]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/entry/entry_64.S
x86/asm: Don't use the confusing '.ifeq' directive
[mirror_ubuntu-artful-kernel.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <linux/err.h>
41
42 .code64
43 .section .entry.text, "ax"
44
45 #ifdef CONFIG_PARAVIRT
46 ENTRY(native_usergs_sysret64)
47 UNWIND_HINT_EMPTY
48 swapgs
49 sysretq
50 END(native_usergs_sysret64)
51 #endif /* CONFIG_PARAVIRT */
52
53 .macro TRACE_IRQS_IRETQ
54 #ifdef CONFIG_TRACE_IRQFLAGS
55 bt $9, EFLAGS(%rsp) /* interrupts off? */
56 jnc 1f
57 TRACE_IRQS_ON
58 1:
59 #endif
60 .endm
61
62 /*
63 * When dynamic function tracer is enabled it will add a breakpoint
64 * to all locations that it is about to modify, sync CPUs, update
65 * all the code, sync CPUs, then remove the breakpoints. In this time
66 * if lockdep is enabled, it might jump back into the debug handler
67 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
68 *
69 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
70 * make sure the stack pointer does not get reset back to the top
71 * of the debug stack, and instead just reuses the current stack.
72 */
73 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
74
75 .macro TRACE_IRQS_OFF_DEBUG
76 call debug_stack_set_zero
77 TRACE_IRQS_OFF
78 call debug_stack_reset
79 .endm
80
81 .macro TRACE_IRQS_ON_DEBUG
82 call debug_stack_set_zero
83 TRACE_IRQS_ON
84 call debug_stack_reset
85 .endm
86
87 .macro TRACE_IRQS_IRETQ_DEBUG
88 bt $9, EFLAGS(%rsp) /* interrupts off? */
89 jnc 1f
90 TRACE_IRQS_ON_DEBUG
91 1:
92 .endm
93
94 #else
95 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
96 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
97 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
98 #endif
99
100 /*
101 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
102 *
103 * This is the only entry point used for 64-bit system calls. The
104 * hardware interface is reasonably well designed and the register to
105 * argument mapping Linux uses fits well with the registers that are
106 * available when SYSCALL is used.
107 *
108 * SYSCALL instructions can be found inlined in libc implementations as
109 * well as some other programs and libraries. There are also a handful
110 * of SYSCALL instructions in the vDSO used, for example, as a
111 * clock_gettimeofday fallback.
112 *
113 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 * then loads new ss, cs, and rip from previously programmed MSRs.
115 * rflags gets masked by a value from another MSR (so CLD and CLAC
116 * are not needed). SYSCALL does not save anything on the stack
117 * and does not change rsp.
118 *
119 * Registers on entry:
120 * rax system call number
121 * rcx return address
122 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
123 * rdi arg0
124 * rsi arg1
125 * rdx arg2
126 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
127 * r8 arg4
128 * r9 arg5
129 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130 *
131 * Only called from user space.
132 *
133 * When user can change pt_regs->foo always force IRET. That is because
134 * it deals with uncanonical addresses better. SYSRET has trouble
135 * with them due to bugs in both AMD and Intel CPUs.
136 */
137
138 ENTRY(entry_SYSCALL_64)
139 UNWIND_HINT_EMPTY
140 /*
141 * Interrupts are off on entry.
142 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
143 * it is too small to ever cause noticeable irq latency.
144 */
145
146 swapgs
147 movq %rsp, PER_CPU_VAR(rsp_scratch)
148 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149
150 TRACE_IRQS_OFF
151
152 /* Construct struct pt_regs on stack */
153 pushq $__USER_DS /* pt_regs->ss */
154 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
155 pushq %r11 /* pt_regs->flags */
156 pushq $__USER_CS /* pt_regs->cs */
157 pushq %rcx /* pt_regs->ip */
158 GLOBAL(entry_SYSCALL_64_after_hwframe)
159 pushq %rax /* pt_regs->orig_ax */
160 pushq %rdi /* pt_regs->di */
161 pushq %rsi /* pt_regs->si */
162 pushq %rdx /* pt_regs->dx */
163 pushq %rcx /* pt_regs->cx */
164 pushq $-ENOSYS /* pt_regs->ax */
165 pushq %r8 /* pt_regs->r8 */
166 pushq %r9 /* pt_regs->r9 */
167 pushq %r10 /* pt_regs->r10 */
168 pushq %r11 /* pt_regs->r11 */
169 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
170 UNWIND_HINT_REGS extra=0
171
172 /*
173 * If we need to do entry work or if we guess we'll need to do
174 * exit work, go straight to the slow path.
175 */
176 movq PER_CPU_VAR(current_task), %r11
177 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178 jnz entry_SYSCALL64_slow_path
179
180 entry_SYSCALL_64_fastpath:
181 /*
182 * Easy case: enable interrupts and issue the syscall. If the syscall
183 * needs pt_regs, we'll call a stub that disables interrupts again
184 * and jumps to the slow path.
185 */
186 TRACE_IRQS_ON
187 ENABLE_INTERRUPTS(CLBR_NONE)
188 #if __SYSCALL_MASK == ~0
189 cmpq $__NR_syscall_max, %rax
190 #else
191 andl $__SYSCALL_MASK, %eax
192 cmpl $__NR_syscall_max, %eax
193 #endif
194 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
195 movq %r10, %rcx
196
197 /*
198 * This call instruction is handled specially in stub_ptregs_64.
199 * It might end up jumping to the slow path. If it jumps, RAX
200 * and all argument registers are clobbered.
201 */
202 call *sys_call_table(, %rax, 8)
203 .Lentry_SYSCALL_64_after_fastpath_call:
204
205 movq %rax, RAX(%rsp)
206 1:
207
208 /*
209 * If we get here, then we know that pt_regs is clean for SYSRET64.
210 * If we see that no exit work is required (which we are required
211 * to check with IRQs off), then we can go straight to SYSRET64.
