]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/entry/entry_64.S
x86/entry/64: Remove the restore_c_regs_and_iret label
[mirror_ubuntu-artful-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <linux/err.h>
41
42 .code64
43 .section .entry.text, "ax"
44
45 #ifdef CONFIG_PARAVIRT
46 ENTRY(native_usergs_sysret64)
47 UNWIND_HINT_EMPTY
48 swapgs
49 sysretq
50 END(native_usergs_sysret64)
51 #endif /* CONFIG_PARAVIRT */
52
53 .macro TRACE_IRQS_IRETQ
54 #ifdef CONFIG_TRACE_IRQFLAGS
55 bt $9, EFLAGS(%rsp) /* interrupts off? */
56 jnc 1f
57 TRACE_IRQS_ON
58 1:
59 #endif
60 .endm
61
62 /*
63 * When dynamic function tracer is enabled it will add a breakpoint
64 * to all locations that it is about to modify, sync CPUs, update
65 * all the code, sync CPUs, then remove the breakpoints. In this time
66 * if lockdep is enabled, it might jump back into the debug handler
67 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 *
69 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
70 * make sure the stack pointer does not get reset back to the top
71 * of the debug stack, and instead just reuses the current stack.
72 */
73 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74
75 .macro TRACE_IRQS_OFF_DEBUG
76 call debug_stack_set_zero
77 TRACE_IRQS_OFF
78 call debug_stack_reset
79 .endm
80
81 .macro TRACE_IRQS_ON_DEBUG
82 call debug_stack_set_zero
83 TRACE_IRQS_ON
84 call debug_stack_reset
85 .endm
86
87 .macro TRACE_IRQS_IRETQ_DEBUG
88 bt $9, EFLAGS(%rsp) /* interrupts off? */
89 jnc 1f
90 TRACE_IRQS_ON_DEBUG
91 1:
92 .endm
93
94 #else
95 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
96 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
97 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
98 #endif
99
100 /*
101 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
102 *
103 * This is the only entry point used for 64-bit system calls. The
104 * hardware interface is reasonably well designed and the register to
105 * argument mapping Linux uses fits well with the registers that are
106 * available when SYSCALL is used.
107 *
108 * SYSCALL instructions can be found inlined in libc implementations as
109 * well as some other programs and libraries. There are also a handful
110 * of SYSCALL instructions in the vDSO used, for example, as a
111 * clock_gettimeofday fallback.
112 *
113 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 * then loads new ss, cs, and rip from previously programmed MSRs.
115 * rflags gets masked by a value from another MSR (so CLD and CLAC
116 * are not needed). SYSCALL does not save anything on the stack
117 * and does not change rsp.
118 *
119 * Registers on entry:
120 * rax system call number
121 * rcx return address
122 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
123 * rdi arg0
124 * rsi arg1
125 * rdx arg2
126 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
127 * r8 arg4
128 * r9 arg5
129 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130 *
131 * Only called from user space.
132 *
133 * When user can change pt_regs->foo always force IRET. That is because
134 * it deals with uncanonical addresses better. SYSRET has trouble
135 * with them due to bugs in both AMD and Intel CPUs.
136 */
137
138 ENTRY(entry_SYSCALL_64)
139 UNWIND_HINT_EMPTY
140 /*
141 * Interrupts are off on entry.
142 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
143 * it is too small to ever cause noticeable irq latency.
144 */
145
146 swapgs
147 movq %rsp, PER_CPU_VAR(rsp_scratch)
148 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149
150 TRACE_IRQS_OFF
151
152 /* Construct struct pt_regs on stack */
153 pushq $__USER_DS /* pt_regs->ss */
154 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
155 pushq %r11 /* pt_regs->flags */
156 pushq $__USER_CS /* pt_regs->cs */
157 pushq %rcx /* pt_regs->ip */
158 GLOBAL(entry_SYSCALL_64_after_hwframe)
159 pushq %rax /* pt_regs->orig_ax */
160 pushq %rdi /* pt_regs->di */
161 pushq %rsi /* pt_regs->si */
162 pushq %rdx /* pt_regs->dx */
163 pushq %rcx /* pt_regs->cx */
164 pushq $-ENOSYS /* pt_regs->ax */
165 pushq %r8 /* pt_regs->r8 */
166 pushq %r9 /* pt_regs->r9 */
167 pushq %r10 /* pt_regs->r10 */
168 pushq %r11 /* pt_regs->r11 */
169 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
170 UNWIND_HINT_REGS extra=0
171
172 /*
173 * If we need to do entry work or if we guess we'll need to do
174 * exit work, go straight to the slow path.
175 */
176 movq PER_CPU_VAR(current_task), %r11
177 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178 jnz entry_SYSCALL64_slow_path
179
180 entry_SYSCALL_64_fastpath:
181 /*
182 * Easy case: enable interrupts and issue the syscall. If the syscall
183 * needs pt_regs, we'll call a stub that disables interrupts again
184 * and jumps to the slow path.
185 */
186 TRACE_IRQS_ON
187 ENABLE_INTERRUPTS(CLBR_NONE)
188 #if __SYSCALL_MASK == ~0
189 cmpq $__NR_syscall_max, %rax
190 #else
191 andl $__SYSCALL_MASK, %eax
192 cmpl $__NR_syscall_max, %eax
193 #endif
194 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
195 movq %r10, %rcx
196
197 /*
198 * This call instruction is handled specially in stub_ptregs_64.
199 * It might end up jumping to the slow path. If it jumps, RAX
200 * and all argument registers are clobbered.
201 */
202 call *sys_call_table(, %rax, 8)
203 .Lentry_SYSCALL_64_after_fastpath_call:
204
205 movq %rax, RAX(%rsp)
206 1:
207
208 /*
209 * If we get here, then we know that pt_regs is clean for SYSRET64.
210 * If we see that no exit work is required (which we are required
211 * to check with IRQs off), then we can go straight to SYSRET64.
