]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/entry/entry_64.S
x86/entry: Use the correct fence macro after swapgs in kernel CR3
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include <asm/asm-offsets.h>
26 #include <asm/msr.h>
27 #include <asm/unistd.h>
28 #include <asm/thread_info.h>
29 #include <asm/hw_irq.h>
30 #include <asm/page_types.h>
31 #include <asm/irqflags.h>
32 #include <asm/paravirt.h>
33 #include <asm/percpu.h>
34 #include <asm/asm.h>
35 #include <asm/smap.h>
36 #include <asm/pgtable_types.h>
37 #include <asm/export.h>
38 #include <asm/frame.h>
39 #include <asm/trapnr.h>
40 #include <asm/nospec-branch.h>
41 #include <asm/fsgsbase.h>
42 #include <linux/err.h>
43
44 #include "calling.h"
45
46 .code64
47 .section .entry.text, "ax"
48
49 /*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls. The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries. There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax system call number
70 * rcx return address
71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi arg0
73 * rsi arg1
74 * rdx arg2
75 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8 arg4
77 * r9 arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87 SYM_CODE_START(entry_SYSCALL_64)
88 UNWIND_HINT_EMPTY
89
90 swapgs
91 /* tss.sp2 is scratch space. */
92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
95
96 SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
97
98 /* Construct struct pt_regs on stack */
99 pushq $__USER_DS /* pt_regs->ss */
100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
101 pushq %r11 /* pt_regs->flags */
102 pushq $__USER_CS /* pt_regs->cs */
103 pushq %rcx /* pt_regs->ip */
104 SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
105 pushq %rax /* pt_regs->orig_ax */
106
107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
108
109 /* IRQs are off. */
110 movq %rsp, %rdi
111 /* Sign extend the lower 32bit as syscall numbers are treated as int */
112 movslq %eax, %rsi
113 call do_syscall_64 /* returns with IRQs disabled */
114
115 /*
116 * Try to use SYSRET instead of IRET if we're returning to
117 * a completely clean 64-bit userspace context. If we're not,
118 * go to the slow exit path.
119 * In the Xen PV case we must use iret anyway.
120 */
121
122 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \
123 X86_FEATURE_XENPV
124
125 movq RCX(%rsp), %rcx
126 movq RIP(%rsp), %r11
127
128 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
129 jne swapgs_restore_regs_and_return_to_usermode
130
131 /*
132 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
133 * in kernel space. This essentially lets the user take over
134 * the kernel, since userspace controls RSP.
135 *
136 * If width of "canonical tail" ever becomes variable, this will need
137 * to be updated to remain correct on both old and new CPUs.
138 *
139 * Change top bits to match most significant bit (47th or 56th bit
140 * depending on paging mode) in the address.
141 */
142 #ifdef CONFIG_X86_5LEVEL
143 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
144 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
145 #else
146 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
147 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
148 #endif
149
150 /* If this changed %rcx, it was not canonical */
151 cmpq %rcx, %r11
152 jne swapgs_restore_regs_and_return_to_usermode
153
154 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
155 jne swapgs_restore_regs_and_return_to_usermode
156
157 movq R11(%rsp), %r11
158 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
159 jne swapgs_restore_regs_and_return_to_usermode
160
161 /*
162 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
163 * restore RF properly. If the slowpath sets it for whatever reason, we
164 * need to restore it correctly.
165 *
166 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
167 * trap from userspace immediately after SYSRET. This would cause an
168 * infinite loop whenever #DB happens with register state that satisfies
169 * the opportunistic SYSRET conditions. For example, single-stepping
170 * this user code:
171 *
172 * movq $stuck_here, %rcx
173 * pushfq
174 * popq %r11
175 * stuck_here:
176 *
177 * would never get past 'stuck_here'.
178 */
179 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
180 jnz swapgs_restore_regs_and_return_to_usermode
181
182 /* nothing to check for RSP */
183
184 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
185 jne swapgs_restore_regs_and_return_to_usermode
186
187 /*
188 * We win! This label is here just for ease of understanding
189 * perf profiles. Nothing jumps here.
190 */
191 syscall_return_via_sysret:
192 /* rcx and r11 are already restored (see code above) */
193 POP_REGS pop_rdi=0 skip_r11rcx=1
194
195 /*
196 * Now all regs are restored except RSP and RDI.
197 * Save old stack pointer and switch to trampoline stack.
198 */
199 movq %rsp, %rdi
200 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
201 UNWIND_HINT_EMPTY
202
203 pushq RSP-RDI(%rdi) /* RSP */
204 pushq (%rdi) /* RDI */
205
206 /*
207 * We are on the trampoline stack. All regs except RDI are live.
208 * We can do future final exit work right here.
209 */
210 STACKLEAK_ERASE_NOCLOBBER
211
212 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
213
214 popq %rdi
215 popq %rsp
216 swapgs
217 sysretq
218 SYM_CODE_END(entry_SYSCALL_64)
219
220 /*
221 * %rdi: prev task
222 * %rsi: next task
223 */
224 .pushsection .text, "ax"
225 SYM_FUNC_START(__switch_to_asm)
226 /*
227 * Save callee-saved registers
228 * This must match the order in inactive_task_frame
229 */
230 pushq %rbp
231 pushq %rbx
232 pushq %r12
233 pushq %r13
234 pushq %r14
235 pushq %r15
236
237 /* switch stack */
238 movq %rsp, TASK_threadsp(%rdi)
239 movq TASK_threadsp(%rsi), %rsp
240
241 #ifdef CONFIG_STACKPROTECTOR
242 movq TASK_stack_canary(%rsi), %rbx
243 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
244 #endif
245
246 #ifdef CONFIG_RETPOLINE
247 /*
248 * When switching from a shallower to a deeper call stack
249 * the RSB may either underflow or use entries populated
250 * with userspace addresses. On CPUs where those concerns
251 * exist, overwrite the RSB with entries which capture
252 * speculative execution to prevent attack.