212 */
213 DISABLE_INTERRUPTS(CLBR_ANY)
214 TRACE_IRQS_OFF
215 movq PER_CPU_VAR(current_task), %r11
216 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217 jnz 1f
218
219 LOCKDEP_SYS_EXIT
220 TRACE_IRQS_ON /* user mode is traced as IRQs on */
221 movq RIP(%rsp), %rcx
222 movq EFLAGS(%rsp), %r11
223 RESTORE_C_REGS_EXCEPT_RCX_R11
224 movq RSP(%rsp), %rsp
225 UNWIND_HINT_EMPTY
226 USERGS_SYSRET64
227
228 1:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
234 TRACE_IRQS_ON
235 ENABLE_INTERRUPTS(CLBR_ANY)
236 SAVE_EXTRA_REGS
237 movq %rsp, %rdi
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
240
241 entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
243 SAVE_EXTRA_REGS
244 movq %rsp, %rdi
245 call do_syscall_64 /* returns with IRQs disabled */
246
247 return_from_SYSCALL_64:
248 RESTORE_EXTRA_REGS
249 TRACE_IRQS_IRETQ /* we're about to change IF */
250
251 /*
252 * Try to use SYSRET instead of IRET if we're returning to
253 * a completely clean 64-bit userspace context.
254 */
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257 cmpq %rcx, %r11 /* RCX == RIP */
258 jne opportunistic_sysret_failed
259
260 /*
261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262 * in kernel space. This essentially lets the user take over
263 * the kernel, since userspace controls RSP.
264 *
265 * If width of "canonical tail" ever becomes variable, this will need
266 * to be updated to remain correct on both old and new CPUs.
267 *
268 * Change top bits to match most significant bit (47th or 56th bit
269 * depending on paging mode) in the address.
270 */
271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
276 jne opportunistic_sysret_failed
277
278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
279 jne opportunistic_sysret_failed
280
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
283 jne opportunistic_sysret_failed
284
285 /*
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
295 *
296 * movq $stuck_here, %rcx
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304 jnz opportunistic_sysret_failed
305
306 /* nothing to check for RSP */
307
308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
309 jne opportunistic_sysret_failed
310
311 /*
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
314 */
315 syscall_return_via_sysret:
316 /* rcx and r11 are already restored (see code above) */
317 RESTORE_C_REGS_EXCEPT_RCX_R11
318 movq RSP(%rsp), %rsp
319 UNWIND_HINT_EMPTY
320 USERGS_SYSRET64
321
322 opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
325 END(entry_SYSCALL_64)
326
327 ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
335 * IRQs are on.
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_ANY)
345 TRACE_IRQS_OFF
346 popq %rax
347 UNWIND_HINT_REGS extra=0
348 jmp entry_SYSCALL64_slow_path
349
350 1:
351 jmp *%rax /* Called from C */
352 END(stub_ptregs_64)
353
354 .macro ptregs_stub func
355 ENTRY(ptregs_\func)
356 UNWIND_HINT_FUNC
357 leaq \func(%rip), %rax
358 jmp stub_ptregs_64
359 END(ptregs_\func)
360 .endm
361
362 /* Instantiate ptregs_stub for each ptregs-using syscall */
363 #define __SYSCALL_64_QUAL_(sym)
364 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366 #include <asm/syscalls_64.h>
367
368 /*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372 ENTRY(__switch_to_asm)
373 UNWIND_HINT_FUNC
374 /*
375 * Save callee-saved registers
376 * This must match the order in inactive_task_frame
377 */
378 pushq %rbp
379 pushq %rbx
380 pushq %r12
381 pushq %r13
382 pushq %r14
383 pushq %r15
384
385 /* switch stack */
386 movq %rsp, TASK_threadsp(%rdi)
387 movq TASK_threadsp(%rsi), %rsp
388
389 #ifdef CONFIG_CC_STACKPROTECTOR
390 movq TASK_stack_canary(%rsi), %rbx
391 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392 #endif
393
394 /* restore callee-saved registers */
395 popq %r15
396 popq %r14
397 popq %r13
398 popq %r12
399 popq %rbx
400 popq %rbp
401
402 jmp __switch_to
403 END(__switch_to_asm)
404
405 /*
406 * A newly forked process directly context switches into this address.
407 *
408 * rax: prev task we switched from
409 * rbx: kernel thread func (NULL for user thread)
410 * r12: kernel thread arg
411 */
412 ENTRY(ret_from_fork)
413 UNWIND_HINT_EMPTY
414 movq %rax, %rdi
415 call schedule_tail /* rdi: 'prev' task parameter */
416
417 testq %rbx, %rbx /* from kernel_thread? */
418 jnz 1f /* kernel threads are uncommon */
419
420 2:
421 UNWIND_HINT_REGS
422 movq %rsp, %rdi
423 call syscall_return_slowpath /* returns with IRQs disabled */
424 TRACE_IRQS_ON /* user mode is traced as IRQS on */
425 SWAPGS
426 jmp restore_regs_and_iret
427
428 1:
429 /* kernel thread */
430 movq %r12, %rdi
431 call *%rbx
432 /*
433 * A kernel thread is allowed to return here after successfully
434 * calling do_execve(). Exit to userspace to complete the execve()
435 * syscall.
436 */
437 movq $0, RAX(%rsp)
438 jmp 2b
439 END(ret_from_fork)
440
441 /*
442 * Build the entry stubs with some assembler magic.
443 * We pack 1 stub into every 8-byte block.
444 */
445 .align 8
446 ENTRY(irq_entries_start)
447 vector=FIRST_EXTERNAL_VECTOR
448 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
449 UNWIND_HINT_IRET_REGS
450 pushq $(~vector+0x80) /* Note: always in signed byte range */
451 jmp common_interrupt
452 .align 8
453 vector=vector+1
454 .endr
455 END(irq_entries_start)
456
457 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
458 #ifdef CONFIG_DEBUG_ENTRY
459 pushfq
460 testl $X86_EFLAGS_IF, (%rsp)
461 jz .Lokay_\@
462 ud2
463 .Lokay_\@:
464 addq $8, %rsp
465 #endif
466 .endm
467
468 /*
469 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
470 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
471 * Requires kernel GSBASE.
472 *
473 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
474 */
475 .macro ENTER_IRQ_STACK regs=1 old_rsp
476 DEBUG_ENTRY_ASSERT_IRQS_OFF
477 movq %rsp, \old_rsp
478
479 .if \regs
480 UNWIND_HINT_REGS base=\old_rsp
481 .endif
482
483 incl PER_CPU_VAR(irq_count)
484 jnz .Lirq_stack_push_old_rsp_\@
485
486 /*
487 * Right now, if we just incremented irq_count to zero, we've
488 * claimed the IRQ stack but we haven't switched to it yet.