212 */
213 DISABLE_INTERRUPTS(CLBR_ANY)
214 TRACE_IRQS_OFF
215 movq PER_CPU_VAR(current_task), %r11
216 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217 jnz 1f
218
219 LOCKDEP_SYS_EXIT
220 TRACE_IRQS_ON /* user mode is traced as IRQs on */
221 movq RIP(%rsp), %rcx
222 movq EFLAGS(%rsp), %r11
223 RESTORE_C_REGS_EXCEPT_RCX_R11
224 movq RSP(%rsp), %rsp
225 UNWIND_HINT_EMPTY
226 USERGS_SYSRET64
227
228 1:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
234 TRACE_IRQS_ON
235 ENABLE_INTERRUPTS(CLBR_ANY)
236 SAVE_EXTRA_REGS
237 movq %rsp, %rdi
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
240
241 entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
243 SAVE_EXTRA_REGS
244 movq %rsp, %rdi
245 call do_syscall_64 /* returns with IRQs disabled */
246
247 return_from_SYSCALL_64:
248 TRACE_IRQS_IRETQ /* we're about to change IF */
249
250 /*
251 * Try to use SYSRET instead of IRET if we're returning to
252 * a completely clean 64-bit userspace context.
253 */
254 movq RCX(%rsp), %rcx
255 movq RIP(%rsp), %r11
256 cmpq %rcx, %r11 /* RCX == RIP */
257 jne opportunistic_sysret_failed
258
259 /*
260 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
261 * in kernel space. This essentially lets the user take over
262 * the kernel, since userspace controls RSP.
263 *
264 * If width of "canonical tail" ever becomes variable, this will need
265 * to be updated to remain correct on both old and new CPUs.
266 *
267 * Change top bits to match most significant bit (47th or 56th bit
268 * depending on paging mode) in the address.
269 */
270 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
271 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272
273 /* If this changed %rcx, it was not canonical */
274 cmpq %rcx, %r11
275 jne opportunistic_sysret_failed
276
277 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
278 jne opportunistic_sysret_failed
279
280 movq R11(%rsp), %r11
281 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
282 jne opportunistic_sysret_failed
283
284 /*
285 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
286 * restore RF properly. If the slowpath sets it for whatever reason, we
287 * need to restore it correctly.
288 *
289 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
290 * trap from userspace immediately after SYSRET. This would cause an
291 * infinite loop whenever #DB happens with register state that satisfies
292 * the opportunistic SYSRET conditions. For example, single-stepping
293 * this user code:
294 *
295 * movq $stuck_here, %rcx
296 * pushfq
297 * popq %r11
298 * stuck_here:
299 *
300 * would never get past 'stuck_here'.
301 */
302 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
303 jnz opportunistic_sysret_failed
304
305 /* nothing to check for RSP */
306
307 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
308 jne opportunistic_sysret_failed
309
310 /*
311 * We win! This label is here just for ease of understanding
312 * perf profiles. Nothing jumps here.
313 */
314 syscall_return_via_sysret:
315 /* rcx and r11 are already restored (see code above) */
316 RESTORE_EXTRA_REGS
317 RESTORE_C_REGS_EXCEPT_RCX_R11
318 movq RSP(%rsp), %rsp
319 UNWIND_HINT_EMPTY
320 USERGS_SYSRET64
321
322 opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_regs_and_iret
325 END(entry_SYSCALL_64)
326
327 ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
335 * IRQs are on.
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_ANY)
345 TRACE_IRQS_OFF
346 popq %rax
347 UNWIND_HINT_REGS extra=0
348 jmp entry_SYSCALL64_slow_path
349
350 1:
351 jmp *%rax /* Called from C */
352 END(stub_ptregs_64)
353
354 .macro ptregs_stub func
355 ENTRY(ptregs_\func)
356 UNWIND_HINT_FUNC
357 leaq \func(%rip), %rax
358 jmp stub_ptregs_64
359 END(ptregs_\func)
360 .endm
361
362 /* Instantiate ptregs_stub for each ptregs-using syscall */
363 #define __SYSCALL_64_QUAL_(sym)
364 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366 #include <asm/syscalls_64.h>
367
368 /*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372 ENTRY(__switch_to_asm)
373 UNWIND_HINT_FUNC
374 /*
375 * Save callee-saved registers
376 * This must match the order in inactive_task_frame
377 */
378 pushq %rbp
379 pushq %rbx
380 pushq %r12
381 pushq %r13
382 pushq %r14
383 pushq %r15
384
385 /* switch stack */
386 movq %rsp, TASK_threadsp(%rdi)
387 movq TASK_threadsp(%rsi), %rsp
388
389 #ifdef CONFIG_CC_STACKPROTECTOR
390 movq TASK_stack_canary(%rsi), %rbx
391 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392 #endif
393
394 /* restore callee-saved registers */
395 popq %r15
396 popq %r14
397 popq %r13
398 popq %r12
399 popq %rbx
400 popq %rbp
401
402 jmp __switch_to
403 END(__switch_to_asm)
404
405 /*
406 * A newly forked process directly context switches into this address.
407 *
408 * rax: prev task we switched from
409 * rbx: kernel thread func (NULL for user thread)
410 * r12: kernel thread arg
411 */
412 ENTRY(ret_from_fork)
413 UNWIND_HINT_EMPTY
414 movq %rax, %rdi
415 call schedule_tail /* rdi: 'prev' task parameter */
416
417 testq %rbx, %rbx /* from kernel_thread? */
418 jnz 1f /* kernel threads are uncommon */
419
420 2:
421 UNWIND_HINT_REGS
422 movq %rsp, %rdi
423 call syscall_return_slowpath /* returns with IRQs disabled */
424 TRACE_IRQS_ON /* user mode is traced as IRQS on */
425 SWAPGS
426 jmp restore_regs_and_iret
427
428 1:
429 /* kernel thread */
430 movq %r12, %rdi
431 call *%rbx
432 /*
433 * A kernel thread is allowed to return here after successfully
434 * calling do_execve(). Exit to userspace to complete the execve()
435 * syscall.
436 */
437 movq $0, RAX(%rsp)
438 jmp 2b
439 END(ret_from_fork)
440
441 /*
442 * Build the entry stubs with some assembler magic.
443 * We pack 1 stub into every 8-byte block.
444 */
445 .align 8
446 ENTRY(irq_entries_start)
447 vector=FIRST_EXTERNAL_VECTOR
448 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
449 UNWIND_HINT_IRET_REGS
450 pushq $(~vector+0x80) /* Note: always in signed byte range */
451 jmp common_interrupt
452 .align 8
453 vector=vector+1
454 .endr
455 END(irq_entries_start)
456
457 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
458 #ifdef CONFIG_DEBUG_ENTRY
459 pushfq
460 testl $X86_EFLAGS_IF, (%rsp)
461 jz .Lokay_\@
462 ud2
463 .Lokay_\@:
464 addq $8, %rsp
465 #endif
466 .endm
467
468 /*
469 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
470 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
471 * Requires kernel GSBASE.