253 */
254 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
255 #endif
256
257 /* restore callee-saved registers */
258 popq %r15
259 popq %r14
260 popq %r13
261 popq %r12
262 popq %rbx
263 popq %rbp
264
265 jmp __switch_to
266 SYM_FUNC_END(__switch_to_asm)
267 .popsection
268
269 /*
270 * A newly forked process directly context switches into this address.
271 *
272 * rax: prev task we switched from
273 * rbx: kernel thread func (NULL for user thread)
274 * r12: kernel thread arg
275 */
276 .pushsection .text, "ax"
277 SYM_CODE_START(ret_from_fork)
278 UNWIND_HINT_EMPTY
279 movq %rax, %rdi
280 call schedule_tail /* rdi: 'prev' task parameter */
281
282 testq %rbx, %rbx /* from kernel_thread? */
283 jnz 1f /* kernel threads are uncommon */
284
285 2:
286 UNWIND_HINT_REGS
287 movq %rsp, %rdi
288 call syscall_exit_to_user_mode /* returns with IRQs disabled */
289 jmp swapgs_restore_regs_and_return_to_usermode
290
291 1:
292 /* kernel thread */
293 UNWIND_HINT_EMPTY
294 movq %r12, %rdi
295 CALL_NOSPEC rbx
296 /*
297 * A kernel thread is allowed to return here after successfully
298 * calling kernel_execve(). Exit to userspace to complete the execve()
299 * syscall.
300 */
301 movq $0, RAX(%rsp)
302 jmp 2b
303 SYM_CODE_END(ret_from_fork)
304 .popsection
305
306 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
307 #ifdef CONFIG_DEBUG_ENTRY
308 pushq %rax
309 SAVE_FLAGS
310 testl $X86_EFLAGS_IF, %eax
311 jz .Lokay_\@
312 ud2
313 .Lokay_\@:
314 popq %rax
315 #endif
316 .endm
317
318 /**
319 * idtentry_body - Macro to emit code calling the C function
320 * @cfunc: C function to be called
321 * @has_error_code: Hardware pushed error code on stack
322 */
323 .macro idtentry_body cfunc has_error_code:req
324
325 call error_entry
326 UNWIND_HINT_REGS
327
328 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
329
330 .if \has_error_code == 1
331 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
332 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
333 .endif
334
335 call \cfunc
336
337 jmp error_return
338 .endm
339
340 /**
341 * idtentry - Macro to generate entry stubs for simple IDT entries
342 * @vector: Vector number
343 * @asmsym: ASM symbol for the entry point
344 * @cfunc: C function to be called
345 * @has_error_code: Hardware pushed error code on stack
346 *
347 * The macro emits code to set up the kernel context for straight forward
348 * and simple IDT entries. No IST stack, no paranoid entry checks.
349 */
350 .macro idtentry vector asmsym cfunc has_error_code:req
351 SYM_CODE_START(\asmsym)
352 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
353 ASM_CLAC
354
355 .if \has_error_code == 0
356 pushq $-1 /* ORIG_RAX: no syscall to restart */
357 .endif
358
359 .if \vector == X86_TRAP_BP
360 /*
361 * If coming from kernel space, create a 6-word gap to allow the
362 * int3 handler to emulate a call instruction.
363 */
364 testb $3, CS-ORIG_RAX(%rsp)
365 jnz .Lfrom_usermode_no_gap_\@
366 .rept 6
367 pushq 5*8(%rsp)
368 .endr
369 UNWIND_HINT_IRET_REGS offset=8
370 .Lfrom_usermode_no_gap_\@:
371 .endif
372
373 idtentry_body \cfunc \has_error_code
374
375 _ASM_NOKPROBE(\asmsym)
376 SYM_CODE_END(\asmsym)
377 .endm
378
379 /*
380 * Interrupt entry/exit.
381 *
382 + The interrupt stubs push (vector) onto the stack, which is the error_code
383 * position of idtentry exceptions, and jump to one of the two idtentry points
384 * (common/spurious).
385 *
386 * common_interrupt is a hotpath, align it to a cache line
387 */
388 .macro idtentry_irq vector cfunc
389 .p2align CONFIG_X86_L1_CACHE_SHIFT
390 idtentry \vector asm_\cfunc \cfunc has_error_code=1
391 .endm
392
393 /*
394 * System vectors which invoke their handlers directly and are not
395 * going through the regular common device interrupt handling code.
396 */
397 .macro idtentry_sysvec vector cfunc
398 idtentry \vector asm_\cfunc \cfunc has_error_code=0
399 .endm
400
401 /**
402 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
403 * @vector: Vector number
404 * @asmsym: ASM symbol for the entry point
405 * @cfunc: C function to be called
406 *
407 * The macro emits code to set up the kernel context for #MC and #DB
408 *
409 * If the entry comes from user space it uses the normal entry path
410 * including the return to user space work and preemption checks on
411 * exit.
412 *
413 * If hits in kernel mode then it needs to go through the paranoid
414 * entry as the exception can hit any random state. No preemption
415 * check on exit to keep the paranoid path simple.
416 */
417 .macro idtentry_mce_db vector asmsym cfunc
418 SYM_CODE_START(\asmsym)
419 UNWIND_HINT_IRET_REGS
420 ASM_CLAC
421
422 pushq $-1 /* ORIG_RAX: no syscall to restart */
423
424 /*
425 * If the entry is from userspace, switch stacks and treat it as
426 * a normal entry.
