsp)
659 jz 1f
660
661 /*
662 * IRQ from user mode.
663 *
664 * We need to tell lockdep that IRQs are off. We can't do this until
665 * we fix gsbase, and we should do it before enter_from_user_mode
666 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
667 * the simplest way to handle it is to just call it twice if
668 * we enter from user mode. There's no reason to optimize this since
669 * TRACE_IRQS_OFF is a no-op if lockdep is off.
670 */
671 TRACE_IRQS_OFF
672
673 CALL_enter_from_user_mode
674
675 1:
676 ENTER_IRQ_STACK old_rsp=%rdi
677 /* We entered an interrupt context - irqs are off: */
678 TRACE_IRQS_OFF
679
680 call \func /* rdi points to pt_regs */
681 .endm
682
683 /*
684 * The interrupt stubs push (~vector+0x80) onto the stack and
685 * then jump to common_interrupt.
686 */
687 .p2align CONFIG_X86_L1_CACHE_SHIFT
688 common_interrupt:
689 ASM_CLAC
690 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
691 interrupt do_IRQ
692 /* 0(%rsp): old RSP */
693 ret_from_intr:
694 DISABLE_INTERRUPTS(CLBR_ANY)
695 TRACE_IRQS_OFF
696
697 LEAVE_IRQ_STACK
698
699 testb $3, CS(%rsp)
700 jz retint_kernel
701
702 /* Interrupt came from user space */
703 GLOBAL(retint_user)
704 mov %rsp,%rdi
705 call prepare_exit_to_usermode
706 TRACE_IRQS_IRETQ
707
708 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
709 #ifdef CONFIG_DEBUG_ENTRY
710 /* Assert that pt_regs indicates user mode. */
711 testb $3, CS(%rsp)
712 jnz 1f
713 ud2
714 1:
715 #endif
716 POP_EXTRA_REGS
717 popq %r11
718 popq %r10
719 popq %r9
720 popq %r8
721 popq %rax
722 popq %rcx
723 popq %rdx
724 popq %rsi
725
726 /*
727 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
728 * Save old stack pointer and switch to trampoline stack.
729 */
730 movq %rsp, %rdi
731 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
732
733 /* Copy the IRET frame to the trampoline stack. */
734 pushq 6*8(%rdi) /* SS */
735 pushq 5*8(%rdi) /* RSP */
736 pushq 4*8(%rdi) /* EFLAGS */
737 pushq 3*8(%rdi) /* CS */
738 pushq 2*8(%rdi) /* RIP */
739
740 /* Push user RDI on the trampoline stack. */
741 pushq (%rdi)
742
743 /*
744 * We are on the trampoline stack. All regs except RDI are live.
745 * We can do future final exit work right here.
746 */
747
748 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
749
750 /* Restore RDI. */
751 popq %rdi
752 SWAPGS
753 INTERRUPT_RETURN
754
755
756 /* Returning to kernel space */
757 retint_kernel:
758 #ifdef CONFIG_PREEMPT
759 /* Interrupts are off */
760 /* Check if we need preemption */
761 bt $9, EFLAGS(%rsp) /* were interrupts off? */
762 jnc 1f
763 0: cmpl $0, PER_CPU_VAR(__preempt_count)
764 jnz 1f
765 call preempt_schedule_irq
766 jmp 0b
767 1:
768 #endif
769 /*
770 * The iretq could re-enable interrupts:
771 */
772 TRACE_IRQS_IRETQ
773
774 GLOBAL(restore_regs_and_return_to_kernel)
775 #ifdef CONFIG_DEBUG_ENTRY
776 /* Assert that pt_regs indicates kernel mode. */
777 testb $3, CS(%rsp)
778 jz 1f
779 ud2
780 1:
781 #endif
782 POP_EXTRA_REGS
783 POP_C_REGS
784 addq $8, %rsp /* skip regs->orig_ax */
785 INTERRUPT_RETURN
786
787 ENTRY(native_iret)
788 UNWIND_HINT_IRET_REGS
789 /*
790 * Are we returning to a stack segment from the LDT? Note: in
791 * 64-bit mode SS:RSP on the exception stack is always valid.
792 */
793 #ifdef CONFIG_X86_ESPFIX64
794 testb $4, (SS-RIP)(%rsp)
795 jnz native_irq_return_ldt
796 #endif
797
798 .global native_irq_return_iret
799 native_irq_return_iret:
800 /*
801 * This may fault. Non-paranoid faults on return to userspace are
802 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
803 * Double-faults due to espfix64 are handled in do_double_fault.
804 * Other faults here are fatal.
805 */
806 iretq
807
808 #ifdef CONFIG_X86_ESPFIX64
809 native_irq_return_ldt:
810 /*
811 * We are running with user GSBASE. All GPRs contain their user
812 * values. We have a percpu ESPFIX stack that is eight slots
813 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
814 * of the ESPFIX stack.