472 *
473 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
474 */
475 .macro ENTER_IRQ_STACK regs=1 old_rsp
476 DEBUG_ENTRY_ASSERT_IRQS_OFF
477 movq %rsp, \old_rsp
478
479 .if \regs
480 UNWIND_HINT_REGS base=\old_rsp
481 .endif
482
483 incl PER_CPU_VAR(irq_count)
484 jnz .Lirq_stack_push_old_rsp_\@
485
486 /*
487 * Right now, if we just incremented irq_count to zero, we've
488 * claimed the IRQ stack but we haven't switched to it yet.
489 *
490 * If anything is added that can interrupt us here without using IST,
491 * it must be *extremely* careful to limit its stack usage. This
492 * could include kprobes and a hypothetical future IST-less #DB
493 * handler.
494 *
495 * The OOPS unwinder relies on the word at the top of the IRQ
496 * stack linking back to the previous RSP for the entire time we're
497 * on the IRQ stack. For this to work reliably, we need to write
498 * it before we actually move ourselves to the IRQ stack.
499 */
500
501 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
502 movq PER_CPU_VAR(irq_stack_ptr), %rsp
503
504 #ifdef CONFIG_DEBUG_ENTRY
505 /*
506 * If the first movq above becomes wrong due to IRQ stack layout
507 * changes, the only way we'll notice is if we try to unwind right
508 * here. Assert that we set up the stack right to catch this type
509 * of bug quickly.
510 */
511 cmpq -8(%rsp), \old_rsp
512 je .Lirq_stack_okay\@
513 ud2
514 .Lirq_stack_okay\@:
515 #endif
516
517 .Lirq_stack_push_old_rsp_\@:
518 pushq \old_rsp
519
520 .if \regs
521 UNWIND_HINT_REGS indirect=1
522 .endif
523 .endm
524
525 /*
526 * Undoes ENTER_IRQ_STACK.
527 */
528 .macro LEAVE_IRQ_STACK regs=1
529 DEBUG_ENTRY_ASSERT_IRQS_OFF
530 /* We need to be off the IRQ stack before decrementing irq_count. */
531 popq %rsp
532
533 .if \regs
534 UNWIND_HINT_REGS
535 .endif
536
537 /*
538 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
539 * the irq stack but we're not on it.
540 */
541
542 decl PER_CPU_VAR(irq_count)
543 .endm
544
545 /*
546 * Interrupt entry/exit.
547 *
548 * Interrupt entry points save only callee clobbered registers in fast path.
549 *
550 * Entry runs with interrupts off.
551 */
552
553 /* 0(%rsp): ~(interrupt number) */
554 .macro interrupt func
555 cld
556 ALLOC_PT_GPREGS_ON_STACK
557 SAVE_C_REGS
558 SAVE_EXTRA_REGS
559 ENCODE_FRAME_POINTER
560
561 testb $3, CS(%rsp)
562 jz 1f
563
564 /*
565 * IRQ from user mode. Switch to kernel gsbase and inform context
566 * tracking that we're in kernel mode.
567 */
568 SWAPGS
569
570 /*
571 * We need to tell lockdep that IRQs are off. We can't do this until
572 * we fix gsbase, and we should do it before enter_from_user_mode
573 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
574 * the simplest way to handle it is to just call it twice if
575 * we enter from user mode. There's no reason to optimize this since
576 * TRACE_IRQS_OFF is a no-op if lockdep is off.
577 */
578 TRACE_IRQS_OFF
579
580 CALL_enter_from_user_mode
581
582 1:
583 ENTER_IRQ_STACK old_rsp=%rdi
584 /* We entered an interrupt context - irqs are off: */
585 TRACE_IRQS_OFF
586
587 call \func /* rdi points to pt_regs */
588 .endm
589
590 /*
591 * The interrupt stubs push (~vector+0x80) onto the stack and
592 * then jump to common_interrupt.
593 */
594 .p2align CONFIG_X86_L1_CACHE_SHIFT
595 common_interrupt:
596 ASM_CLAC
597 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
598 interrupt do_IRQ
599 /* 0(%rsp): old RSP */
600 ret_from_intr:
601 DISABLE_INTERRUPTS(CLBR_ANY)
602 TRACE_IRQS_OFF
603
604 LEAVE_IRQ_STACK
605
606 testb $3, CS(%rsp)
607 jz retint_kernel
608
609 /* Interrupt came from user space */
610 GLOBAL(retint_user)
611 mov %rsp,%rdi
612 call prepare_exit_to_usermode
613 TRACE_IRQS_IRETQ
614 SWAPGS
615 jmp restore_regs_and_iret
616
617 /* Returning to kernel space */
618 retint_kernel:
619 #ifdef CONFIG_PREEMPT
620 /* Interrupts are off */
621 /* Check if we need preemption */
622 bt $9, EFLAGS(%rsp) /* were interrupts off? */
623 jnc 1f
624 0: cmpl $0, PER_CPU_VAR(__preempt_count)
625 jnz 1f
626 call preempt_schedule_irq
627 jmp 0b
628 1:
629 #endif
630 /*
631 * The iretq could re-enable interrupts:
632 */
633 TRACE_IRQS_IRETQ
634
635 /*
636 * At this label, code paths which return to kernel and to user,
637 * which come from interrupts/exception and from syscalls, merge.
638 */
639 GLOBAL(restore_regs_and_iret)
640 RESTORE_EXTRA_REGS
641 RESTORE_C_REGS
642 REMOVE_PT_GPREGS_FROM_STACK 8
643 INTERRUPT_RETURN
644
645 ENTRY(native_iret)
646 UNWIND_HINT_IRET_REGS
647 /*
648 * Are we returning to a stack segment from the LDT? Note: in
649 * 64-bit mode SS:RSP on the exception stack is always valid.
650 */
651 #ifdef CONFIG_X86_ESPFIX64
652 testb $4, (SS-RIP)(%rsp)
653 jnz native_irq_return_ldt
654 #endif
655
656 .global native_irq_return_iret
657 native_irq_return_iret:
658 /*
659 * This may fault. Non-paranoid faults on return to userspace are
660 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
661 * Double-faults due to espfix64 are handled in do_double_fault.
662 * Other faults here are fatal.