489 *
490 * If anything is added that can interrupt us here without using IST,
491 * it must be *extremely* careful to limit its stack usage. This
492 * could include kprobes and a hypothetical future IST-less #DB
493 * handler.
494 *
495 * The OOPS unwinder relies on the word at the top of the IRQ
496 * stack linking back to the previous RSP for the entire time we're
497 * on the IRQ stack. For this to work reliably, we need to write
498 * it before we actually move ourselves to the IRQ stack.
499 */
500
501 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
502 movq PER_CPU_VAR(irq_stack_ptr), %rsp
503
504 #ifdef CONFIG_DEBUG_ENTRY
505 /*
506 * If the first movq above becomes wrong due to IRQ stack layout
507 * changes, the only way we'll notice is if we try to unwind right
508 * here. Assert that we set up the stack right to catch this type
509 * of bug quickly.
510 */
511 cmpq -8(%rsp), \old_rsp
512 je .Lirq_stack_okay\@
513 ud2
514 .Lirq_stack_okay\@:
515 #endif
516
517 .Lirq_stack_push_old_rsp_\@:
518 pushq \old_rsp
519
520 .if \regs
521 UNWIND_HINT_REGS indirect=1
522 .endif
523 .endm
524
525 /*
526 * Undoes ENTER_IRQ_STACK.
527 */
528 .macro LEAVE_IRQ_STACK regs=1
529 DEBUG_ENTRY_ASSERT_IRQS_OFF
530 /* We need to be off the IRQ stack before decrementing irq_count. */
531 popq %rsp
532
533 .if \regs
534 UNWIND_HINT_REGS
535 .endif
536
537 /*
538 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
539 * the irq stack but we're not on it.
540 */
541
542 decl PER_CPU_VAR(irq_count)
543 .endm
544
545 /*
546 * Interrupt entry/exit.
547 *
548 * Interrupt entry points save only callee clobbered registers in fast path.
549 *
550 * Entry runs with interrupts off.
551 */
552
553 /* 0(%rsp): ~(interrupt number) */
554 .macro interrupt func
555 cld
556 ALLOC_PT_GPREGS_ON_STACK
557 SAVE_C_REGS
558 SAVE_EXTRA_REGS
559 ENCODE_FRAME_POINTER
560
561 testb $3, CS(%rsp)
562 jz 1f
563
564 /*
565 * IRQ from user mode. Switch to kernel gsbase and inform context
566 * tracking that we're in kernel mode.
567 */
568 SWAPGS
569
570 /*
571 * We need to tell lockdep that IRQs are off. We can't do this until
572 * we fix gsbase, and we should do it before enter_from_user_mode
573 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
574 * the simplest way to handle it is to just call it twice if
575 * we enter from user mode. There's no reason to optimize this since
576 * TRACE_IRQS_OFF is a no-op if lockdep is off.
577 */
578 TRACE_IRQS_OFF
579
580 CALL_enter_from_user_mode
581
582 1:
583 ENTER_IRQ_STACK old_rsp=%rdi
584 /* We entered an interrupt context - irqs are off: */
585 TRACE_IRQS_OFF
586
587 call \func /* rdi points to pt_regs */
588 .endm
589
590 /*
591 * The interrupt stubs push (~vector+0x80) onto the stack and
592 * then jump to common_interrupt.
593 */
594 .p2align CONFIG_X86_L1_CACHE_SHIFT
595 common_interrupt:
596 ASM_CLAC
597 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
598 interrupt do_IRQ
599 /* 0(%rsp): old RSP */
600 ret_from_intr:
601 DISABLE_INTERRUPTS(CLBR_ANY)
602 TRACE_IRQS_OFF
603
604 LEAVE_IRQ_STACK
605
606 testb $3, CS(%rsp)
607 jz retint_kernel
608
609 /* Interrupt came from user space */
610 GLOBAL(retint_user)
611 mov %rsp,%rdi
612 call prepare_exit_to_usermode
613 TRACE_IRQS_IRETQ
614 SWAPGS
615 jmp restore_regs_and_iret
616
617 /* Returning to kernel space */
618 retint_kernel:
619 #ifdef CONFIG_PREEMPT
620 /* Interrupts are off */
621 /* Check if we need preemption */
622 bt $9, EFLAGS(%rsp) /* were interrupts off? */
623 jnc 1f
624 0: cmpl $0, PER_CPU_VAR(__preempt_count)
625 jnz 1f
626 call preempt_schedule_irq
627 jmp 0b
628 1:
629 #endif
630 /*
631 * The iretq could re-enable interrupts:
632 */
633 TRACE_IRQS_IRETQ
634
635 /*
636 * At this label, code paths which return to kernel and to user,
637 * which come from interrupts/exception and from syscalls, merge.
638 */
639 GLOBAL(restore_regs_and_iret)
640 RESTORE_EXTRA_REGS
641 restore_c_regs_and_iret:
642 RESTORE_C_REGS
643 REMOVE_PT_GPREGS_FROM_STACK 8
644 INTERRUPT_RETURN
645
646 ENTRY(native_iret)
647 UNWIND_HINT_IRET_REGS
648 /*
649 * Are we returning to a stack segment from the LDT? Note: in
650 * 64-bit mode SS:RSP on the exception stack is always valid.
651 */
652 #ifdef CONFIG_X86_ESPFIX64
653 testb $4, (SS-RIP)(%rsp)
654 jnz native_irq_return_ldt
655 #endif
656
657 .global native_irq_return_iret
658 native_irq_return_iret:
659 /*
660 * This may fault. Non-paranoid faults on return to userspace are
661 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
662 * Double-faults due to espfix64 are handled in do_double_fault.
663 * Other faults here are fatal.
664 */
665 iretq
666
667 #ifdef CONFIG_X86_ESPFIX64
668 native_irq_return_ldt:
669 /*
670 * We are running with user GSBASE. All GPRs contain their user
671 * values. We have a percpu ESPFIX stack that is eight slots
672 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
673 * of the ESPFIX stack.
674 *
675 * We clobber RAX and RDI in this code. We stash RDI on the
676 * normal stack and RAX on the ESPFIX stack.