815 *
816 * We clobber RAX and RDI in this code. We stash RDI on the
817 * normal stack and RAX on the ESPFIX stack.
818 *
819 * The ESPFIX stack layout we set up looks like this:
820 *
821 * --- top of ESPFIX stack ---
822 * SS
823 * RSP
824 * RFLAGS
825 * CS
826 * RIP <-- RSP points here when we're done
827 * RAX <-- espfix_waddr points here
828 * --- bottom of ESPFIX stack ---
829 */
830
831 pushq %rdi /* Stash user RDI */
832 SWAPGS /* to kernel GS */
833 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
834
835 movq PER_CPU_VAR(espfix_waddr), %rdi
836 movq %rax, (0*8)(%rdi) /* user RAX */
837 movq (1*8)(%rsp), %rax /* user RIP */
838 movq %rax, (1*8)(%rdi)
839 movq (2*8)(%rsp), %rax /* user CS */
840 movq %rax, (2*8)(%rdi)
841 movq (3*8)(%rsp), %rax /* user RFLAGS */
842 movq %rax, (3*8)(%rdi)
843 movq (5*8)(%rsp), %rax /* user SS */
844 movq %rax, (5*8)(%rdi)
845 movq (4*8)(%rsp), %rax /* user RSP */
846 movq %rax, (4*8)(%rdi)
847 /* Now RAX == RSP. */
848
849 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
850
851 /*
852 * espfix_stack[31:16] == 0. The page tables are set up such that
853 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
854 * espfix_waddr for any X. That is, there are 65536 RO aliases of
855 * the same page. Set up RSP so that RSP[31:16] contains the
856 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
857 * still points to an RO alias of the ESPFIX stack.
858 */
859 orq PER_CPU_VAR(espfix_stack), %rax
860
861 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
862 SWAPGS /* to user GS */
863 popq %rdi /* Restore user RDI */
864
865 movq %rax, %rsp
866 UNWIND_HINT_IRET_REGS offset=8
867
868 /*
869 * At this point, we cannot write to the stack any more, but we can
870 * still read.
871 */
872 popq %rax /* Restore user RAX */
873
874 /*
875 * RSP now points to an ordinary IRET frame, except that the page
876 * is read-only and RSP[31:16] are preloaded with the userspace
877 * values. We can now IRET back to userspace.
878 */
879 jmp native_irq_return_iret
880 #endif
881 END(common_interrupt)
882
883 /*
884 * APIC interrupts.
885 */
886 .macro apicinterrupt3 num sym do_sym
887 ENTRY(\sym)
888 UNWIND_HINT_IRET_REGS
889 ASM_CLAC
890 pushq $~(\num)
891 .Lcommon_\sym:
892 interrupt \do_sym
893 jmp ret_from_intr
894 END(\sym)
895 .endm
896
897 /* Make sure APIC interrupt handlers end up in the irqentry section: */
898 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
899 #define POP_SECTION_IRQENTRY .popsection
900
901 .macro apicinterrupt num sym do_sym
902 PUSH_SECTION_IRQENTRY
903 apicinterrupt3 \num \sym \do_sym
904 POP_SECTION_IRQENTRY
905 .endm
906
907 #ifdef CONFIG_SMP
908 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
909 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
910 #endif
911
912 #ifdef CONFIG_X86_UV
913 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
914 #endif
915
916 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
917 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
918
919 #ifdef CONFIG_HAVE_KVM
920 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
921 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
922 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
923 #endif
924
925 #ifdef CONFIG_X86_MCE_THRESHOLD
926 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
927 #endif
928
929 #ifdef CONFIG_X86_MCE_AMD
930 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
931 #endif
932
933 #ifdef CONFIG_X86_THERMAL_VECTOR
934 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
935 #endif
936
937 #ifdef CONFIG_SMP
938 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
939 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
940 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
941 #endif
942
943 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
944 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
945
946 #ifdef CONFIG_IRQ_WORK
947 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
948 #endif
949
950 /*
951 * Exception entry points.
952 */
953 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
954
955 /*
956 * Switch to the thread stack. This is called with the IRET frame and
957 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
958 * space has not been allocated for them.)