663 */
664 iretq
665
666 #ifdef CONFIG_X86_ESPFIX64
667 native_irq_return_ldt:
668 /*
669 * We are running with user GSBASE. All GPRs contain their user
670 * values. We have a percpu ESPFIX stack that is eight slots
671 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
672 * of the ESPFIX stack.
673 *
674 * We clobber RAX and RDI in this code. We stash RDI on the
675 * normal stack and RAX on the ESPFIX stack.
676 *
677 * The ESPFIX stack layout we set up looks like this:
678 *
679 * --- top of ESPFIX stack ---
680 * SS
681 * RSP
682 * RFLAGS
683 * CS
684 * RIP <-- RSP points here when we're done
685 * RAX <-- espfix_waddr points here
686 * --- bottom of ESPFIX stack ---
687 */
688
689 pushq %rdi /* Stash user RDI */
690 SWAPGS
691 movq PER_CPU_VAR(espfix_waddr), %rdi
692 movq %rax, (0*8)(%rdi) /* user RAX */
693 movq (1*8)(%rsp), %rax /* user RIP */
694 movq %rax, (1*8)(%rdi)
695 movq (2*8)(%rsp), %rax /* user CS */
696 movq %rax, (2*8)(%rdi)
697 movq (3*8)(%rsp), %rax /* user RFLAGS */
698 movq %rax, (3*8)(%rdi)
699 movq (5*8)(%rsp), %rax /* user SS */
700 movq %rax, (5*8)(%rdi)
701 movq (4*8)(%rsp), %rax /* user RSP */
702 movq %rax, (4*8)(%rdi)
703 /* Now RAX == RSP. */
704
705 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
706 popq %rdi /* Restore user RDI */
707
708 /*
709 * espfix_stack[31:16] == 0. The page tables are set up such that
710 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
711 * espfix_waddr for any X. That is, there are 65536 RO aliases of
712 * the same page. Set up RSP so that RSP[31:16] contains the
713 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
714 * still points to an RO alias of the ESPFIX stack.
715 */
716 orq PER_CPU_VAR(espfix_stack), %rax
717 SWAPGS
718 movq %rax, %rsp
719 UNWIND_HINT_IRET_REGS offset=8
720
721 /*
722 * At this point, we cannot write to the stack any more, but we can
723 * still read.
724 */
725 popq %rax /* Restore user RAX */
726
727 /*
728 * RSP now points to an ordinary IRET frame, except that the page
729 * is read-only and RSP[31:16] are preloaded with the userspace
730 * values. We can now IRET back to userspace.
731 */
732 jmp native_irq_return_iret
733 #endif
734 END(common_interrupt)
735
736 /*
737 * APIC interrupts.
738 */
739 .macro apicinterrupt3 num sym do_sym
740 ENTRY(\sym)
741 UNWIND_HINT_IRET_REGS
742 ASM_CLAC
743 pushq $~(\num)
744 .Lcommon_\sym:
745 interrupt \do_sym
746 jmp ret_from_intr
747 END(\sym)
748 .endm
749
750 #ifdef CONFIG_TRACING
751 #define trace(sym) trace_##sym
752 #define smp_trace(sym) smp_trace_##sym
753
754 .macro trace_apicinterrupt num sym
755 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
756 .endm
757 #else
758 .macro trace_apicinterrupt num sym do_sym
759 .endm
760 #endif
761
762 /* Make sure APIC interrupt handlers end up in the irqentry section: */
763 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
764 #define POP_SECTION_IRQENTRY .popsection
765
766 .macro apicinterrupt num sym do_sym
767 PUSH_SECTION_IRQENTRY
768 apicinterrupt3 \num \sym \do_sym
769 trace_apicinterrupt \num \sym
770 POP_SECTION_IRQENTRY
771 .endm
772
773 #ifdef CONFIG_SMP
774 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
775 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
776 #endif
777
778 #ifdef CONFIG_X86_UV
779 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
780 #endif
781
782 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
783 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
784
785 #ifdef CONFIG_HAVE_KVM
786 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
787 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
788 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
789 #endif
790
791 #ifdef CONFIG_X86_MCE_THRESHOLD
792 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
793 #endif
794
795 #ifdef CONFIG_X86_MCE_AMD
796 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
797 #endif
798
799 #ifdef CONFIG_X86_THERMAL_VECTOR
800 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
801 #endif
802
803 #ifdef CONFIG_SMP
804 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
805 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
806 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
807 #endif
808
809 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
810 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
811
812 #ifdef CONFIG_IRQ_WORK
813 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
814 #endif
815
816 /*
817 * Exception entry points.
818 */
819 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
820
821 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
822 ENTRY(\sym)
823 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
824
825 /* Sanity check */
826 .if \shift_ist != -1 && \paranoid == 0
827 .error "using shift_ist requires paranoid=1"
828 .endif
829
830 ASM_CLAC
831
832 .if \has_error_code == 0
833 pushq $-1 /* ORIG_RAX: no syscall to restart */
834 .endif
835
836 ALLOC_PT_GPREGS_ON_STACK
837
838 .if \paranoid
839 .if \paranoid == 1
840 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
841 jnz 1f
842 .endif
843 call paranoid_entry
844 .else
845 call error_entry
846 .endif
847 UNWIND_HINT_REGS
848 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
849
850 .if \paranoid
851 .if \shift_ist != -1
852 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
853 .else
854 TRACE_IRQS_OFF
855 .endif
856 .endif
857
858 movq %rsp, %rdi /* pt_regs pointer */
859
860 .if \has_error_code
861 movq ORIG_RAX(%rsp), %rsi /* get error code */
862 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
863 .else
864 xorl %esi, %esi /* no error code */
865 .endif
866
867 .if \shift_ist != -1
868 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
869 .endif
870
871 call \do_sym
872
873 .if \shift_ist != -1
874 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
875 .endif
876
877 /* these procedures expect "no swapgs" flag in ebx */
878 .if \paranoid
879 jmp paranoid_exit
880 .else
881 jmp error_exit
882 .endif
883
884 .if \paranoid == 1
885 /*
886 * Paranoid entry from userspace. Switch stacks and treat it
887 * as a normal entry. This means that paranoid handlers
888 * run in real process context if user_mode(regs).