677 *
678 * The ESPFIX stack layout we set up looks like this:
679 *
680 * --- top of ESPFIX stack ---
681 * SS
682 * RSP
683 * RFLAGS
684 * CS
685 * RIP <-- RSP points here when we're done
686 * RAX <-- espfix_waddr points here
687 * --- bottom of ESPFIX stack ---
688 */
689
690 pushq %rdi /* Stash user RDI */
691 SWAPGS
692 movq PER_CPU_VAR(espfix_waddr), %rdi
693 movq %rax, (0*8)(%rdi) /* user RAX */
694 movq (1*8)(%rsp), %rax /* user RIP */
695 movq %rax, (1*8)(%rdi)
696 movq (2*8)(%rsp), %rax /* user CS */
697 movq %rax, (2*8)(%rdi)
698 movq (3*8)(%rsp), %rax /* user RFLAGS */
699 movq %rax, (3*8)(%rdi)
700 movq (5*8)(%rsp), %rax /* user SS */
701 movq %rax, (5*8)(%rdi)
702 movq (4*8)(%rsp), %rax /* user RSP */
703 movq %rax, (4*8)(%rdi)
704 /* Now RAX == RSP. */
705
706 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
707 popq %rdi /* Restore user RDI */
708
709 /*
710 * espfix_stack[31:16] == 0. The page tables are set up such that
711 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
712 * espfix_waddr for any X. That is, there are 65536 RO aliases of
713 * the same page. Set up RSP so that RSP[31:16] contains the
714 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
715 * still points to an RO alias of the ESPFIX stack.
716 */
717 orq PER_CPU_VAR(espfix_stack), %rax
718 SWAPGS
719 movq %rax, %rsp
720 UNWIND_HINT_IRET_REGS offset=8
721
722 /*
723 * At this point, we cannot write to the stack any more, but we can
724 * still read.
725 */
726 popq %rax /* Restore user RAX */
727
728 /*
729 * RSP now points to an ordinary IRET frame, except that the page
730 * is read-only and RSP[31:16] are preloaded with the userspace
731 * values. We can now IRET back to userspace.
732 */
733 jmp native_irq_return_iret
734 #endif
735 END(common_interrupt)
736
737 /*
738 * APIC interrupts.
739 */
740 .macro apicinterrupt3 num sym do_sym
741 ENTRY(\sym)
742 UNWIND_HINT_IRET_REGS
743 ASM_CLAC
744 pushq $~(\num)
745 .Lcommon_\sym:
746 interrupt \do_sym
747 jmp ret_from_intr
748 END(\sym)
749 .endm
750
751 #ifdef CONFIG_TRACING
752 #define trace(sym) trace_##sym
753 #define smp_trace(sym) smp_trace_##sym
754
755 .macro trace_apicinterrupt num sym
756 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
757 .endm
758 #else
759 .macro trace_apicinterrupt num sym do_sym
760 .endm
761 #endif
762
763 /* Make sure APIC interrupt handlers end up in the irqentry section: */
764 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
765 #define POP_SECTION_IRQENTRY .popsection
766
767 .macro apicinterrupt num sym do_sym
768 PUSH_SECTION_IRQENTRY
769 apicinterrupt3 \num \sym \do_sym
770 trace_apicinterrupt \num \sym
771 POP_SECTION_IRQENTRY
772 .endm
773
774 #ifdef CONFIG_SMP
775 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
776 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
777 #endif
778
779 #ifdef CONFIG_X86_UV
780 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
781 #endif
782
783 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
784 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
785
786 #ifdef CONFIG_HAVE_KVM
787 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
788 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
789 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
790 #endif
791
792 #ifdef CONFIG_X86_MCE_THRESHOLD
793 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
794 #endif
795
796 #ifdef CONFIG_X86_MCE_AMD
797 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
798 #endif
799
800 #ifdef CONFIG_X86_THERMAL_VECTOR
801 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
802 #endif
803
804 #ifdef CONFIG_SMP
805 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
806 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
807 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
808 #endif
809
810 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
811 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
812
813 #ifdef CONFIG_IRQ_WORK
814 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
815 #endif
816
817 /*
818 * Exception entry points.
819 */
820 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
821
822 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
823 ENTRY(\sym)
824 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
825
826 /* Sanity check */
827 .if \shift_ist != -1 && \paranoid == 0
828 .error "using shift_ist requires paranoid=1"
829 .endif
830
831 ASM_CLAC
832
833 .if \has_error_code == 0
834 pushq $-1 /* ORIG_RAX: no syscall to restart */
835 .endif
836
837 ALLOC_PT_GPREGS_ON_STACK
838
839 .if \paranoid
840 .if \paranoid == 1
841 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
842 jnz 1f
843 .endif
844 call paranoid_entry
845 .else
846 call error_entry
847 .endif
848 UNWIND_HINT_REGS
849 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
850
851 .if \paranoid
852 .if \shift_ist != -1
853 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
854 .else
855 TRACE_IRQS_OFF
856 .endif
857 .endif
858
859 movq %rsp, %rdi /* pt_regs pointer */
860
861 .if \has_error_code
862 movq ORIG_RAX(%rsp), %rsi /* get error code */
863 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
864 .else
865 xorl %esi, %esi /* no error code */
866 .endif
867
868 .if \shift_ist != -1
869 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
870 .endif
871
872 call \do_sym
873
874 .if \shift_ist != -1
875 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
876 .endif
877
878 /* these procedures expect "no swapgs" flag in ebx */
879 .if \paranoid
880 jmp paranoid_exit
881 .else
882 jmp error_exit
883 .endif
884
885 .if \paranoid == 1
886 /*
887 * Paranoid entry from userspace. Switch stacks and treat it
888 * as a normal entry. This means that paranoid handlers
889 * run in real process context if user_mode(regs).