427 */
428 testb $3, CS-ORIG_RAX(%rsp)
429 jnz .Lfrom_usermode_switch_stack_\@
430
431 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
432 call paranoid_entry
433
434 UNWIND_HINT_REGS
435
436 movq %rsp, %rdi /* pt_regs pointer */
437
438 call \cfunc
439
440 jmp paranoid_exit
441
442 /* Switch to the regular task stack and use the noist entry point */
443 .Lfrom_usermode_switch_stack_\@:
444 idtentry_body noist_\cfunc, has_error_code=0
445
446 _ASM_NOKPROBE(\asmsym)
447 SYM_CODE_END(\asmsym)
448 .endm
449
450 #ifdef CONFIG_AMD_MEM_ENCRYPT
451 /**
452 * idtentry_vc - Macro to generate entry stub for #VC
453 * @vector: Vector number
454 * @asmsym: ASM symbol for the entry point
455 * @cfunc: C function to be called
456 *
457 * The macro emits code to set up the kernel context for #VC. The #VC handler
458 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
459 *
460 * To make this work the #VC entry code tries its best to pretend it doesn't use
461 * an IST stack by switching to the task stack if coming from user-space (which
462 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
463 * entered from kernel-mode.
464 *
465 * If entered from kernel-mode the return stack is validated first, and if it is
466 * not safe to use (e.g. because it points to the entry stack) the #VC handler
467 * will switch to a fall-back stack (VC2) and call a special handler function.
468 *
469 * The macro is only used for one vector, but it is planned to be extended in
470 * the future for the #HV exception.
471 */
472 .macro idtentry_vc vector asmsym cfunc
473 SYM_CODE_START(\asmsym)
474 UNWIND_HINT_IRET_REGS
475 ASM_CLAC
476
477 /*
478 * If the entry is from userspace, switch stacks and treat it as
479 * a normal entry.
480 */
481 testb $3, CS-ORIG_RAX(%rsp)
482 jnz .Lfrom_usermode_switch_stack_\@
483
484 /*
485 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
486 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
487 */
488 call paranoid_entry
489
490 UNWIND_HINT_REGS
491
492 /*
493 * Switch off the IST stack to make it free for nested exceptions. The
494 * vc_switch_off_ist() function will switch back to the interrupted
495 * stack if it is safe to do so. If not it switches to the VC fall-back
496 * stack.
497 */
498 movq %rsp, %rdi /* pt_regs pointer */
499 call vc_switch_off_ist
500 movq %rax, %rsp /* Switch to new stack */
501
502 UNWIND_HINT_REGS
503
504 /* Update pt_regs */
505 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
506 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
507
508 movq %rsp, %rdi /* pt_regs pointer */
509
510 call kernel_\cfunc
511
512 /*
513 * No need to switch back to the IST stack. The current stack is either
514 * identical to the stack in the IRET frame or the VC fall-back stack,
515 * so it is definitely mapped even with PTI enabled.
516 */
517 jmp paranoid_exit
518
519 /* Switch to the regular task stack */
520 .Lfrom_usermode_switch_stack_\@:
521 idtentry_body user_\cfunc, has_error_code=1
522
523 _ASM_NOKPROBE(\asmsym)
524 SYM_CODE_END(\asmsym)
525 .endm
526 #endif
527
528 /*
529 * Double fault entry. Straight paranoid. No checks from which context
530 * this comes because for the espfix induced #DF this would do the wrong
531 * thing.
532 */
533 .macro idtentry_df vector asmsym cfunc
534 SYM_CODE_START(\asmsym)
535 UNWIND_HINT_IRET_REGS offset=8
536 ASM_CLAC
537
538 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
539 call paranoid_entry
540 UNWIND_HINT_REGS
541
542 movq %rsp, %rdi /* pt_regs pointer into first argument */
543 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
544 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
545 call \cfunc
546
547 jmp paranoid_exit
548
549 _ASM_NOKPROBE(\asmsym)
550 SYM_CODE_END(\asmsym)
551 .endm
552
553 /*
554 * Include the defines which emit the idt entries which are shared
555 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
556 * so the stacktrace boundary checks work.
557 */
558 .align 16
559 .globl __irqentry_text_start
560 __irqentry_text_start:
561
562 #include <asm/idtentry.h>
563
564 .align 16
565 .globl __irqentry_text_end
566 __irqentry_text_end:
567
568 SYM_CODE_START_LOCAL(common_interrupt_return)
569 SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
570 #ifdef CONFIG_DEBUG_ENTRY
571 /* Assert that pt_regs indicates user mode. */
572 testb $3, CS(%rsp)
573 jnz 1f
574 ud2
575 1:
576 #endif
577 POP_REGS pop_rdi=0
578
579 /*
580 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
581 * Save old stack pointer and switch to trampoline stack.
582 */
583 movq %rsp, %rdi
584 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
585 UNWIND_HINT_EMPTY
586
587 /* Copy the IRET frame to the trampoline stack. */
588 pushq 6*8(%rdi) /* SS */
589 pushq 5*8(%rdi) /* RSP */
590 pushq 4*8(%rdi) /* EFLAGS */
591 pushq 3*8(%rdi) /* CS */
592 pushq 2*8(%rdi) /* RIP */
593
594 /* Push user RDI on the trampoline stack. */
595 pushq (%rdi)
596
597 /*
598 * We are on the trampoline stack. All regs except RDI are live.
599 * We can do future final exit work right here.
600 */
601 STACKLEAK_ERASE_NOCLOBBER
602
603 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
604
605 /* Restore RDI. */
606 popq %rdi
607 SWAPGS
608 INTERRUPT_RETURN
609
610
611 SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
612 #ifdef CONFIG_DEBUG_ENTRY
613 /* Assert that pt_regs indicates kernel mode. */
614 testb $3, CS(%rsp)
615 jz 1f
616 ud2
617 1:
618 #endif
619 POP_REGS
620 addq $8, %rsp /* skip regs->orig_ax */
621 /*
622 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
623 * when returning from IPI handler.
624 */
625 INTERRUPT_RETURN
626
627 SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
628 UNWIND_HINT_IRET_REGS
629 /*
630 * Are we returning to a stack segment from the LDT? Note: in
631 * 64-bit mode SS:RSP on the exception stack is always valid.