959 */
960 ENTRY(switch_to_thread_stack)
961 UNWIND_HINT_FUNC
962
963 pushq %rdi
964 /* Need to switch before accessing the thread stack. */
965 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
966 movq %rsp, %rdi
967 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
968 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
969
970 pushq 7*8(%rdi) /* regs->ss */
971 pushq 6*8(%rdi) /* regs->rsp */
972 pushq 5*8(%rdi) /* regs->eflags */
973 pushq 4*8(%rdi) /* regs->cs */
974 pushq 3*8(%rdi) /* regs->ip */
975 pushq 2*8(%rdi) /* regs->orig_ax */
976 pushq 8(%rdi) /* return address */
977 UNWIND_HINT_FUNC
978
979 movq (%rdi), %rdi
980 ret
981 END(switch_to_thread_stack)
982
983 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
984 ENTRY(\sym)
985 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
986
987 /* Sanity check */
988 .if \shift_ist != -1 && \paranoid == 0
989 .error "using shift_ist requires paranoid=1"
990 .endif
991
992 ASM_CLAC
993
994 .if \has_error_code == 0
995 pushq $-1 /* ORIG_RAX: no syscall to restart */
996 .endif
997
998 ALLOC_PT_GPREGS_ON_STACK
999
1000 .if \paranoid < 2
1001 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
1002 jnz .Lfrom_usermode_switch_stack_\@
1003 .endif
1004
1005 .if \paranoid
1006 call paranoid_entry
1007 .else
1008 call error_entry
1009 .endif
1010 UNWIND_HINT_REGS
1011 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1012
1013 .if \paranoid
1014 .if \shift_ist != -1
1015 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
1016 .else
1017 TRACE_IRQS_OFF
1018 .endif
1019 .endif
1020
1021 movq %rsp, %rdi /* pt_regs pointer */
1022
1023 .if \has_error_code
1024 movq ORIG_RAX(%rsp), %rsi /* get error code */
1025 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1026 .else
1027 xorl %esi, %esi /* no error code */
1028 .endif
1029
1030 .if \shift_ist != -1
1031 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1032 .endif
1033
1034 call \do_sym
1035
1036 .if \shift_ist != -1
1037 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1038 .endif
1039
1040 /* these procedures expect "no swapgs" flag in ebx */
1041 .if \paranoid
1042 jmp paranoid_exit
1043 .else
1044 jmp error_exit
1045 .endif
1046
1047 .if \paranoid < 2
1048 /*
1049 * Entry from userspace. Switch stacks and treat it
1050 * as a normal entry. This means that paranoid handlers
1051 * run in real process context if user_mode(regs).
1052 */
1053 .Lfrom_usermode_switch_stack_\@:
1054 call error_entry
1055
1056 movq %rsp, %rdi /* pt_regs pointer */
1057
1058 .if \has_error_code
1059 movq ORIG_RAX(%rsp), %rsi /* get error code */
1060 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
1061 .else
1062 xorl %esi, %esi /* no error code */
1063 .endif
1064
1065 call \do_sym
1066
1067 jmp error_exit /* %ebx: no swapgs flag */
1068 .endif
1069 END(\sym)
1070 .endm
1071
1072 idtentry divide_error do_divide_error has_error_code=0
1073 idtentry overflow do_overflow has_error_code=0
1074 idtentry bounds do_bounds has_error_code=0
1075 idtentry invalid_op do_invalid_op has_error_code=0
1076 idtentry device_not_available do_device_not_available has_error_code=0
1077 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1078 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1079 idtentry invalid_TSS do_invalid_TSS has_error_code=1
1080 idtentry segment_not_present do_segment_not_present has_error_code=1
1081 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1082 idtentry coprocessor_error do_coprocessor_error has_error_code=0
1083 idtentry alignment_check do_alignment_check has_error_code=1
1084 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1085
1086
1087 /*
1088 * Reload gs selector with exception handling
1089 * edi: new selector
1090 */
1091 ENTRY(native_load_gs_index)
1092 FRAME_BEGIN
1093 pushfq
1094 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1095 SWAPGS
1096 .Lgs_change:
1097 movl %edi, %gs
1098 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1099 SWAPGS
1100 popfq
1101 FRAME_END
1102 ret
1103 ENDPROC(native_load_gs_index)
1104 EXPORT_SYMBOL(native_load_gs_index)
1105
1106 _ASM_EXTABLE(.Lgs_change, bad_gs)
1107 .section .fixup, "ax"
1108 /* running with kernelgs */
1109 bad_gs:
1110 SWAPGS /* switch back to user gs */
1111 .macro ZAP_GS
1112 /* This can't be a string because the preprocessor needs to see it. */
1113 movl $__USER_DS, %eax
1114 movl %eax, %gs
1115 .endm
1116 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1117 xorl %eax, %eax
1118 movl %eax, %gs
1119 jmp 2b
1120 .previous
1121
1122 /* Call softirq on interrupt stack. Interrupts are off. */
1123 ENTRY(do_softirq_own_stack)
1124 pushq %rbp
1125 mov %rsp, %rbp
1126 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1127 call __do_softirq
1128 LEAVE_IRQ_STACK regs=0
1129 leaveq
1130 ret
1131 ENDPROC(do_softirq_own_stack)
1132
1133 #ifdef CONFIG_XEN
1134 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1135
1136 /*
1137 * A note on the "critical region" in our callback handler.