890 */
891 1:
892 call error_entry
893
894
895 movq %rsp, %rdi /* pt_regs pointer */
896 call sync_regs
897 movq %rax, %rsp /* switch stack */
898
899 movq %rsp, %rdi /* pt_regs pointer */
900
901 .if \has_error_code
902 movq ORIG_RAX(%rsp), %rsi /* get error code */
903 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
904 .else
905 xorl %esi, %esi /* no error code */
906 .endif
907
908 call \do_sym
909
910 jmp error_exit /* %ebx: no swapgs flag */
911 .endif
912 END(\sym)
913 .endm
914
915 idtentry divide_error do_divide_error has_error_code=0
916 idtentry overflow do_overflow has_error_code=0
917 idtentry bounds do_bounds has_error_code=0
918 idtentry invalid_op do_invalid_op has_error_code=0
919 idtentry device_not_available do_device_not_available has_error_code=0
920 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
921 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
922 idtentry invalid_TSS do_invalid_TSS has_error_code=1
923 idtentry segment_not_present do_segment_not_present has_error_code=1
924 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
925 idtentry coprocessor_error do_coprocessor_error has_error_code=0
926 idtentry alignment_check do_alignment_check has_error_code=1
927 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
928
929
930 /*
931 * Reload gs selector with exception handling
932 * edi: new selector
933 */
934 ENTRY(native_load_gs_index)
935 FRAME_BEGIN
936 pushfq
937 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
938 SWAPGS
939 .Lgs_change:
940 movl %edi, %gs
941 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
942 SWAPGS
943 popfq
944 FRAME_END
945 ret
946 ENDPROC(native_load_gs_index)
947 EXPORT_SYMBOL(native_load_gs_index)
948
949 _ASM_EXTABLE(.Lgs_change, bad_gs)
950 .section .fixup, "ax"
951 /* running with kernelgs */
952 bad_gs:
953 SWAPGS /* switch back to user gs */
954 .macro ZAP_GS
955 /* This can't be a string because the preprocessor needs to see it. */
956 movl $__USER_DS, %eax
957 movl %eax, %gs
958 .endm
959 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
960 xorl %eax, %eax
961 movl %eax, %gs
962 jmp 2b
963 .previous
964
965 /* Call softirq on interrupt stack. Interrupts are off. */
966 ENTRY(do_softirq_own_stack)
967 pushq %rbp
968 mov %rsp, %rbp
969 ENTER_IRQ_STACK regs=0 old_rsp=%r11
970 call __do_softirq
971 LEAVE_IRQ_STACK regs=0
972 leaveq
973 ret
974 ENDPROC(do_softirq_own_stack)
975
976 #ifdef CONFIG_XEN
977 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
978
979 /*
980 * A note on the "critical region" in our callback handler.
981 * We want to avoid stacking callback handlers due to events occurring
982 * during handling of the last event. To do this, we keep events disabled
983 * until we've done all processing. HOWEVER, we must enable events before
984 * popping the stack frame (can't be done atomically) and so it would still
985 * be possible to get enough handler activations to overflow the stack.
986 * Although unlikely, bugs of that kind are hard to track down, so we'd
987 * like to avoid the possibility.
988 * So, on entry to the handler we detect whether we interrupted an
989 * existing activation in its critical region -- if so, we pop the current
990 * activation and restart the handler using the previous one.
991 */
992 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
993
994 /*
995 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
996 * see the correct pointer to the pt_regs
997 */
998 UNWIND_HINT_FUNC
999 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1000 UNWIND_HINT_REGS
1001
1002 ENTER_IRQ_STACK old_rsp=%r10
1003 call xen_evtchn_do_upcall
1004 LEAVE_IRQ_STACK
1005
1006 #ifndef CONFIG_PREEMPT
1007 call xen_maybe_preempt_hcall
1008 #endif
1009 jmp error_exit
1010 END(xen_do_hypervisor_callback)
1011
1012 /*
1013 * Hypervisor uses this for application faults while it executes.
1014 * We get here for two reasons:
1015 * 1. Fault while reloading DS, ES, FS or GS
1016 * 2. Fault while executing IRET
1017 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1018 * registers that could be reloaded and zeroed the others.
1019 * Category 2 we fix up by killing the current process. We cannot use the
1020 * normal Linux return path in this case because if we use the IRET hypercall
1021 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1022 * We distinguish between categories by comparing each saved segment register
1023 * with its current contents: any discrepancy means we in category 1.
1024 */
1025 ENTRY(xen_failsafe_callback)
1026 UNWIND_HINT_EMPTY
1027 movl %ds, %ecx
1028 cmpw %cx, 0x10(%rsp)
1029 jne 1f
1030 movl %es, %ecx
1031 cmpw %cx, 0x18(%rsp)
1032 jne 1f
1033 movl %fs, %ecx
1034 cmpw %cx, 0x20(%rsp)
1035 jne 1f
1036 movl %gs, %ecx
1037 cmpw %cx, 0x28(%rsp)
1038 jne 1f
1039 /* All segments match their saved values => Category 2 (Bad IRET). */
1040 movq (%rsp), %rcx
1041 movq 8(%rsp), %r11
1042 addq $0x30, %rsp
1043 pushq $0 /* RIP */
1044 UNWIND_HINT_IRET_REGS offset=8
1045 jmp general_protection
1046 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1047 movq (%rsp), %rcx
1048 movq 8(%rsp), %r11
1049 addq $0x30, %rsp
1050 UNWIND_HINT_IRET_REGS
1051 pushq $-1 /* orig_ax = -1 => not a system call */
1052 ALLOC_PT_GPREGS_ON_STACK
1053 SAVE_C_REGS
1054 SAVE_EXTRA_REGS
1055 ENCODE_FRAME_POINTER
1056 jmp error_exit
1057 END(xen_failsafe_callback)
1058
1059 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1060 xen_hvm_callback_vector xen_evtchn_do_upcall
1061
1062 #endif /* CONFIG_XEN */
1063
1064 #if IS_ENABLED(CONFIG_HYPERV)
1065 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1066 hyperv_callback_vector hyperv_vector_handler
1067 #endif /* CONFIG_HYPERV */
1068
1069 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1070 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1071 idtentry stack_segment do_stack_segment has_error_code=1
1072
1073 #ifdef CONFIG_XEN
1074 idtentry xendebug do_debug has_error_code=0
1075 idtentry xenint3 do_int3 has_error_code=0
1076 #endif
1077
1078 idtentry general_protection do_general_protection has_error_code=1
1079 idtentry page_fault do_page_fault has_error_code=1
1080
1081 #ifdef CONFIG_KVM_GUEST
1082 idtentry async_page_fault do_async_page_fault has_error_code=1
1083 #endif
1084
1085 #ifdef CONFIG_X86_MCE
1086 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1087 #endif
1088
1089 /*
1090 * Save all registers in pt_regs, and switch gs if needed.
1091 * Use slow, but surefire "are we in kernel?" check.