632 */
633 #ifdef CONFIG_X86_ESPFIX64
634 testb $4, (SS-RIP)(%rsp)
635 jnz native_irq_return_ldt
636 #endif
637
638 SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
639 /*
640 * This may fault. Non-paranoid faults on return to userspace are
641 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
642 * Double-faults due to espfix64 are handled in exc_double_fault.
643 * Other faults here are fatal.
644 */
645 iretq
646
647 #ifdef CONFIG_X86_ESPFIX64
648 native_irq_return_ldt:
649 /*
650 * We are running with user GSBASE. All GPRs contain their user
651 * values. We have a percpu ESPFIX stack that is eight slots
652 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
653 * of the ESPFIX stack.
654 *
655 * We clobber RAX and RDI in this code. We stash RDI on the
656 * normal stack and RAX on the ESPFIX stack.
657 *
658 * The ESPFIX stack layout we set up looks like this:
659 *
660 * --- top of ESPFIX stack ---
661 * SS
662 * RSP
663 * RFLAGS
664 * CS
665 * RIP <-- RSP points here when we're done
666 * RAX <-- espfix_waddr points here
667 * --- bottom of ESPFIX stack ---
668 */
669
670 pushq %rdi /* Stash user RDI */
671 swapgs /* to kernel GS */
672 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
673
674 movq PER_CPU_VAR(espfix_waddr), %rdi
675 movq %rax, (0*8)(%rdi) /* user RAX */
676 movq (1*8)(%rsp), %rax /* user RIP */
677 movq %rax, (1*8)(%rdi)
678 movq (2*8)(%rsp), %rax /* user CS */
679 movq %rax, (2*8)(%rdi)
680 movq (3*8)(%rsp), %rax /* user RFLAGS */
681 movq %rax, (3*8)(%rdi)
682 movq (5*8)(%rsp), %rax /* user SS */
683 movq %rax, (5*8)(%rdi)
684 movq (4*8)(%rsp), %rax /* user RSP */
685 movq %rax, (4*8)(%rdi)
686 /* Now RAX == RSP. */
687
688 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
689
690 /*
691 * espfix_stack[31:16] == 0. The page tables are set up such that
692 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
693 * espfix_waddr for any X. That is, there are 65536 RO aliases of
694 * the same page. Set up RSP so that RSP[31:16] contains the
695 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
696 * still points to an RO alias of the ESPFIX stack.
697 */
698 orq PER_CPU_VAR(espfix_stack), %rax
699
700 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
701 swapgs /* to user GS */
702 popq %rdi /* Restore user RDI */
703
704 movq %rax, %rsp
705 UNWIND_HINT_IRET_REGS offset=8
706
707 /*
708 * At this point, we cannot write to the stack any more, but we can
709 * still read.
710 */
711 popq %rax /* Restore user RAX */
712
713 /*
714 * RSP now points to an ordinary IRET frame, except that the page
715 * is read-only and RSP[31:16] are preloaded with the userspace
716 * values. We can now IRET back to userspace.
717 */
718 jmp native_irq_return_iret
719 #endif
720 SYM_CODE_END(common_interrupt_return)
721 _ASM_NOKPROBE(common_interrupt_return)
722
723 /*
724 * Reload gs selector with exception handling
725 * edi: new selector
726 *
727 * Is in entry.text as it shouldn't be instrumented.
728 */
729 SYM_FUNC_START(asm_load_gs_index)
730 FRAME_BEGIN
731 swapgs
732 .Lgs_change:
733 movl %edi, %gs
734 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
735 swapgs
736 FRAME_END
737 ret
738 SYM_FUNC_END(asm_load_gs_index)
739 EXPORT_SYMBOL(asm_load_gs_index)
740
741 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
742 .section .fixup, "ax"
743 /* running with kernelgs */
744 SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
745 swapgs /* switch back to user gs */
746 .macro ZAP_GS
747 /* This can't be a string because the preprocessor needs to see it. */
748 movl $__USER_DS, %eax
749 movl %eax, %gs
750 .endm
751 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
752 xorl %eax, %eax
753 movl %eax, %gs
754 jmp 2b
755 SYM_CODE_END(.Lbad_gs)
756 .previous
757
758 #ifdef CONFIG_XEN_PV
759 /*
760 * A note on the "critical region" in our callback handler.
761 * We want to avoid stacking callback handlers due to events occurring
762 * during handling of the last event. To do this, we keep events disabled
763 * until we've done all processing. HOWEVER, we must enable events before
764 * popping the stack frame (can't be done atomically) and so it would still
765 * be possible to get enough handler activations to overflow the stack.
766 * Although unlikely, bugs of that kind are hard to track down, so we'd
767 * like to avoid the possibility.
768 * So, on entry to the handler we detect whether we interrupted an
769 * existing activation in its critical region -- if so, we pop the current
770 * activation and restart the handler using the previous one.
771 *
772 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
773 */
774 SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
775
776 /*
777 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
778 * see the correct pointer to the pt_regs
779 */
780 UNWIND_HINT_FUNC
781 movq %rdi, %rsp /* we don't return, adjust the stack frame */
782 UNWIND_HINT_REGS
783
784 call xen_pv_evtchn_do_upcall
785
786 jmp error_return
787 SYM_CODE_END(exc_xen_hypervisor_callback)
788
789 /*
790 * Hypervisor uses this for application faults while it executes.
791 * We get here for two reasons:
792 * 1. Fault while reloading DS, ES, FS or GS
793 * 2. Fault while executing IRET
794 * Category 1 we do not need to fix up as Xen has already reloaded all segment
795 * registers that could be reloaded and zeroed the others.
796 * Category 2 we fix up by killing the current process. We cannot use the
797 * normal Linux return path in this case because if we use the IRET hypercall
798 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
799 * We distinguish between categories by comparing each saved segment register
800 * with its current contents: any discrepancy means we in category 1.