1138 * We want to avoid stacking callback handlers due to events occurring
1139 * during handling of the last event. To do this, we keep events disabled
1140 * until we've done all processing. HOWEVER, we must enable events before
1141 * popping the stack frame (can't be done atomically) and so it would still
1142 * be possible to get enough handler activations to overflow the stack.
1143 * Although unlikely, bugs of that kind are hard to track down, so we'd
1144 * like to avoid the possibility.
1145 * So, on entry to the handler we detect whether we interrupted an
1146 * existing activation in its critical region -- if so, we pop the current
1147 * activation and restart the handler using the previous one.
1148 */
1149 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1150
1151 /*
1152 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1153 * see the correct pointer to the pt_regs
1154 */
1155 UNWIND_HINT_FUNC
1156 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1157 UNWIND_HINT_REGS
1158
1159 ENTER_IRQ_STACK old_rsp=%r10
1160 call xen_evtchn_do_upcall
1161 LEAVE_IRQ_STACK
1162
1163 #ifndef CONFIG_PREEMPT
1164 call xen_maybe_preempt_hcall
1165 #endif
1166 jmp error_exit
1167 END(xen_do_hypervisor_callback)
1168
1169 /*
1170 * Hypervisor uses this for application faults while it executes.
1171 * We get here for two reasons:
1172 * 1. Fault while reloading DS, ES, FS or GS
1173 * 2. Fault while executing IRET
1174 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1175 * registers that could be reloaded and zeroed the others.
1176 * Category 2 we fix up by killing the current process. We cannot use the
1177 * normal Linux return path in this case because if we use the IRET hypercall
1178 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1179 * We distinguish between categories by comparing each saved segment register
1180 * with its current contents: any discrepancy means we in category 1.
1181 */
1182 ENTRY(xen_failsafe_callback)
1183 UNWIND_HINT_EMPTY
1184 movl %ds, %ecx
1185 cmpw %cx, 0x10(%rsp)
1186 jne 1f
1187 movl %es, %ecx
1188 cmpw %cx, 0x18(%rsp)
1189 jne 1f
1190 movl %fs, %ecx
1191 cmpw %cx, 0x20(%rsp)
1192 jne 1f
1193 movl %gs, %ecx
1194 cmpw %cx, 0x28(%rsp)
1195 jne 1f
1196 /* All segments match their saved values => Category 2 (Bad IRET). */
1197 movq (%rsp), %rcx
1198 movq 8(%rsp), %r11
1199 addq $0x30, %rsp
1200 pushq $0 /* RIP */
1201 UNWIND_HINT_IRET_REGS offset=8
1202 jmp general_protection
1203 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1204 movq (%rsp), %rcx
1205 movq 8(%rsp), %r11
1206 addq $0x30, %rsp
1207 UNWIND_HINT_IRET_REGS
1208 pushq $-1 /* orig_ax = -1 => not a system call */
1209 ALLOC_PT_GPREGS_ON_STACK
1210 SAVE_C_REGS
1211 SAVE_EXTRA_REGS
1212 ENCODE_FRAME_POINTER
1213 jmp error_exit
1214 END(xen_failsafe_callback)
1215
1216 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1217 xen_hvm_callback_vector xen_evtchn_do_upcall
1218
1219 #endif /* CONFIG_XEN */
1220
1221 #if IS_ENABLED(CONFIG_HYPERV)
1222 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1223 hyperv_callback_vector hyperv_vector_handler
1224 #endif /* CONFIG_HYPERV */
1225
1226 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1227 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1228 idtentry stack_segment do_stack_segment has_error_code=1
1229
1230 #ifdef CONFIG_XEN
1231 idtentry xennmi do_nmi has_error_code=0
1232 idtentry xendebug do_debug has_error_code=0
1233 idtentry xenint3 do_int3 has_error_code=0
1234 #endif
1235
1236 idtentry general_protection do_general_protection has_error_code=1
1237 idtentry page_fault do_page_fault has_error_code=1
1238
1239 #ifdef CONFIG_KVM_GUEST
1240 idtentry async_page_fault do_async_page_fault has_error_code=1
1241 #endif
1242
1243 #ifdef CONFIG_X86_MCE
1244 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1245 #endif
1246
1247 /*
1248 * Save all registers in pt_regs, and switch gs if needed.
1249 * Use slow, but surefire "are we in kernel?" check.
1250 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1251 */
1252 ENTRY(paranoid_entry)
1253 UNWIND_HINT_FUNC
1254 cld
1255 SAVE_C_REGS 8
1256 SAVE_EXTRA_REGS 8
1257 ENCODE_FRAME_POINTER 8
1258 movl $1, %ebx
1259 movl $MSR_GS_BASE, %ecx
1260 rdmsr
1261 testl %edx, %edx
1262 js 1f /* negative -> in kernel */
1263 SWAPGS
1264 xorl %ebx, %ebx
1265
1266 1:
1267 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1268
1269 ret
1270 END(paranoid_entry)
1271
1272 /*
1273 * "Paranoid" exit path from exception stack. This is invoked
1274 * only on return from non-NMI IST interrupts that came
1275 * from kernel space.