889 */
890 1:
891 call error_entry
892
893
894 movq %rsp, %rdi /* pt_regs pointer */
895 call sync_regs
896 movq %rax, %rsp /* switch stack */
897
898 movq %rsp, %rdi /* pt_regs pointer */
899
900 .if \has_error_code
901 movq ORIG_RAX(%rsp), %rsi /* get error code */
902 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
903 .else
904 xorl %esi, %esi /* no error code */
905 .endif
906
907 call \do_sym
908
909 jmp error_exit /* %ebx: no swapgs flag */
910 .endif
911 END(\sym)
912 .endm
913
914 idtentry divide_error do_divide_error has_error_code=0
915 idtentry overflow do_overflow has_error_code=0
916 idtentry bounds do_bounds has_error_code=0
917 idtentry invalid_op do_invalid_op has_error_code=0
918 idtentry device_not_available do_device_not_available has_error_code=0
919 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
920 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
921 idtentry invalid_TSS do_invalid_TSS has_error_code=1
922 idtentry segment_not_present do_segment_not_present has_error_code=1
923 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
924 idtentry coprocessor_error do_coprocessor_error has_error_code=0
925 idtentry alignment_check do_alignment_check has_error_code=1
926 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
927
928
929 /*
930 * Reload gs selector with exception handling
931 * edi: new selector
932 */
933 ENTRY(native_load_gs_index)
934 FRAME_BEGIN
935 pushfq
936 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
937 SWAPGS
938 .Lgs_change:
939 movl %edi, %gs
940 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
941 SWAPGS
942 popfq
943 FRAME_END
944 ret
945 ENDPROC(native_load_gs_index)
946 EXPORT_SYMBOL(native_load_gs_index)
947
948 _ASM_EXTABLE(.Lgs_change, bad_gs)
949 .section .fixup, "ax"
950 /* running with kernelgs */
951 bad_gs:
952 SWAPGS /* switch back to user gs */
953 .macro ZAP_GS
954 /* This can't be a string because the preprocessor needs to see it. */
955 movl $__USER_DS, %eax
956 movl %eax, %gs
957 .endm
958 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
959 xorl %eax, %eax
960 movl %eax, %gs
961 jmp 2b
962 .previous
963
964 /* Call softirq on interrupt stack. Interrupts are off. */
965 ENTRY(do_softirq_own_stack)
966 pushq %rbp
967 mov %rsp, %rbp
968 ENTER_IRQ_STACK regs=0 old_rsp=%r11
969 call __do_softirq
970 LEAVE_IRQ_STACK regs=0
971 leaveq
972 ret
973 ENDPROC(do_softirq_own_stack)
974
975 #ifdef CONFIG_XEN
976 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
977
978 /*
979 * A note on the "critical region" in our callback handler.
980 * We want to avoid stacking callback handlers due to events occurring
981 * during handling of the last event. To do this, we keep events disabled
982 * until we've done all processing. HOWEVER, we must enable events before
983 * popping the stack frame (can't be done atomically) and so it would still
984 * be possible to get enough handler activations to overflow the stack.
985 * Although unlikely, bugs of that kind are hard to track down, so we'd
986 * like to avoid the possibility.
987 * So, on entry to the handler we detect whether we interrupted an
988 * existing activation in its critical region -- if so, we pop the current
989 * activation and restart the handler using the previous one.
990 */
991 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
992
993 /*
994 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
995 * see the correct pointer to the pt_regs
996 */
997 UNWIND_HINT_FUNC
998 movq %rdi, %rsp /* we don't return, adjust the stack frame */
999 UNWIND_HINT_REGS
1000
1001 ENTER_IRQ_STACK old_rsp=%r10
1002 call xen_evtchn_do_upcall
1003 LEAVE_IRQ_STACK
1004
1005 #ifndef CONFIG_PREEMPT
1006 call xen_maybe_preempt_hcall
1007 #endif
1008 jmp error_exit
1009 END(xen_do_hypervisor_callback)
1010
1011 /*
1012 * Hypervisor uses this for application faults while it executes.
1013 * We get here for two reasons:
1014 * 1. Fault while reloading DS, ES, FS or GS
1015 * 2. Fault while executing IRET
1016 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1017 * registers that could be reloaded and zeroed the others.
1018 * Category 2 we fix up by killing the current process. We cannot use the
1019 * normal Linux return path in this case because if we use the IRET hypercall
1020 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1021 * We distinguish between categories by comparing each saved segment register
1022 * with its current contents: any discrepancy means we in category 1.
1023 */
1024 ENTRY(xen_failsafe_callback)
1025 UNWIND_HINT_EMPTY
1026 movl %ds, %ecx
1027 cmpw %cx, 0x10(%rsp)
1028 jne 1f
1029 movl %es, %ecx
1030 cmpw %cx, 0x18(%rsp)
1031 jne 1f
1032 movl %fs, %ecx
1033 cmpw %cx, 0x20(%rsp)
1034 jne 1f
1035 movl %gs, %ecx
1036 cmpw %cx, 0x28(%rsp)
1037 jne 1f
1038 /* All segments match their saved values => Category 2 (Bad IRET). */
1039 movq (%rsp), %rcx
1040 movq 8(%rsp), %r11
1041 addq $0x30, %rsp
1042 pushq $0 /* RIP */
1043 UNWIND_HINT_IRET_REGS offset=8
1044 jmp general_protection
1045 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1046 movq (%rsp), %rcx
1047 movq 8(%rsp), %r11
1048 addq $0x30, %rsp
1049 UNWIND_HINT_IRET_REGS
1050 pushq $-1 /* orig_ax = -1 => not a system call */
1051 ALLOC_PT_GPREGS_ON_STACK
1052 SAVE_C_REGS
1053 SAVE_EXTRA_REGS
1054 ENCODE_FRAME_POINTER
1055 jmp error_exit
1056 END(xen_failsafe_callback)
1057
1058 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1059 xen_hvm_callback_vector xen_evtchn_do_upcall
1060
1061 #endif /* CONFIG_XEN */
1062
1063 #if IS_ENABLED(CONFIG_HYPERV)
1064 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1065 hyperv_callback_vector hyperv_vector_handler
1066 #endif /* CONFIG_HYPERV */
1067
1068 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1069 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1070 idtentry stack_segment do_stack_segment has_error_code=1
1071
1072 #ifdef CONFIG_XEN
1073 idtentry xendebug do_debug has_error_code=0
1074 idtentry xenint3 do_int3 has_error_code=0
1075 #endif
1076
1077 idtentry general_protection do_general_protection has_error_code=1
1078 idtentry page_fault do_page_fault has_error_code=1
1079
1080 #ifdef CONFIG_KVM_GUEST
1081 idtentry async_page_fault do_async_page_fault has_error_code=1
1082 #endif
1083
1084 #ifdef CONFIG_X86_MCE
1085 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1086 #endif
1087
1088 /*
1089 * Save all registers in pt_regs, and switch gs if needed.