801 */
802 SYM_CODE_START(xen_failsafe_callback)
803 UNWIND_HINT_EMPTY
804 movl %ds, %ecx
805 cmpw %cx, 0x10(%rsp)
806 jne 1f
807 movl %es, %ecx
808 cmpw %cx, 0x18(%rsp)
809 jne 1f
810 movl %fs, %ecx
811 cmpw %cx, 0x20(%rsp)
812 jne 1f
813 movl %gs, %ecx
814 cmpw %cx, 0x28(%rsp)
815 jne 1f
816 /* All segments match their saved values => Category 2 (Bad IRET). */
817 movq (%rsp), %rcx
818 movq 8(%rsp), %r11
819 addq $0x30, %rsp
820 pushq $0 /* RIP */
821 UNWIND_HINT_IRET_REGS offset=8
822 jmp asm_exc_general_protection
823 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
824 movq (%rsp), %rcx
825 movq 8(%rsp), %r11
826 addq $0x30, %rsp
827 UNWIND_HINT_IRET_REGS
828 pushq $-1 /* orig_ax = -1 => not a system call */
829 PUSH_AND_CLEAR_REGS
830 ENCODE_FRAME_POINTER
831 jmp error_return
832 SYM_CODE_END(xen_failsafe_callback)
833 #endif /* CONFIG_XEN_PV */
834
835 /*
836 * Save all registers in pt_regs. Return GSBASE related information
837 * in EBX depending on the availability of the FSGSBASE instructions:
838 *
839 * FSGSBASE R/EBX
840 * N 0 -> SWAPGS on exit
841 * 1 -> no SWAPGS on exit
842 *
843 * Y GSBASE value at entry, must be restored in paranoid_exit
844 */
845 SYM_CODE_START_LOCAL(paranoid_entry)
846 UNWIND_HINT_FUNC
847 cld
848 PUSH_AND_CLEAR_REGS save_ret=1
849 ENCODE_FRAME_POINTER 8
850
851 /*
852 * Always stash CR3 in %r14. This value will be restored,
853 * verbatim, at exit. Needed if paranoid_entry interrupted
854 * another entry that already switched to the user CR3 value
855 * but has not yet returned to userspace.
856 *
857 * This is also why CS (stashed in the "iret frame" by the
858 * hardware at entry) can not be used: this may be a return
859 * to kernel code, but with a user CR3 value.
860 *
861 * Switching CR3 does not depend on kernel GSBASE so it can
862 * be done before switching to the kernel GSBASE. This is
863 * required for FSGSBASE because the kernel GSBASE has to
864 * be retrieved from a kernel internal table.
865 */
866 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
867
868 /*
869 * Handling GSBASE depends on the availability of FSGSBASE.
870 *
871 * Without FSGSBASE the kernel enforces that negative GSBASE
872 * values indicate kernel GSBASE. With FSGSBASE no assumptions
873 * can be made about the GSBASE value when entering from user
874 * space.
875 */
876 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
877
878 /*
879 * Read the current GSBASE and store it in %rbx unconditionally,
880 * retrieve and set the current CPUs kernel GSBASE. The stored value
881 * has to be restored in paranoid_exit unconditionally.
882 *
883 * The unconditional write to GS base below ensures that no subsequent
884 * loads based on a mispredicted GS base can happen, therefore no LFENCE
885 * is needed here.
886 */
887 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
888 ret
889
890 .Lparanoid_entry_checkgs:
891 /* EBX = 1 -> kernel GSBASE active, no restore required */
892 movl $1, %ebx
893
894 /*
895 * The kernel-enforced convention is a negative GSBASE indicates
896 * a kernel value. No SWAPGS needed on entry and exit.
897 */
898 movl $MSR_GS_BASE, %ecx
899 rdmsr
900 testl %edx, %edx
901 js .Lparanoid_kernel_gsbase
902
903 /* EBX = 0 -> SWAPGS required on exit */
904 xorl %ebx, %ebx
905 swapgs
906 .Lparanoid_kernel_gsbase:
907
908 FENCE_SWAPGS_KERNEL_ENTRY
909 ret
910 SYM_CODE_END(paranoid_entry)
911
912 /*
913 * "Paranoid" exit path from exception stack. This is invoked
914 * only on return from non-NMI IST interrupts that came
915 * from kernel space.
916 *
917 * We may be returning to very strange contexts (e.g. very early
918 * in syscall entry), so checking for preemption here would
919 * be complicated. Fortunately, there's no good reason to try
920 * to handle preemption here.
921 *
922 * R/EBX contains the GSBASE related information depending on the
923 * availability of the FSGSBASE instructions:
924 *
925 * FSGSBASE R/EBX
926 * N 0 -> SWAPGS on exit
927 * 1 -> no SWAPGS on exit
928 *
929 * Y User space GSBASE, must be restored unconditionally
930 */
931 SYM_CODE_START_LOCAL(paranoid_exit)
932 UNWIND_HINT_REGS
933 /*
934 * The order of operations is important. RESTORE_CR3 requires
935 * kernel GSBASE.
936 *
937 * NB to anyone to try to optimize this code: this code does
938 * not execute at all for exceptions from user mode. Those
939 * exceptions go through error_exit instead.
940 */
941 RESTORE_CR3 scratch_reg=%rax save_reg=%r14
942
943 /* Handle the three GSBASE cases */
944 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
945
946 /* With FSGSBASE enabled, unconditionally restore GSBASE */
947 wrgsbase %rbx
948 jmp restore_regs_and_return_to_kernel
949
950 .Lparanoid_exit_checkgs:
951 /* On non-FSGSBASE systems, conditionally do SWAPGS */
952 testl %ebx, %ebx
953 jnz restore_regs_and_return_to_kernel
954
955 /* We are returning to a context with user GSBASE */
956 swapgs
957 jmp restore_regs_and_return_to_kernel
958 SYM_CODE_END(paranoid_exit)
959
960 /*
961 * Save all registers in pt_regs, and switch GS if needed.