1276 *
1277 * We may be returning to very strange contexts (e.g. very early
1278 * in syscall entry), so checking for preemption here would
1279 * be complicated. Fortunately, we there's no good reason
1280 * to try to handle preemption here.
1281 *
1282 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1283 */
1284 ENTRY(paranoid_exit)
1285 UNWIND_HINT_REGS
1286 DISABLE_INTERRUPTS(CLBR_ANY)
1287 TRACE_IRQS_OFF_DEBUG
1288 testl %ebx, %ebx /* swapgs needed? */
1289 jnz .Lparanoid_exit_no_swapgs
1290 TRACE_IRQS_IRETQ
1291 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1292 SWAPGS_UNSAFE_STACK
1293 jmp .Lparanoid_exit_restore
1294 .Lparanoid_exit_no_swapgs:
1295 TRACE_IRQS_IRETQ_DEBUG
1296 .Lparanoid_exit_restore:
1297 jmp restore_regs_and_return_to_kernel
1298 END(paranoid_exit)
1299
1300 /*
1301 * Save all registers in pt_regs, and switch gs if needed.
1302 * Return: EBX=0: came from user mode; EBX=1: otherwise
1303 */
1304 ENTRY(error_entry)
1305 UNWIND_HINT_FUNC
1306 cld
1307 SAVE_C_REGS 8
1308 SAVE_EXTRA_REGS 8
1309 ENCODE_FRAME_POINTER 8
1310 xorl %ebx, %ebx
1311 testb $3, CS+8(%rsp)
1312 jz .Lerror_kernelspace
1313
1314 /*
1315 * We entered from user mode or we're pretending to have entered
1316 * from user mode due to an IRET fault.
1317 */
1318 SWAPGS
1319 /* We have user CR3. Change to kernel CR3. */
1320 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1321
1322 .Lerror_entry_from_usermode_after_swapgs:
1323 /* Put us onto the real thread stack. */
1324 popq %r12 /* save return addr in %12 */
1325 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1326 call sync_regs
1327 movq %rax, %rsp /* switch stack */
1328 ENCODE_FRAME_POINTER
1329 pushq %r12
1330
1331 /*
1332 * We need to tell lockdep that IRQs are off. We can't do this until
1333 * we fix gsbase, and we should do it before enter_from_user_mode
1334 * (which can take locks).
1335 */
1336 TRACE_IRQS_OFF
1337 CALL_enter_from_user_mode
1338 ret
1339
1340 .Lerror_entry_done:
1341 TRACE_IRQS_OFF
1342 ret
1343
1344 /*
1345 * There are two places in the kernel that can potentially fault with
1346 * usergs. Handle them here. B stepping K8s sometimes report a
1347 * truncated RIP for IRET exceptions returning to compat mode. Check
1348 * for these here too.
1349 */
1350 .Lerror_kernelspace:
1351 incl %ebx
1352 leaq native_irq_return_iret(%rip), %rcx
1353 cmpq %rcx, RIP+8(%rsp)
1354 je .Lerror_bad_iret
1355 movl %ecx, %eax /* zero extend */
1356 cmpq %rax, RIP+8(%rsp)
1357 je .Lbstep_iret
1358 cmpq $.Lgs_change, RIP+8(%rsp)
1359 jne .Lerror_entry_done
1360
1361 /*
1362 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1363 * gsbase and proceed. We'll fix up the exception and land in
1364 * .Lgs_change's error handler with kernel gsbase.
1365 */
1366 SWAPGS
1367 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1368 jmp .Lerror_entry_done
1369
1370 .Lbstep_iret:
1371 /* Fix truncated RIP */
1372 movq %rcx, RIP+8(%rsp)
1373 /* fall through */
1374
1375 .Lerror_bad_iret:
1376 /*
1377 * We came from an IRET to user mode, so we have user
1378 * gsbase and CR3. Switch to kernel gsbase and CR3:
1379 */
1380 SWAPGS
1381 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1382
1383 /*
1384 * Pretend that the exception came from user mode: set up pt_regs
1385 * as if we faulted immediately after IRET and clear EBX so that
1386 * error_exit knows that we will be returning to user mode.