1090 * Use slow, but surefire "are we in kernel?" check.
1091 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1092 */
1093 ENTRY(paranoid_entry)
1094 UNWIND_HINT_FUNC
1095 cld
1096 SAVE_C_REGS 8
1097 SAVE_EXTRA_REGS 8
1098 ENCODE_FRAME_POINTER 8
1099 movl $1, %ebx
1100 movl $MSR_GS_BASE, %ecx
1101 rdmsr
1102 testl %edx, %edx
1103 js 1f /* negative -> in kernel */
1104 SWAPGS
1105 xorl %ebx, %ebx
1106 1: ret
1107 END(paranoid_entry)
1108
1109 /*
1110 * "Paranoid" exit path from exception stack. This is invoked
1111 * only on return from non-NMI IST interrupts that came
1112 * from kernel space.
1113 *
1114 * We may be returning to very strange contexts (e.g. very early
1115 * in syscall entry), so checking for preemption here would
1116 * be complicated. Fortunately, we there's no good reason
1117 * to try to handle preemption here.
1118 *
1119 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1120 */
1121 ENTRY(paranoid_exit)
1122 UNWIND_HINT_REGS
1123 DISABLE_INTERRUPTS(CLBR_ANY)
1124 TRACE_IRQS_OFF_DEBUG
1125 testl %ebx, %ebx /* swapgs needed? */
1126 jnz paranoid_exit_no_swapgs
1127 TRACE_IRQS_IRETQ
1128 SWAPGS_UNSAFE_STACK
1129 jmp paranoid_exit_restore
1130 paranoid_exit_no_swapgs:
1131 TRACE_IRQS_IRETQ_DEBUG
1132 paranoid_exit_restore:
1133 RESTORE_EXTRA_REGS
1134 RESTORE_C_REGS
1135 REMOVE_PT_GPREGS_FROM_STACK 8
1136 INTERRUPT_RETURN
1137 END(paranoid_exit)
1138
1139 /*
1140 * Save all registers in pt_regs, and switch gs if needed.
1141 * Return: EBX=0: came from user mode; EBX=1: otherwise
1142 */
1143 ENTRY(error_entry)
1144 UNWIND_HINT_FUNC
1145 cld
1146 SAVE_C_REGS 8
1147 SAVE_EXTRA_REGS 8
1148 ENCODE_FRAME_POINTER 8
1149 xorl %ebx, %ebx
1150 testb $3, CS+8(%rsp)
1151 jz .Lerror_kernelspace
1152
1153 /*
1154 * We entered from user mode or we're pretending to have entered
1155 * from user mode due to an IRET fault.
1156 */
1157 SWAPGS
1158
1159 .Lerror_entry_from_usermode_after_swapgs:
1160 /*
1161 * We need to tell lockdep that IRQs are off. We can't do this until
1162 * we fix gsbase, and we should do it before enter_from_user_mode
1163 * (which can take locks).
1164 */
1165 TRACE_IRQS_OFF
1166 CALL_enter_from_user_mode
1167 ret
1168
1169 .Lerror_entry_done:
1170 TRACE_IRQS_OFF
1171 ret
1172
1173 /*
1174 * There are two places in the kernel that can potentially fault with
1175 * usergs. Handle them here. B stepping K8s sometimes report a
1176 * truncated RIP for IRET exceptions returning to compat mode. Check
1177 * for these here too.
1178 */
1179 .Lerror_kernelspace:
1180 incl %ebx
1181 leaq native_irq_return_iret(%rip), %rcx
1182 cmpq %rcx, RIP+8(%rsp)
1183 je .Lerror_bad_iret
1184 movl %ecx, %eax /* zero extend */
1185 cmpq %rax, RIP+8(%rsp)
1186 je .Lbstep_iret
1187 cmpq $.Lgs_change, RIP+8(%rsp)
1188 jne .Lerror_entry_done
1189
1190 /*
1191 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1192 * gsbase and proceed. We'll fix up the exception and land in
1193 * .Lgs_change's error handler with kernel gsbase.
1194 */
1195 SWAPGS
1196 jmp .Lerror_entry_done
1197
1198 .Lbstep_iret:
1199 /* Fix truncated RIP */
1200 movq %rcx, RIP+8(%rsp)
1201 /* fall through */
1202
1203 .Lerror_bad_iret:
1204 /*
1205 * We came from an IRET to user mode, so we have user gsbase.
1206 * Switch to kernel gsbase:
1207 */
1208 SWAPGS
1209
1210 /*
1211 * Pretend that the exception came from user mode: set up pt_regs
1212 * as if we faulted immediately after IRET and clear EBX so that
1213 * error_exit knows that we will be returning to user mode.
1214 */
1215 mov %rsp, %rdi
1216 call fixup_bad_iret
1217 mov %rax, %rsp
1218 decl %ebx
1219 jmp .Lerror_entry_from_usermode_after_swapgs
1220 END(error_entry)
1221
1222
1223 /*
1224 * On entry, EBX is a "return to kernel mode" flag:
1225 * 1: already in kernel mode, don't need SWAPGS
1226 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1227 */
1228 ENTRY(error_exit)
1229 UNWIND_HINT_REGS
1230 DISABLE_INTERRUPTS(CLBR_ANY)
1231 TRACE_IRQS_OFF
1232 testl %ebx, %ebx
1233 jnz retint_kernel
1234 jmp retint_user
1235 END(error_exit)
1236
1237 /* Runs on exception stack */
1238 /* XXX: broken on Xen PV */
1239 ENTRY(nmi)
1240 UNWIND_HINT_IRET_REGS
1241 /*
1242 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1243 * the iretq it performs will take us out of NMI context.
1244 * This means that we can have nested NMIs where the next
1245 * NMI is using the top of the stack of the previous NMI. We
1246 * can't let it execute because the nested NMI will corrupt the
1247 * stack of the previous NMI. NMI handlers are not re-entrant
1248 * anyway.
1249 *
1250 * To handle this case we do the following:
1251 * Check the a special location on the stack that contains
1252 * a variable that is set when NMIs are executing.
1253 * The interrupted task's stack is also checked to see if it
1254 * is an NMI stack.