962 */
963 SYM_CODE_START_LOCAL(error_entry)
964 UNWIND_HINT_FUNC
965 cld
966 PUSH_AND_CLEAR_REGS save_ret=1
967 ENCODE_FRAME_POINTER 8
968 testb $3, CS+8(%rsp)
969 jz .Lerror_kernelspace
970
971 /*
972 * We entered from user mode or we're pretending to have entered
973 * from user mode due to an IRET fault.
974 */
975 SWAPGS
976 FENCE_SWAPGS_USER_ENTRY
977 /* We have user CR3. Change to kernel CR3. */
978 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
979
980 .Lerror_entry_from_usermode_after_swapgs:
981 /* Put us onto the real thread stack. */
982 popq %r12 /* save return addr in %12 */
983 movq %rsp, %rdi /* arg0 = pt_regs pointer */
984 call sync_regs
985 movq %rax, %rsp /* switch stack */
986 ENCODE_FRAME_POINTER
987 pushq %r12
988 ret
989
990 /*
991 * There are two places in the kernel that can potentially fault with
992 * usergs. Handle them here. B stepping K8s sometimes report a
993 * truncated RIP for IRET exceptions returning to compat mode. Check
994 * for these here too.
995 */
996 .Lerror_kernelspace:
997 leaq native_irq_return_iret(%rip), %rcx
998 cmpq %rcx, RIP+8(%rsp)
999 je .Lerror_bad_iret
1000 movl %ecx, %eax /* zero extend */
1001 cmpq %rax, RIP+8(%rsp)
1002 je .Lbstep_iret
1003 cmpq $.Lgs_change, RIP+8(%rsp)
1004 jne .Lerror_entry_done_lfence
1005
1006 /*
1007 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1008 * gsbase and proceed. We'll fix up the exception and land in
1009 * .Lgs_change's error handler with kernel gsbase.
1010 */
1011 SWAPGS
1012
1013 /*
1014 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1015 * kernel or user gsbase.
1016 */
1017 .Lerror_entry_done_lfence:
1018 FENCE_SWAPGS_KERNEL_ENTRY
1019 ret
1020
1021 .Lbstep_iret:
1022 /* Fix truncated RIP */
1023 movq %rcx, RIP+8(%rsp)
1024 /* fall through */
1025
1026 .Lerror_bad_iret:
1027 /*
1028 * We came from an IRET to user mode, so we have user
1029 * gsbase and CR3. Switch to kernel gsbase and CR3:
1030 */
1031 SWAPGS
1032 FENCE_SWAPGS_USER_ENTRY
1033 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1034
1035 /*
1036 * Pretend that the exception came from user mode: set up pt_regs
1037 * as if we faulted immediately after IRET.
1038 */
1039 mov %rsp, %rdi
1040 call fixup_bad_iret
1041 mov %rax, %rsp
1042 jmp .Lerror_entry_from_usermode_after_swapgs
1043 SYM_CODE_END(error_entry)
1044
1045 SYM_CODE_START_LOCAL(error_return)
1046 UNWIND_HINT_REGS
1047 DEBUG_ENTRY_ASSERT_IRQS_OFF
1048 testb $3, CS(%rsp)
1049 jz restore_regs_and_return_to_kernel
1050 jmp swapgs_restore_regs_and_return_to_usermode
1051 SYM_CODE_END(error_return)
1052
1053 /*
1054 * Runs on exception stack. Xen PV does not go through this path at all,
1055 * so we can use real assembly here.
1056 *
1057 * Registers:
1058 * %r14: Used to save/restore the CR3 of the interrupted context
1059 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1060 */
1061 SYM_CODE_START(asm_exc_nmi)
1062 UNWIND_HINT_IRET_REGS
1063
1064 /*
1065 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1066 * the iretq it performs will take us out of NMI context.
1067 * This means that we can have nested NMIs where the next
1068 * NMI is using the top of the stack of the previous NMI. We
1069 * can't let it execute because the nested NMI will corrupt the
1070 * stack of the previous NMI. NMI handlers are not re-entrant
1071 * anyway.
1072 *
1073 * To handle this case we do the following:
1074 * Check the a special location on the stack that contains
1075 * a variable that is set when NMIs are executing.
1076 * The interrupted task's stack is also checked to see if it
1077 * is an NMI stack.
1078 * If the variable is not set and the stack is not the NMI
1079 * stack then:
1080 * o Set the special variable on the stack
1081 * o Copy the interrupt frame into an "outermost" location on the
1082 * stack
1083 * o Copy the interrupt frame into an "iret" location on the stack
1084 * o Continue processing the NMI
1085 * If the variable is set or the previous stack is the NMI stack:
1086 * o Modify the "iret" location to jump to the repeat_nmi
1087 * o return back to the first NMI
1088 *
1089 * Now on exit of the first NMI, we first clear the stack variable
1090 * The NMI stack will tell any nested NMIs at that point that it is
1091 * nested. Then we pop the stack normally with iret, and if there was
1092 * a nested NMI that updated the copy interrupt stack frame, a
1093 * jump will be made to the repeat_nmi code that will handle the second
1094 * NMI.
1095 *
1096 * However, espfix prevents us from directly returning to userspace
1097 * with a single IRET instruction. Similarly, IRET to user mode
1098 * can fault. We therefore handle NMIs from user space like
1099 * other IST entries.
1100 */
1101
1102 ASM_CLAC
1103
1104 /* Use %rdx as our temp variable throughout */
1105 pushq %rdx
1106
1107 testb $3, CS-RIP+8(%rsp)
1108 jz .Lnmi_from_kernel
1109
1110 /*
1111 * NMI from user mode. We need to run on the thread stack, but we
1112 * can't go through the normal entry paths: NMIs are masked, and
1113 * we don't want to enable interrupts, because then we'll end
1114 * up in an awkward situation in which IRQs are on but NMIs
1115 * are off.