1092 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1093 */
1094 ENTRY(paranoid_entry)
1095 UNWIND_HINT_FUNC
1096 cld
1097 SAVE_C_REGS 8
1098 SAVE_EXTRA_REGS 8
1099 ENCODE_FRAME_POINTER 8
1100 movl $1, %ebx
1101 movl $MSR_GS_BASE, %ecx
1102 rdmsr
1103 testl %edx, %edx
1104 js 1f /* negative -> in kernel */
1105 SWAPGS
1106 xorl %ebx, %ebx
1107 1: ret
1108 END(paranoid_entry)
1109
1110 /*
1111 * "Paranoid" exit path from exception stack. This is invoked
1112 * only on return from non-NMI IST interrupts that came
1113 * from kernel space.
1114 *
1115 * We may be returning to very strange contexts (e.g. very early
1116 * in syscall entry), so checking for preemption here would
1117 * be complicated. Fortunately, we there's no good reason
1118 * to try to handle preemption here.
1119 *
1120 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1121 */
1122 ENTRY(paranoid_exit)
1123 UNWIND_HINT_REGS
1124 DISABLE_INTERRUPTS(CLBR_ANY)
1125 TRACE_IRQS_OFF_DEBUG
1126 testl %ebx, %ebx /* swapgs needed? */
1127 jnz paranoid_exit_no_swapgs
1128 TRACE_IRQS_IRETQ
1129 SWAPGS_UNSAFE_STACK
1130 jmp paranoid_exit_restore
1131 paranoid_exit_no_swapgs:
1132 TRACE_IRQS_IRETQ_DEBUG
1133 paranoid_exit_restore:
1134 RESTORE_EXTRA_REGS
1135 RESTORE_C_REGS
1136 REMOVE_PT_GPREGS_FROM_STACK 8
1137 INTERRUPT_RETURN
1138 END(paranoid_exit)
1139
1140 /*
1141 * Save all registers in pt_regs, and switch gs if needed.
1142 * Return: EBX=0: came from user mode; EBX=1: otherwise
1143 */
1144 ENTRY(error_entry)
1145 UNWIND_HINT_FUNC
1146 cld
1147 SAVE_C_REGS 8
1148 SAVE_EXTRA_REGS 8
1149 ENCODE_FRAME_POINTER 8
1150 xorl %ebx, %ebx
1151 testb $3, CS+8(%rsp)
1152 jz .Lerror_kernelspace
1153
1154 /*
1155 * We entered from user mode or we're pretending to have entered
1156 * from user mode due to an IRET fault.
1157 */
1158 SWAPGS
1159
1160 .Lerror_entry_from_usermode_after_swapgs:
1161 /*
1162 * We need to tell lockdep that IRQs are off. We can't do this until
1163 * we fix gsbase, and we should do it before enter_from_user_mode
1164 * (which can take locks).
1165 */
1166 TRACE_IRQS_OFF
1167 CALL_enter_from_user_mode
1168 ret
1169
1170 .Lerror_entry_done:
1171 TRACE_IRQS_OFF
1172 ret
1173
1174 /*
1175 * There are two places in the kernel that can potentially fault with
1176 * usergs. Handle them here. B stepping K8s sometimes report a
1177 * truncated RIP for IRET exceptions returning to compat mode. Check
1178 * for these here too.
1179 */
1180 .Lerror_kernelspace:
1181 incl %ebx
1182 leaq native_irq_return_iret(%rip), %rcx
1183 cmpq %rcx, RIP+8(%rsp)
1184 je .Lerror_bad_iret
1185 movl %ecx, %eax /* zero extend */
1186 cmpq %rax, RIP+8(%rsp)
1187 je .Lbstep_iret
1188 cmpq $.Lgs_change, RIP+8(%rsp)
1189 jne .Lerror_entry_done
1190
1191 /*
1192 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1193 * gsbase and proceed. We'll fix up the exception and land in
1194 * .Lgs_change's error handler with kernel gsbase.
1195 */
1196 SWAPGS
1197 jmp .Lerror_entry_done
1198
1199 .Lbstep_iret:
1200 /* Fix truncated RIP */
1201 movq %rcx, RIP+8(%rsp)
1202 /* fall through */
1203
1204 .Lerror_bad_iret:
1205 /*
1206 * We came from an IRET to user mode, so we have user gsbase.
1207 * Switch to kernel gsbase:
1208 */
1209 SWAPGS
1210
1211 /*
1212 * Pretend that the exception came from user mode: set up pt_regs
1213 * as if we faulted immediately after IRET and clear EBX so that
1214 * error_exit knows that we will be returning to user mode.
1215 */
1216 mov %rsp, %rdi
1217 call fixup_bad_iret
1218 mov %rax, %rsp
1219 decl %ebx
1220 jmp .Lerror_entry_from_usermode_after_swapgs
1221 END(error_entry)
1222
1223
1224 /*
1225 * On entry, EBX is a "return to kernel mode" flag:
1226 * 1: already in kernel mode, don't need SWAPGS
1227 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1228 */
1229 ENTRY(error_exit)
1230 UNWIND_HINT_REGS
1231 DISABLE_INTERRUPTS(CLBR_ANY)
1232 TRACE_IRQS_OFF
1233 testl %ebx, %ebx
1234 jnz retint_kernel
1235 jmp retint_user
1236 END(error_exit)
1237
1238 /* Runs on exception stack */
1239 /* XXX: broken on Xen PV */
1240 ENTRY(nmi)
1241 UNWIND_HINT_IRET_REGS
1242 /*
1243 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1244 * the iretq it performs will take us out of NMI context.
1245 * This means that we can have nested NMIs where the next
1246 * NMI is using the top of the stack of the previous NMI. We
1247 * can't let it execute because the nested NMI will corrupt the
1248 * stack of the previous NMI. NMI handlers are not re-entrant
1249 * anyway.
1250 *
1251 * To handle this case we do the following:
1252 * Check the a special location on the stack that contains
1253 * a variable that is set when NMIs are executing.
1254 * The interrupted task's stack is also checked to see if it
1255 * is an NMI stack.