1255 * If the variable is not set and the stack is not the NMI
1256 * stack then:
1257 * o Set the special variable on the stack
1258 * o Copy the interrupt frame into an "outermost" location on the
1259 * stack
1260 * o Copy the interrupt frame into an "iret" location on the stack
1261 * o Continue processing the NMI
1262 * If the variable is set or the previous stack is the NMI stack:
1263 * o Modify the "iret" location to jump to the repeat_nmi
1264 * o return back to the first NMI
1265 *
1266 * Now on exit of the first NMI, we first clear the stack variable
1267 * The NMI stack will tell any nested NMIs at that point that it is
1268 * nested. Then we pop the stack normally with iret, and if there was
1269 * a nested NMI that updated the copy interrupt stack frame, a
1270 * jump will be made to the repeat_nmi code that will handle the second
1271 * NMI.
1272 *
1273 * However, espfix prevents us from directly returning to userspace
1274 * with a single IRET instruction. Similarly, IRET to user mode
1275 * can fault. We therefore handle NMIs from user space like
1276 * other IST entries.
1277 */
1278
1279 ASM_CLAC
1280
1281 /* Use %rdx as our temp variable throughout */
1282 pushq %rdx
1283
1284 testb $3, CS-RIP+8(%rsp)
1285 jz .Lnmi_from_kernel
1286
1287 /*
1288 * NMI from user mode. We need to run on the thread stack, but we
1289 * can't go through the normal entry paths: NMIs are masked, and
1290 * we don't want to enable interrupts, because then we'll end
1291 * up in an awkward situation in which IRQs are on but NMIs
1292 * are off.
1293 *
1294 * We also must not push anything to the stack before switching
1295 * stacks lest we corrupt the "NMI executing" variable.
1296 */
1297
1298 SWAPGS_UNSAFE_STACK
1299 cld
1300 movq %rsp, %rdx
1301 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1302 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1303 pushq 5*8(%rdx) /* pt_regs->ss */
1304 pushq 4*8(%rdx) /* pt_regs->rsp */
1305 pushq 3*8(%rdx) /* pt_regs->flags */
1306 pushq 2*8(%rdx) /* pt_regs->cs */
1307 pushq 1*8(%rdx) /* pt_regs->rip */
1308 UNWIND_HINT_IRET_REGS
1309 pushq $-1 /* pt_regs->orig_ax */
1310 pushq %rdi /* pt_regs->di */
1311 pushq %rsi /* pt_regs->si */
1312 pushq (%rdx) /* pt_regs->dx */
1313 pushq %rcx /* pt_regs->cx */
1314 pushq %rax /* pt_regs->ax */
1315 pushq %r8 /* pt_regs->r8 */
1316 pushq %r9 /* pt_regs->r9 */
1317 pushq %r10 /* pt_regs->r10 */
1318 pushq %r11 /* pt_regs->r11 */
1319 pushq %rbx /* pt_regs->rbx */
1320 pushq %rbp /* pt_regs->rbp */
1321 pushq %r12 /* pt_regs->r12 */
1322 pushq %r13 /* pt_regs->r13 */
1323 pushq %r14 /* pt_regs->r14 */
1324 pushq %r15 /* pt_regs->r15 */
1325 UNWIND_HINT_REGS
1326 ENCODE_FRAME_POINTER
1327
1328 /*
1329 * At this point we no longer need to worry about stack damage
1330 * due to nesting -- we're on the normal thread stack and we're
1331 * done with the NMI stack.
1332 */
1333
1334 movq %rsp, %rdi
1335 movq $-1, %rsi
1336 call do_nmi
1337
1338 /*
1339 * Return back to user mode. We must *not* do the normal exit
1340 * work, because we don't want to enable interrupts.
1341 */
1342 SWAPGS
1343 jmp restore_regs_and_iret
1344
1345 .Lnmi_from_kernel:
1346 /*
1347 * Here's what our stack frame will look like:
1348 * +---------------------------------------------------------+
1349 * | original SS |
1350 * | original Return RSP |
1351 * | original RFLAGS |
1352 * | original CS |
1353 * | original RIP |
1354 * +---------------------------------------------------------+
1355 * | temp storage for rdx |
1356 * +---------------------------------------------------------+
1357 * | "NMI executing" variable |
1358 * +---------------------------------------------------------+
1359 * | iret SS } Copied from "outermost" frame |
1360 * | iret Return RSP } on each loop iteration; overwritten |
1361 * | iret RFLAGS } by a nested NMI to force another |
1362 * | iret CS } iteration if needed. |
1363 * | iret RIP } |
1364 * +---------------------------------------------------------+
1365 * | outermost SS } initialized in first_nmi; |
1366 * | outermost Return RSP } will not be changed before |
1367 * | outermost RFLAGS } NMI processing is done. |
1368 * | outermost CS } Copied to "iret" frame on each |
1369 * | outermost RIP } iteration. |
1370 * +---------------------------------------------------------+
1371 * | pt_regs |
1372 * +---------------------------------------------------------+
1373 *
1374 * The "original" frame is used by hardware. Before re-enabling
1375 * NMIs, we need to be done with it, and we need to leave enough
1376 * space for the asm code here.
1377 *
1378 * We return by executing IRET while RSP points to the "iret" frame.
1379 * That will either return for real or it will loop back into NMI
1380 * processing.
1381 *
1382 * The "outermost" frame is copied to the "iret" frame on each
1383 * iteration of the loop, so each iteration starts with the "iret"
1384 * frame pointing to the final return target.
1385 */
1386
1387 /*
1388 * Determine whether we're a nested NMI.
1389 *
1390 * If we interrupted kernel code between repeat_nmi and
1391 * end_repeat_nmi, then we are a nested NMI. We must not
1392 * modify the "iret" frame because it's being written by
1393 * the outer NMI. That's okay; the outer NMI handler is
1394 * about to about to call do_nmi anyway, so we can just
1395 * resume the outer NMI.
1396 */
1397
1398 movq $repeat_nmi, %rdx
1399 cmpq 8(%rsp), %rdx
1400 ja 1f
1401 movq $end_repeat_nmi, %rdx
1402 cmpq 8(%rsp), %rdx
1403 ja nested_nmi_out
1404 1:
1405
1406 /*
1407 * Now check "NMI executing". If it's set, then we're nested.
1408 * This will not detect if we interrupted an outer NMI just
1409 * before IRET.