1116 *
1117 * We also must not push anything to the stack before switching
1118 * stacks lest we corrupt the "NMI executing" variable.
1119 */
1120
1121 swapgs
1122 cld
1123 FENCE_SWAPGS_USER_ENTRY
1124 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1125 movq %rsp, %rdx
1126 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1127 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1128 pushq 5*8(%rdx) /* pt_regs->ss */
1129 pushq 4*8(%rdx) /* pt_regs->rsp */
1130 pushq 3*8(%rdx) /* pt_regs->flags */
1131 pushq 2*8(%rdx) /* pt_regs->cs */
1132 pushq 1*8(%rdx) /* pt_regs->rip */
1133 UNWIND_HINT_IRET_REGS
1134 pushq $-1 /* pt_regs->orig_ax */
1135 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1136 ENCODE_FRAME_POINTER
1137
1138 /*
1139 * At this point we no longer need to worry about stack damage
1140 * due to nesting -- we're on the normal thread stack and we're
1141 * done with the NMI stack.
1142 */
1143
1144 movq %rsp, %rdi
1145 movq $-1, %rsi
1146 call exc_nmi
1147
1148 /*
1149 * Return back to user mode. We must *not* do the normal exit
1150 * work, because we don't want to enable interrupts.
1151 */
1152 jmp swapgs_restore_regs_and_return_to_usermode
1153
1154 .Lnmi_from_kernel:
1155 /*
1156 * Here's what our stack frame will look like:
1157 * +---------------------------------------------------------+
1158 * | original SS |
1159 * | original Return RSP |
1160 * | original RFLAGS |
1161 * | original CS |
1162 * | original RIP |
1163 * +---------------------------------------------------------+
1164 * | temp storage for rdx |
1165 * +---------------------------------------------------------+
1166 * | "NMI executing" variable |
1167 * +---------------------------------------------------------+
1168 * | iret SS } Copied from "outermost" frame |
1169 * | iret Return RSP } on each loop iteration; overwritten |
1170 * | iret RFLAGS } by a nested NMI to force another |
1171 * | iret CS } iteration if needed. |
1172 * | iret RIP } |
1173 * +---------------------------------------------------------+
1174 * | outermost SS } initialized in first_nmi; |
1175 * | outermost Return RSP } will not be changed before |
1176 * | outermost RFLAGS } NMI processing is done. |
1177 * | outermost CS } Copied to "iret" frame on each |
1178 * | outermost RIP } iteration. |
1179 * +---------------------------------------------------------+
1180 * | pt_regs |
1181 * +---------------------------------------------------------+
1182 *
1183 * The "original" frame is used by hardware. Before re-enabling
1184 * NMIs, we need to be done with it, and we need to leave enough
1185 * space for the asm code here.
1186 *
1187 * We return by executing IRET while RSP points to the "iret" frame.
1188 * That will either return for real or it will loop back into NMI
1189 * processing.
1190 *
1191 * The "outermost" frame is copied to the "iret" frame on each
1192 * iteration of the loop, so each iteration starts with the "iret"
1193 * frame pointing to the final return target.
1194 */
1195
1196 /*
1197 * Determine whether we're a nested NMI.
1198 *
1199 * If we interrupted kernel code between repeat_nmi and
1200 * end_repeat_nmi, then we are a nested NMI. We must not
1201 * modify the "iret" frame because it's being written by
1202 * the outer NMI. That's okay; the outer NMI handler is
1203 * about to about to call exc_nmi() anyway, so we can just
1204 * resume the outer NMI.
1205 */
1206
1207 movq $repeat_nmi, %rdx
1208 cmpq 8(%rsp), %rdx
1209 ja 1f
1210 movq $end_repeat_nmi, %rdx
1211 cmpq 8(%rsp), %rdx
1212 ja nested_nmi_out
1213 1:
1214
1215 /*
1216 * Now check "NMI executing". If it's set, then we're nested.
1217 * This will not detect if we interrupted an outer NMI just
1218 * before IRET.
1219 */
1220 cmpl $1, -8(%rsp)
1221 je nested_nmi
1222
1223 /*
1224 * Now test if the previous stack was an NMI stack. This covers
1225 * the case where we interrupt an outer NMI after it clears
1226 * "NMI executing" but before IRET. We need to be careful, though:
1227 * there is one case in which RSP could point to the NMI stack
1228 * despite there being no NMI active: naughty userspace controls
1229 * RSP at the very beginning of the SYSCALL targets. We can
1230 * pull a fast one on naughty userspace, though: we program
1231 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1232 * if it controls the kernel's RSP. We set DF before we clear
1233 * "NMI executing".
1234 */
1235 lea 6*8(%rsp), %rdx
1236 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1237 cmpq %rdx, 4*8(%rsp)
1238 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1239 ja first_nmi
1240
1241 subq $EXCEPTION_STKSZ, %rdx
1242 cmpq %rdx, 4*8(%rsp)
1243 /* If it is below the NMI stack, it is a normal NMI */
1244 jb first_nmi
1245
1246 /* Ah, it is within the NMI stack. */
1247
1248 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1249 jz first_nmi /* RSP was user controlled. */
1250
1251 /* This is a nested NMI. */
1252
1253 nested_nmi:
1254 /*
1255 * Modify the "iret" frame to point to repeat_nmi, forcing another
1256 * iteration of NMI handling.