1387 */
1388 mov %rsp, %rdi
1389 call fixup_bad_iret
1390 mov %rax, %rsp
1391 decl %ebx
1392 jmp .Lerror_entry_from_usermode_after_swapgs
1393 END(error_entry)
1394
1395
1396 /*
1397 * On entry, EBX is a "return to kernel mode" flag:
1398 * 1: already in kernel mode, don't need SWAPGS
1399 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1400 */
1401 ENTRY(error_exit)
1402 UNWIND_HINT_REGS
1403 DISABLE_INTERRUPTS(CLBR_ANY)
1404 TRACE_IRQS_OFF
1405 testl %ebx, %ebx
1406 jnz retint_kernel
1407 jmp retint_user
1408 END(error_exit)
1409
1410 /*
1411 * Runs on exception stack. Xen PV does not go through this path at all,
1412 * so we can use real assembly here.
1413 *
1414 * Registers:
1415 * %r14: Used to save/restore the CR3 of the interrupted context
1416 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1417 */
1418 ENTRY(nmi)
1419 UNWIND_HINT_IRET_REGS
1420
1421 /*
1422 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1423 * the iretq it performs will take us out of NMI context.
1424 * This means that we can have nested NMIs where the next
1425 * NMI is using the top of the stack of the previous NMI. We
1426 * can't let it execute because the nested NMI will corrupt the
1427 * stack of the previous NMI. NMI handlers are not re-entrant
1428 * anyway.
1429 *
1430 * To handle this case we do the following:
1431 * Check the a special location on the stack that contains
1432 * a variable that is set when NMIs are executing.
1433 * The interrupted task's stack is also checked to see if it
1434 * is an NMI stack.
1435 * If the variable is not set and the stack is not the NMI
1436 * stack then:
1437 * o Set the special variable on the stack
1438 * o Copy the interrupt frame into an "outermost" location on the
1439 * stack
1440 * o Copy the interrupt frame into an "iret" location on the stack
1441 * o Continue processing the NMI
1442 * If the variable is set or the previous stack is the NMI stack:
1443 * o Modify the "iret" location to jump to the repeat_nmi
1444 * o return back to the first NMI
1445 *
1446 * Now on exit of the first NMI, we first clear the stack variable
1447 * The NMI stack will tell any nested NMIs at that point that it is
1448 * nested. Then we pop the stack normally with iret, and if there was
1449 * a nested NMI that updated the copy interrupt stack frame, a
1450 * jump will be made to the repeat_nmi code that will handle the second
1451 * NMI.
1452 *
1453 * However, espfix prevents us from directly returning to userspace
1454 * with a single IRET instruction. Similarly, IRET to user mode
1455 * can fault. We therefore handle NMIs from user space like
1456 * other IST entries.
1457 */
1458
1459 ASM_CLAC
1460
1461 /* Use %rdx as our temp variable throughout */
1462 pushq %rdx
1463
1464 testb $3, CS-RIP+8(%rsp)
1465 jz .Lnmi_from_kernel
1466
1467 /*
1468 * NMI from user mode. We need to run on the thread stack, but we
1469 * can't go through the normal entry paths: NMIs are masked, and
1470 * we don't want to enable interrupts, because then we'll end
1471 * up in an awkward situation in which IRQs are on but NMIs
1472 * are off.
1473 *
1474 * We also must not push anything to the stack before switching
1475 * stacks lest we corrupt the "NMI executing" variable.
1476 */
1477
1478 swapgs
1479 cld
1480 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1481 movq %rsp, %rdx
1482 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1483 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1484 pushq 5*8(%rdx) /* pt_regs->ss */
1485 pushq 4*8(%rdx) /* pt_regs->rsp */
1486 pushq 3*8(%rdx) /* pt_regs->flags */
1487 pushq 2*8(%rdx) /* pt_regs->cs */
1488 pushq 1*8(%rdx) /* pt_regs->rip */
1489 UNWIND_HINT_IRET_REGS
1490 pushq $-1 /* pt_regs->orig_ax */
1491 pushq %rdi /* pt_regs->di */
1492 pushq %rsi /* pt_regs->si */
1493 pushq (%rdx) /* pt_regs->dx */
1494 pushq %rcx /* pt_regs->cx */
1495 pushq %rax /* pt_regs->ax */
1496 pushq %r8 /* pt_regs->r8 */
1497 pushq %r9 /* pt_regs->r9 */
1498 pushq %r10 /* pt_regs->r10 */
1499 pushq %r11 /* pt_regs->r11 */
1500 pushq %rbx /* pt_regs->rbx */
1501 pushq %rbp /* pt_regs->rbp */
1502 pushq %r12 /* pt_regs->r12 */
1503 pushq %r13 /* pt_regs->r13 */
1504 pushq %r14 /* pt_regs->r14 */
1505 pushq %r15 /* pt_regs->r15 */
1506 UNWIND_HINT_REGS
1507 ENCODE_FRAME_POINTER
1508
1509 /*
1510 * At this point we no longer need to worry about stack damage
1511 * due to nesting -- we're on the normal thread stack and we're
1512 * done with the NMI stack.