1410 */
1411 cmpl $1, -8(%rsp)
1412 je nested_nmi
1413
1414 /*
1415 * Now test if the previous stack was an NMI stack. This covers
1416 * the case where we interrupt an outer NMI after it clears
1417 * "NMI executing" but before IRET. We need to be careful, though:
1418 * there is one case in which RSP could point to the NMI stack
1419 * despite there being no NMI active: naughty userspace controls
1420 * RSP at the very beginning of the SYSCALL targets. We can
1421 * pull a fast one on naughty userspace, though: we program
1422 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1423 * if it controls the kernel's RSP. We set DF before we clear
1424 * "NMI executing".
1425 */
1426 lea 6*8(%rsp), %rdx
1427 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1428 cmpq %rdx, 4*8(%rsp)
1429 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1430 ja first_nmi
1431
1432 subq $EXCEPTION_STKSZ, %rdx
1433 cmpq %rdx, 4*8(%rsp)
1434 /* If it is below the NMI stack, it is a normal NMI */
1435 jb first_nmi
1436
1437 /* Ah, it is within the NMI stack. */
1438
1439 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1440 jz first_nmi /* RSP was user controlled. */
1441
1442 /* This is a nested NMI. */
1443
1444 nested_nmi:
1445 /*
1446 * Modify the "iret" frame to point to repeat_nmi, forcing another
1447 * iteration of NMI handling.
1448 */
1449 subq $8, %rsp
1450 leaq -10*8(%rsp), %rdx
1451 pushq $__KERNEL_DS
1452 pushq %rdx
1453 pushfq
1454 pushq $__KERNEL_CS
1455 pushq $repeat_nmi
1456
1457 /* Put stack back */
1458 addq $(6*8), %rsp
1459
1460 nested_nmi_out:
1461 popq %rdx
1462
1463 /* We are returning to kernel mode, so this cannot result in a fault. */
1464 INTERRUPT_RETURN
1465
1466 first_nmi:
1467 /* Restore rdx. */
1468 movq (%rsp), %rdx
1469
1470 /* Make room for "NMI executing". */
1471 pushq $0
1472
1473 /* Leave room for the "iret" frame */
1474 subq $(5*8), %rsp
1475
1476 /* Copy the "original" frame to the "outermost" frame */
1477 .rept 5
1478 pushq 11*8(%rsp)
1479 .endr
1480 UNWIND_HINT_IRET_REGS
1481
1482 /* Everything up to here is safe from nested NMIs */
1483
1484 #ifdef CONFIG_DEBUG_ENTRY
1485 /*
1486 * For ease of testing, unmask NMIs right away. Disabled by
1487 * default because IRET is very expensive.
1488 */
1489 pushq $0 /* SS */
1490 pushq %rsp /* RSP (minus 8 because of the previous push) */
1491 addq $8, (%rsp) /* Fix up RSP */
1492 pushfq /* RFLAGS */
1493 pushq $__KERNEL_CS /* CS */
1494 pushq $1f /* RIP */
1495 INTERRUPT_RETURN /* continues at repeat_nmi below */
1496 UNWIND_HINT_IRET_REGS
1497 1:
1498 #endif
1499
1500 repeat_nmi:
1501 /*
1502 * If there was a nested NMI, the first NMI's iret will return
1503 * here. But NMIs are still enabled and we can take another
1504 * nested NMI. The nested NMI checks the interrupted RIP to see
1505 * if it is between repeat_nmi and end_repeat_nmi, and if so
1506 * it will just return, as we are about to repeat an NMI anyway.
1507 * This makes it safe to copy to the stack frame that a nested
1508 * NMI will update.
1509 *
1510 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1511 * we're repeating an NMI, gsbase has the same value that it had on
1512 * the first iteration. paranoid_entry will load the kernel
1513 * gsbase if needed before we call do_nmi. "NMI executing"
1514 * is zero.
1515 */
1516 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1517
1518 /*
1519 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1520 * here must not modify the "iret" frame while we're writing to
1521 * it or it will end up containing garbage.
1522 */
1523 addq $(10*8), %rsp
1524 .rept 5
1525 pushq -6*8(%rsp)
1526 .endr
1527 subq $(5*8), %rsp
1528 end_repeat_nmi:
1529
1530 /*
1531 * Everything below this point can be preempted by a nested NMI.
1532 * If this happens, then the inner NMI will change the "iret"
1533 * frame to point back to repeat_nmi.
1534 */
1535 pushq $-1 /* ORIG_RAX: no syscall to restart */
1536 ALLOC_PT_GPREGS_ON_STACK
1537
1538 /*
1539 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1540 * as we should not be calling schedule in NMI context.
1541 * Even with normal interrupts enabled. An NMI should not be
1542 * setting NEED_RESCHED or anything that normal interrupts and
1543 * exceptions might do.
1544 */
1545 call paranoid_entry
1546 UNWIND_HINT_REGS
1547
1548 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1549 movq %rsp, %rdi
1550 movq $-1, %rsi
1551 call do_nmi
1552
1553 testl %ebx, %ebx /* swapgs needed? */
1554 jnz nmi_restore
1555 nmi_swapgs:
1556 SWAPGS_UNSAFE_STACK
1557 nmi_restore:
1558 RESTORE_EXTRA_REGS
1559 RESTORE_C_REGS
1560
1561 /* Point RSP at the "iret" frame. */
1562 REMOVE_PT_GPREGS_FROM_STACK 6*8
1563
1564 /*
1565 * Clear "NMI executing". Set DF first so that we can easily
1566 * distinguish the remaining code between here and IRET from
1567 * the SYSCALL entry and exit paths. On a native kernel, we
1568 * could just inspect RIP, but, on paravirt kernels,
1569 * INTERRUPT_RETURN can translate into a jump into a
1570 * hypercall page.
1571 */
1572 std
1573 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1574
1575 /*
1576 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1577 * stack in a single instruction. We are returning to kernel
1578 * mode, so this cannot result in a fault.
1579 */
1580 INTERRUPT_RETURN
1581 END(nmi)
1582
1583 ENTRY(ignore_sysret)
1584 UNWIND_HINT_EMPTY
1585 mov $-ENOSYS, %eax
1586 sysret
1587 END(ignore_sysret)
1588
1589 ENTRY(rewind_stack_do_exit)
1590 UNWIND_HINT_FUNC
1591 /* Prevent any naive code from trying to unwind to our caller. */
1592 xorl %ebp, %ebp
1593
1594 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1595 leaq -PTREGS_SIZE(%rax), %rsp
1596 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1597
1598 call do_exit
1599 END(rewind_stack_do_exit)