1257 */
1258 subq $8, %rsp
1259 leaq -10*8(%rsp), %rdx
1260 pushq $__KERNEL_DS
1261 pushq %rdx
1262 pushfq
1263 pushq $__KERNEL_CS
1264 pushq $repeat_nmi
1265
1266 /* Put stack back */
1267 addq $(6*8), %rsp
1268
1269 nested_nmi_out:
1270 popq %rdx
1271
1272 /* We are returning to kernel mode, so this cannot result in a fault. */
1273 iretq
1274
1275 first_nmi:
1276 /* Restore rdx. */
1277 movq (%rsp), %rdx
1278
1279 /* Make room for "NMI executing". */
1280 pushq $0
1281
1282 /* Leave room for the "iret" frame */
1283 subq $(5*8), %rsp
1284
1285 /* Copy the "original" frame to the "outermost" frame */
1286 .rept 5
1287 pushq 11*8(%rsp)
1288 .endr
1289 UNWIND_HINT_IRET_REGS
1290
1291 /* Everything up to here is safe from nested NMIs */
1292
1293 #ifdef CONFIG_DEBUG_ENTRY
1294 /*
1295 * For ease of testing, unmask NMIs right away. Disabled by
1296 * default because IRET is very expensive.
1297 */
1298 pushq $0 /* SS */
1299 pushq %rsp /* RSP (minus 8 because of the previous push) */
1300 addq $8, (%rsp) /* Fix up RSP */
1301 pushfq /* RFLAGS */
1302 pushq $__KERNEL_CS /* CS */
1303 pushq $1f /* RIP */
1304 iretq /* continues at repeat_nmi below */
1305 UNWIND_HINT_IRET_REGS
1306 1:
1307 #endif
1308
1309 repeat_nmi:
1310 /*
1311 * If there was a nested NMI, the first NMI's iret will return
1312 * here. But NMIs are still enabled and we can take another
1313 * nested NMI. The nested NMI checks the interrupted RIP to see
1314 * if it is between repeat_nmi and end_repeat_nmi, and if so
1315 * it will just return, as we are about to repeat an NMI anyway.
1316 * This makes it safe to copy to the stack frame that a nested
1317 * NMI will update.
1318 *
1319 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1320 * we're repeating an NMI, gsbase has the same value that it had on
1321 * the first iteration. paranoid_entry will load the kernel
1322 * gsbase if needed before we call exc_nmi(). "NMI executing"
1323 * is zero.
1324 */
1325 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1326
1327 /*
1328 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1329 * here must not modify the "iret" frame while we're writing to
1330 * it or it will end up containing garbage.
1331 */
1332 addq $(10*8), %rsp
1333 .rept 5
1334 pushq -6*8(%rsp)
1335 .endr
1336 subq $(5*8), %rsp
1337 end_repeat_nmi:
1338
1339 /*
1340 * Everything below this point can be preempted by a nested NMI.
1341 * If this happens, then the inner NMI will change the "iret"
1342 * frame to point back to repeat_nmi.
1343 */
1344 pushq $-1 /* ORIG_RAX: no syscall to restart */
1345
1346 /*
1347 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1348 * as we should not be calling schedule in NMI context.
1349 * Even with normal interrupts enabled. An NMI should not be
1350 * setting NEED_RESCHED or anything that normal interrupts and
1351 * exceptions might do.
1352 */
1353 call paranoid_entry
1354 UNWIND_HINT_REGS
1355
1356 movq %rsp, %rdi
1357 movq $-1, %rsi
1358 call exc_nmi
1359
1360 /* Always restore stashed CR3 value (see paranoid_entry) */
1361 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1362
1363 /*
1364 * The above invocation of paranoid_entry stored the GSBASE
1365 * related information in R/EBX depending on the availability
1366 * of FSGSBASE.
1367 *
1368 * If FSGSBASE is enabled, restore the saved GSBASE value
1369 * unconditionally, otherwise take the conditional SWAPGS path.
1370 */
1371 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1372
1373 wrgsbase %rbx
1374 jmp nmi_restore
1375
1376 nmi_no_fsgsbase:
1377 /* EBX == 0 -> invoke SWAPGS */
1378 testl %ebx, %ebx
1379 jnz nmi_restore
1380
1381 nmi_swapgs:
1382 swapgs
1383
1384 nmi_restore:
1385 POP_REGS
1386
1387 /*
1388 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1389 * at the "iret" frame.
1390 */
1391 addq $6*8, %rsp
1392
1393 /*
1394 * Clear "NMI executing". Set DF first so that we can easily
1395 * distinguish the remaining code between here and IRET from
1396 * the SYSCALL entry and exit paths.
1397 *
1398 * We arguably should just inspect RIP instead, but I (Andy) wrote
1399 * this code when I had the misapprehension that Xen PV supported
1400 * NMIs, and Xen PV would break that approach.
1401 */
1402 std
1403 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1404
1405 /*
1406 * iretq reads the "iret" frame and exits the NMI stack in a
1407 * single instruction. We are returning to kernel mode, so this
1408 * cannot result in a fault. Similarly, we don't need to worry
1409 * about espfix64 on the way back to kernel mode.
1410 */
1411 iretq
1412 SYM_CODE_END(asm_exc_nmi)
1413
1414 #ifndef CONFIG_IA32_EMULATION
1415 /*
1416 * This handles SYSCALL from 32-bit code. There is no way to program
1417 * MSRs to fully disable 32-bit SYSCALL.
1418 */
1419 SYM_CODE_START(ignore_sysret)
1420 UNWIND_HINT_EMPTY
1421 mov $-ENOSYS, %eax
1422 sysretl
1423 SYM_CODE_END(ignore_sysret)
1424 #endif
1425
1426 .pushsection .text, "ax"
1427 SYM_CODE_START(rewind_stack_do_exit)
1428 UNWIND_HINT_FUNC
1429 /* Prevent any naive code from trying to unwind to our caller. */
1430 xorl %ebp, %ebp
1431
1432 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1433 leaq -PTREGS_SIZE(%rax), %rsp
1434 UNWIND_HINT_REGS
1435
1436 call do_exit
1437 SYM_CODE_END(rewind_stack_do_exit)
1438 .popsection