1256 * If the variable is not set and the stack is not the NMI
1257 * stack then:
1258 * o Set the special variable on the stack
1259 * o Copy the interrupt frame into an "outermost" location on the
1260 * stack
1261 * o Copy the interrupt frame into an "iret" location on the stack
1262 * o Continue processing the NMI
1263 * If the variable is set or the previous stack is the NMI stack:
1264 * o Modify the "iret" location to jump to the repeat_nmi
1265 * o return back to the first NMI
1266 *
1267 * Now on exit of the first NMI, we first clear the stack variable
1268 * The NMI stack will tell any nested NMIs at that point that it is
1269 * nested. Then we pop the stack normally with iret, and if there was
1270 * a nested NMI that updated the copy interrupt stack frame, a
1271 * jump will be made to the repeat_nmi code that will handle the second
1272 * NMI.
1273 *
1274 * However, espfix prevents us from directly returning to userspace
1275 * with a single IRET instruction. Similarly, IRET to user mode
1276 * can fault. We therefore handle NMIs from user space like
1277 * other IST entries.
1278 */
1279
1280 ASM_CLAC
1281
1282 /* Use %rdx as our temp variable throughout */
1283 pushq %rdx
1284
1285 testb $3, CS-RIP+8(%rsp)
1286 jz .Lnmi_from_kernel
1287
1288 /*
1289 * NMI from user mode. We need to run on the thread stack, but we
1290 * can't go through the normal entry paths: NMIs are masked, and
1291 * we don't want to enable interrupts, because then we'll end
1292 * up in an awkward situation in which IRQs are on but NMIs
1293 * are off.
1294 *
1295 * We also must not push anything to the stack before switching
1296 * stacks lest we corrupt the "NMI executing" variable.
1297 */
1298
1299 SWAPGS_UNSAFE_STACK
1300 cld
1301 movq %rsp, %rdx
1302 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1303 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1304 pushq 5*8(%rdx) /* pt_regs->ss */
1305 pushq 4*8(%rdx) /* pt_regs->rsp */
1306 pushq 3*8(%rdx) /* pt_regs->flags */
1307 pushq 2*8(%rdx) /* pt_regs->cs */
1308 pushq 1*8(%rdx) /* pt_regs->rip */
1309 UNWIND_HINT_IRET_REGS
1310 pushq $-1 /* pt_regs->orig_ax */
1311 pushq %rdi /* pt_regs->di */
1312 pushq %rsi /* pt_regs->si */
1313 pushq (%rdx) /* pt_regs->dx */
1314 pushq %rcx /* pt_regs->cx */
1315 pushq %rax /* pt_regs->ax */
1316 pushq %r8 /* pt_regs->r8 */
1317 pushq %r9 /* pt_regs->r9 */
1318 pushq %r10 /* pt_regs->r10 */
1319 pushq %r11 /* pt_regs->r11 */
1320 pushq %rbx /* pt_regs->rbx */
1321 pushq %rbp /* pt_regs->rbp */
1322 pushq %r12 /* pt_regs->r12 */
1323 pushq %r13 /* pt_regs->r13 */
1324 pushq %r14 /* pt_regs->r14 */
1325 pushq %r15 /* pt_regs->r15 */
1326 UNWIND_HINT_REGS
1327 ENCODE_FRAME_POINTER
1328
1329 /*
1330 * At this point we no longer need to worry about stack damage
1331 * due to nesting -- we're on the normal thread stack and we're
1332 * done with the NMI stack.
1333 */
1334
1335 movq %rsp, %rdi
1336 movq $-1, %rsi
1337 call do_nmi
1338
1339 /*
1340 * Return back to user mode. We must *not* do the normal exit
1341 * work, because we don't want to enable interrupts.
1342 */
1343 SWAPGS
1344 jmp restore_regs_and_iret
1345
1346 .Lnmi_from_kernel:
1347 /*
1348 * Here's what our stack frame will look like:
1349 * +---------------------------------------------------------+
1350 * | original SS |
1351 * | original Return RSP |
1352 * | original RFLAGS |
1353 * | original CS |
1354 * | original RIP |
1355 * +---------------------------------------------------------+
1356 * | temp storage for rdx |
1357 * +---------------------------------------------------------+
1358 * | "NMI executing" variable |
1359 * +---------------------------------------------------------+
1360 * | iret SS } Copied from "outermost" frame |
1361 * | iret Return RSP } on each loop iteration; overwritten |
1362 * | iret RFLAGS } by a nested NMI to force another |
1363 * | iret CS } iteration if needed. |
1364 * | iret RIP } |
1365 * +---------------------------------------------------------+
1366 * | outermost SS } initialized in first_nmi; |
1367 * | outermost Return RSP } will not be changed before |
1368 * | outermost RFLAGS } NMI processing is done. |
1369 * | outermost CS } Copied to "iret" frame on each |
1370 * | outermost RIP } iteration. |
1371 * +---------------------------------------------------------+
1372 * | pt_regs |
1373 * +---------------------------------------------------------+
1374 *
1375 * The "original" frame is used by hardware. Before re-enabling
1376 * NMIs, we need to be done with it, and we need to leave enough
1377 * space for the asm code here.
1378 *
1379 * We return by executing IRET while RSP points to the "iret" frame.
1380 * That will either return for real or it will loop back into NMI
1381 * processing.
1382 *
1383 * The "outermost" frame is copied to the "iret" frame on each
1384 * iteration of the loop, so each iteration starts with the "iret"
1385 * frame pointing to the final return target.
1386 */
1387
1388 /*
1389 * Determine whether we're a nested NMI.
1390 *
1391 * If we interrupted kernel code between repeat_nmi and
1392 * end_repeat_nmi, then we are a nested NMI. We must not
1393 * modify the "iret" frame because it's being written by
1394 * the outer NMI. That's okay; the outer NMI handler is
1395 * about to about to call do_nmi anyway, so we can just
1396 * resume the outer NMI.
1397 */
1398
1399 movq $repeat_nmi, %rdx
1400 cmpq 8(%rsp), %rdx
1401 ja 1f
1402 movq $end_repeat_nmi, %rdx
1403 cmpq 8(%rsp), %rdx
1404 ja nested_nmi_out
1405 1:
1406
1407 /*
1408 * Now check "NMI executing". If it's set, then we're nested.
1409 * This will not detect if we interrupted an outer NMI just
1410 * before IRET.