1513 */
1514
1515 movq %rsp, %rdi
1516 movq $-1, %rsi
1517 call do_nmi
1518
1519 /*
1520 * Return back to user mode. We must *not* do the normal exit
1521 * work, because we don't want to enable interrupts.
1522 */
1523 jmp swapgs_restore_regs_and_return_to_usermode
1524
1525 .Lnmi_from_kernel:
1526 /*
1527 * Here's what our stack frame will look like:
1528 * +---------------------------------------------------------+
1529 * | original SS |
1530 * | original Return RSP |
1531 * | original RFLAGS |
1532 * | original CS |
1533 * | original RIP |
1534 * +---------------------------------------------------------+
1535 * | temp storage for rdx |
1536 * +---------------------------------------------------------+
1537 * | "NMI executing" variable |
1538 * +---------------------------------------------------------+
1539 * | iret SS } Copied from "outermost" frame |
1540 * | iret Return RSP } on each loop iteration; overwritten |
1541 * | iret RFLAGS } by a nested NMI to force another |
1542 * | iret CS } iteration if needed. |
1543 * | iret RIP } |
1544 * +---------------------------------------------------------+
1545 * | outermost SS } initialized in first_nmi; |
1546 * | outermost Return RSP } will not be changed before |
1547 * | outermost RFLAGS } NMI processing is done. |
1548 * | outermost CS } Copied to "iret" frame on each |
1549 * | outermost RIP } iteration. |
1550 * +---------------------------------------------------------+
1551 * | pt_regs |
1552 * +---------------------------------------------------------+
1553 *
1554 * The "original" frame is used by hardware. Before re-enabling
1555 * NMIs, we need to be done with it, and we need to leave enough
1556 * space for the asm code here.
1557 *
1558 * We return by executing IRET while RSP points to the "iret" frame.
1559 * That will either return for real or it will loop back into NMI
1560 * processing.
1561 *
1562 * The "outermost" frame is copied to the "iret" frame on each
1563 * iteration of the loop, so each iteration starts with the "iret"
1564 * frame pointing to the final return target.
1565 */
1566
1567 /*
1568 * Determine whether we're a nested NMI.
1569 *
1570 * If we interrupted kernel code between repeat_nmi and
1571 * end_repeat_nmi, then we are a nested NMI. We must not
1572 * modify the "iret" frame because it's being written by
1573 * the outer NMI. That's okay; the outer NMI handler is
1574 * about to about to call do_nmi anyway, so we can just
1575 * resume the outer NMI.
1576 */
1577
1578 movq $repeat_nmi, %rdx
1579 cmpq 8(%rsp), %rdx
1580 ja 1f
1581 movq $end_repeat_nmi, %rdx
1582 cmpq 8(%rsp), %rdx
1583 ja nested_nmi_out
1584 1:
1585
1586 /*
1587 * Now check "NMI executing". If it's set, then we're nested.
1588 * This will not detect if we interrupted an outer NMI just
1589 * before IRET.
1590 */
1591 cmpl $1, -8(%rsp)
1592 je nested_nmi
1593
1594 /*
1595 * Now test if the previous stack was an NMI stack. This covers
1596 * the case where we interrupt an outer NMI after it clears
1597 * "NMI executing" but before IRET. We need to be careful, though:
1598 * there is one case in which RSP could point to the NMI stack
1599 * despite there being no NMI active: naughty userspace controls
1600 * RSP at the very beginning of the SYSCALL targets. We can
1601 * pull a fast one on naughty userspace, though: we program
1602 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1603 * if it controls the kernel's RSP. We set DF before we clear
1604 * "NMI executing".
1605 */
1606 lea 6*8(%rsp), %rdx
1607 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1608 cmpq %rdx, 4*8(%rsp)
1609 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1610 ja first_nmi
1611
1612 subq $EXCEPTION_STKSZ, %rdx
1613 cmpq %rdx, 4*8(%rsp)
1614 /* If it is below the NMI stack, it is a normal NMI */
1615 jb first_nmi
1616
1617 /* Ah, it is within the NMI stack. */
1618
1619 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1620 jz first_nmi /* RSP was user controlled. */
1621
1622 /* This is a nested NMI. */
1623
1624 nested_nmi:
1625 /*
1626 * Modify the "iret" frame to point to repeat_nmi, forcing another
1627 * iteration of NMI handling.