1411 */
1412 cmpl $1, -8(%rsp)
1413 je nested_nmi
1414
1415 /*
1416 * Now test if the previous stack was an NMI stack. This covers
1417 * the case where we interrupt an outer NMI after it clears
1418 * "NMI executing" but before IRET. We need to be careful, though:
1419 * there is one case in which RSP could point to the NMI stack
1420 * despite there being no NMI active: naughty userspace controls
1421 * RSP at the very beginning of the SYSCALL targets. We can
1422 * pull a fast one on naughty userspace, though: we program
1423 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1424 * if it controls the kernel's RSP. We set DF before we clear
1425 * "NMI executing".
1426 */
1427 lea 6*8(%rsp), %rdx
1428 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1429 cmpq %rdx, 4*8(%rsp)
1430 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1431 ja first_nmi
1432
1433 subq $EXCEPTION_STKSZ, %rdx
1434 cmpq %rdx, 4*8(%rsp)
1435 /* If it is below the NMI stack, it is a normal NMI */
1436 jb first_nmi
1437
1438 /* Ah, it is within the NMI stack. */
1439
1440 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1441 jz first_nmi /* RSP was user controlled. */
1442
1443 /* This is a nested NMI. */
1444
1445 nested_nmi:
1446 /*
1447 * Modify the "iret" frame to point to repeat_nmi, forcing another
1448 * iteration of NMI handling.
1449 */
1450 subq $8, %rsp
1451 leaq -10*8(%rsp), %rdx
1452 pushq $__KERNEL_DS
1453 pushq %rdx
1454 pushfq
1455 pushq $__KERNEL_CS
1456 pushq $repeat_nmi
1457
1458 /* Put stack back */
1459 addq $(6*8), %rsp
1460
1461 nested_nmi_out:
1462 popq %rdx
1463
1464 /* We are returning to kernel mode, so this cannot result in a fault. */
1465 INTERRUPT_RETURN
1466
1467 first_nmi:
1468 /* Restore rdx. */
1469 movq (%rsp), %rdx
1470
1471 /* Make room for "NMI executing". */
1472 pushq $0
1473
1474 /* Leave room for the "iret" frame */
1475 subq $(5*8), %rsp
1476
1477 /* Copy the "original" frame to the "outermost" frame */
1478 .rept 5
1479 pushq 11*8(%rsp)
1480 .endr
1481 UNWIND_HINT_IRET_REGS
1482
1483 /* Everything up to here is safe from nested NMIs */
1484
1485 #ifdef CONFIG_DEBUG_ENTRY
1486 /*
1487 * For ease of testing, unmask NMIs right away. Disabled by
1488 * default because IRET is very expensive.
1489 */
1490 pushq $0 /* SS */
1491 pushq %rsp /* RSP (minus 8 because of the previous push) */
1492 addq $8, (%rsp) /* Fix up RSP */
1493 pushfq /* RFLAGS */
1494 pushq $__KERNEL_CS /* CS */
1495 pushq $1f /* RIP */
1496 INTERRUPT_RETURN /* continues at repeat_nmi below */
1497 UNWIND_HINT_IRET_REGS
1498 1:
1499 #endif
1500
1501 repeat_nmi:
1502 /*
1503 * If there was a nested NMI, the first NMI's iret will return
1504 * here. But NMIs are still enabled and we can take another
1505 * nested NMI. The nested NMI checks the interrupted RIP to see
1506 * if it is between repeat_nmi and end_repeat_nmi, and if so
1507 * it will just return, as we are about to repeat an NMI anyway.
1508 * This makes it safe to copy to the stack frame that a nested
1509 * NMI will update.
1510 *
1511 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1512 * we're repeating an NMI, gsbase has the same value that it had on
1513 * the first iteration. paranoid_entry will load the kernel
1514 * gsbase if needed before we call do_nmi. "NMI executing"
1515 * is zero.
1516 */
1517 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1518
1519 /*
1520 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1521 * here must not modify the "iret" frame while we're writing to
1522 * it or it will end up containing garbage.
1523 */
1524 addq $(10*8), %rsp
1525 .rept 5
1526 pushq -6*8(%rsp)
1527 .endr
1528 subq $(5*8), %rsp
1529 end_repeat_nmi:
1530
1531 /*
1532 * Everything below this point can be preempted by a nested NMI.
1533 * If this happens, then the inner NMI will change the "iret"
1534 * frame to point back to repeat_nmi.
1535 */
1536 pushq $-1 /* ORIG_RAX: no syscall to restart */
1537 ALLOC_PT_GPREGS_ON_STACK
1538
1539 /*
1540 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1541 * as we should not be calling schedule in NMI context.
1542 * Even with normal interrupts enabled. An NMI should not be
1543 * setting NEED_RESCHED or anything that normal interrupts and
1544 * exceptions might do.
1545 */
1546 call paranoid_entry
1547 UNWIND_HINT_REGS
1548
1549 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1550 movq %rsp, %rdi
1551 movq $-1, %rsi
1552 call do_nmi
1553
1554 testl %ebx, %ebx /* swapgs needed? */
1555 jnz nmi_restore
1556 nmi_swapgs:
1557 SWAPGS_UNSAFE_STACK
1558 nmi_restore:
1559 RESTORE_EXTRA_REGS
1560 RESTORE_C_REGS
1561
1562 /* Point RSP at the "iret" frame. */
1563 REMOVE_PT_GPREGS_FROM_STACK 6*8
1564
1565 /*
1566 * Clear "NMI executing". Set DF first so that we can easily
1567 * distinguish the remaining code between here and IRET from
1568 * the SYSCALL entry and exit paths. On a native kernel, we
1569 * could just inspect RIP, but, on paravirt kernels,
1570 * INTERRUPT_RETURN can translate into a jump into a
1571 * hypercall page.
1572 */
1573 std
1574 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1575
1576 /*
1577 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1578 * stack in a single instruction. We are returning to kernel
1579 * mode, so this cannot result in a fault.
1580 */
1581 INTERRUPT_RETURN
1582 END(nmi)
1583
1584 ENTRY(ignore_sysret)
1585 UNWIND_HINT_EMPTY
1586 mov $-ENOSYS, %eax
1587 sysret
1588 END(ignore_sysret)
1589
1590 ENTRY(rewind_stack_do_exit)
1591 UNWIND_HINT_FUNC
1592 /* Prevent any naive code from trying to unwind to our caller. */
1593 xorl %ebp, %ebp
1594
1595 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1596 leaq -PTREGS_SIZE(%rax), %rsp
1597 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1598
1599 call do_exit
1600 END(rewind_stack_do_exit)