1628 */
1629 subq $8, %rsp
1630 leaq -10*8(%rsp), %rdx
1631 pushq $__KERNEL_DS
1632 pushq %rdx
1633 pushfq
1634 pushq $__KERNEL_CS
1635 pushq $repeat_nmi
1636
1637 /* Put stack back */
1638 addq $(6*8), %rsp
1639
1640 nested_nmi_out:
1641 popq %rdx
1642
1643 /* We are returning to kernel mode, so this cannot result in a fault. */
1644 iretq
1645
1646 first_nmi:
1647 /* Restore rdx. */
1648 movq (%rsp), %rdx
1649
1650 /* Make room for "NMI executing". */
1651 pushq $0
1652
1653 /* Leave room for the "iret" frame */
1654 subq $(5*8), %rsp
1655
1656 /* Copy the "original" frame to the "outermost" frame */
1657 .rept 5
1658 pushq 11*8(%rsp)
1659 .endr
1660 UNWIND_HINT_IRET_REGS
1661
1662 /* Everything up to here is safe from nested NMIs */
1663
1664 #ifdef CONFIG_DEBUG_ENTRY
1665 /*
1666 * For ease of testing, unmask NMIs right away. Disabled by
1667 * default because IRET is very expensive.
1668 */
1669 pushq $0 /* SS */
1670 pushq %rsp /* RSP (minus 8 because of the previous push) */
1671 addq $8, (%rsp) /* Fix up RSP */
1672 pushfq /* RFLAGS */
1673 pushq $__KERNEL_CS /* CS */
1674 pushq $1f /* RIP */
1675 iretq /* continues at repeat_nmi below */
1676 UNWIND_HINT_IRET_REGS
1677 1:
1678 #endif
1679
1680 repeat_nmi:
1681 /*
1682 * If there was a nested NMI, the first NMI's iret will return
1683 * here. But NMIs are still enabled and we can take another
1684 * nested NMI. The nested NMI checks the interrupted RIP to see
1685 * if it is between repeat_nmi and end_repeat_nmi, and if so
1686 * it will just return, as we are about to repeat an NMI anyway.
1687 * This makes it safe to copy to the stack frame that a nested
1688 * NMI will update.
1689 *
1690 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1691 * we're repeating an NMI, gsbase has the same value that it had on
1692 * the first iteration. paranoid_entry will load the kernel
1693 * gsbase if needed before we call do_nmi. "NMI executing"
1694 * is zero.
1695 */
1696 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1697
1698 /*
1699 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1700 * here must not modify the "iret" frame while we're writing to
1701 * it or it will end up containing garbage.
1702 */
1703 addq $(10*8), %rsp
1704 .rept 5
1705 pushq -6*8(%rsp)
1706 .endr
1707 subq $(5*8), %rsp
1708 end_repeat_nmi:
1709
1710 /*
1711 * Everything below this point can be preempted by a nested NMI.
1712 * If this happens, then the inner NMI will change the "iret"
1713 * frame to point back to repeat_nmi.
1714 */
1715 pushq $-1 /* ORIG_RAX: no syscall to restart */
1716 ALLOC_PT_GPREGS_ON_STACK
1717
1718 /*
1719 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1720 * as we should not be calling schedule in NMI context.
1721 * Even with normal interrupts enabled. An NMI should not be
1722 * setting NEED_RESCHED or anything that normal interrupts and
1723 * exceptions might do.
1724 */
1725 call paranoid_entry
1726 UNWIND_HINT_REGS
1727
1728 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1729 movq %rsp, %rdi
1730 movq $-1, %rsi
1731 call do_nmi
1732
1733 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1734
1735 testl %ebx, %ebx /* swapgs needed? */
1736 jnz nmi_restore
1737 nmi_swapgs:
1738 SWAPGS_UNSAFE_STACK
1739 nmi_restore:
1740 POP_EXTRA_REGS
1741 POP_C_REGS
1742
1743 /*
1744 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1745 * at the "iret" frame.
1746 */
1747 addq $6*8, %rsp
1748
1749 /*
1750 * Clear "NMI executing". Set DF first so that we can easily
1751 * distinguish the remaining code between here and IRET from
1752 * the SYSCALL entry and exit paths.
1753 *
1754 * We arguably should just inspect RIP instead, but I (Andy) wrote
1755 * this code when I had the misapprehension that Xen PV supported
1756 * NMIs, and Xen PV would break that approach.
1757 */
1758 std
1759 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1760
1761 /*
1762 * iretq reads the "iret" frame and exits the NMI stack in a
1763 * single instruction. We are returning to kernel mode, so this
1764 * cannot result in a fault. Similarly, we don't need to worry
1765 * about espfix64 on the way back to kernel mode.
1766 */
1767 iretq
1768 END(nmi)
1769
1770 ENTRY(ignore_sysret)
1771 UNWIND_HINT_EMPTY
1772 mov $-ENOSYS, %eax
1773 sysret
1774 END(ignore_sysret)
1775
1776 ENTRY(rewind_stack_do_exit)
1777 UNWIND_HINT_FUNC
1778 /* Prevent any naive code from trying to unwind to our caller. */
1779 xorl %ebp, %ebp
1780
1781 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1782 leaq -PTREGS_SIZE(%rax), %rsp
1783 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1784
1785 call do_exit
1786 END(rewind_stack_do_exit)