]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/entry/entry_64.S
Merge tag 'drm-for-v4.15-part2' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include "calling.h"
27 #include <asm/asm-offsets.h>
28 #include <asm/msr.h>
29 #include <asm/unistd.h>
30 #include <asm/thread_info.h>
31 #include <asm/hw_irq.h>
32 #include <asm/page_types.h>
33 #include <asm/irqflags.h>
34 #include <asm/paravirt.h>
35 #include <asm/percpu.h>
36 #include <asm/asm.h>
37 #include <asm/smap.h>
38 #include <asm/pgtable_types.h>
39 #include <asm/export.h>
40 #include <asm/frame.h>
41 #include <linux/err.h>
42
43 .code64
44 .section .entry.text, "ax"
45
46 #ifdef CONFIG_PARAVIRT
47 ENTRY(native_usergs_sysret64)
48 UNWIND_HINT_EMPTY
49 swapgs
50 sysretq
51 END(native_usergs_sysret64)
52 #endif /* CONFIG_PARAVIRT */
53
54 .macro TRACE_IRQS_IRETQ
55 #ifdef CONFIG_TRACE_IRQFLAGS
56 bt $9, EFLAGS(%rsp) /* interrupts off? */
57 jnc 1f
58 TRACE_IRQS_ON
59 1:
60 #endif
61 .endm
62
63 /*
64 * When dynamic function tracer is enabled it will add a breakpoint
65 * to all locations that it is about to modify, sync CPUs, update
66 * all the code, sync CPUs, then remove the breakpoints. In this time
67 * if lockdep is enabled, it might jump back into the debug handler
68 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
69 *
70 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
71 * make sure the stack pointer does not get reset back to the top
72 * of the debug stack, and instead just reuses the current stack.
73 */
74 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
75
76 .macro TRACE_IRQS_OFF_DEBUG
77 call debug_stack_set_zero
78 TRACE_IRQS_OFF
79 call debug_stack_reset
80 .endm
81
82 .macro TRACE_IRQS_ON_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_ON
85 call debug_stack_reset
86 .endm
87
88 .macro TRACE_IRQS_IRETQ_DEBUG
89 bt $9, EFLAGS(%rsp) /* interrupts off? */
90 jnc 1f
91 TRACE_IRQS_ON_DEBUG
92 1:
93 .endm
94
95 #else
96 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
97 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
98 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
99 #endif
100
101 /*
102 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
103 *
104 * This is the only entry point used for 64-bit system calls. The
105 * hardware interface is reasonably well designed and the register to
106 * argument mapping Linux uses fits well with the registers that are
107 * available when SYSCALL is used.
108 *
109 * SYSCALL instructions can be found inlined in libc implementations as
110 * well as some other programs and libraries. There are also a handful
111 * of SYSCALL instructions in the vDSO used, for example, as a
112 * clock_gettimeofday fallback.
113 *
114 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
115 * then loads new ss, cs, and rip from previously programmed MSRs.
116 * rflags gets masked by a value from another MSR (so CLD and CLAC
117 * are not needed). SYSCALL does not save anything on the stack
118 * and does not change rsp.
119 *
120 * Registers on entry:
121 * rax system call number
122 * rcx return address
123 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
124 * rdi arg0
125 * rsi arg1
126 * rdx arg2
127 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
128 * r8 arg4
129 * r9 arg5
130 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
131 *
132 * Only called from user space.
133 *
134 * When user can change pt_regs->foo always force IRET. That is because
135 * it deals with uncanonical addresses better. SYSRET has trouble
136 * with them due to bugs in both AMD and Intel CPUs.
137 */
138
139 ENTRY(entry_SYSCALL_64)
140 UNWIND_HINT_EMPTY
141 /*
142 * Interrupts are off on entry.
143 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
144 * it is too small to ever cause noticeable irq latency.
145 */
146
147 swapgs
148 movq %rsp, PER_CPU_VAR(rsp_scratch)
149 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
150
151 TRACE_IRQS_OFF
152
153 /* Construct struct pt_regs on stack */
154 pushq $__USER_DS /* pt_regs->ss */
155 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
156 pushq %r11 /* pt_regs->flags */
157 pushq $__USER_CS /* pt_regs->cs */
158 pushq %rcx /* pt_regs->ip */
159 GLOBAL(entry_SYSCALL_64_after_hwframe)
160 pushq %rax /* pt_regs->orig_ax */
161 pushq %rdi /* pt_regs->di */
162 pushq %rsi /* pt_regs->si */
163 pushq %rdx /* pt_regs->dx */
164 pushq %rcx /* pt_regs->cx */
165 pushq $-ENOSYS /* pt_regs->ax */
166 pushq %r8 /* pt_regs->r8 */
167 pushq %r9 /* pt_regs->r9 */
168 pushq %r10 /* pt_regs->r10 */
169 pushq %r11 /* pt_regs->r11 */
170 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
171 UNWIND_HINT_REGS extra=0
172
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 jnz entry_SYSCALL64_slow_path
180
181 entry_SYSCALL_64_fastpath:
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
189 #if __SYSCALL_MASK == ~0
190 cmpq $__NR_syscall_max, %rax
191 #else
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
194 #endif
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
202 */
203 call *sys_call_table(, %rax, 8)
204 .Lentry_SYSCALL_64_after_fastpath_call:
205
206 movq %rax, RAX(%rsp)
207 1:
208
209 /*
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
213 */
214 DISABLE_INTERRUPTS(CLBR_ANY)
215 TRACE_IRQS_OFF
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218 jnz 1f
219
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
224 addq $6*8, %rsp /* skip extra regs -- they were preserved */
225 UNWIND_HINT_EMPTY
226 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
227
228 1:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
234 TRACE_IRQS_ON
235 ENABLE_INTERRUPTS(CLBR_ANY)
236 SAVE_EXTRA_REGS
237 movq %rsp, %rdi
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
240
241 entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
243 SAVE_EXTRA_REGS
244 movq %rsp, %rdi
245 call do_syscall_64 /* returns with IRQs disabled */
246
247 return_from_SYSCALL_64:
248 TRACE_IRQS_IRETQ /* we're about to change IF */
249
250 /*
251 * Try to use SYSRET instead of IRET if we're returning to
252 * a completely clean 64-bit userspace context. If we're not,
253 * go to the slow exit path.
254 */
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257
258 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
259 jne swapgs_restore_regs_and_return_to_usermode
260
261 /*
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
264 * the kernel, since userspace controls RSP.
265 *
266 * If width of "canonical tail" ever becomes variable, this will need
267 * to be updated to remain correct on both old and new CPUs.
268 *
269 * Change top bits to match most significant bit (47th or 56th bit
270 * depending on paging mode) in the address.
271 */
272 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
274
275 /* If this changed %rcx, it was not canonical */
276 cmpq %rcx, %r11
277 jne swapgs_restore_regs_and_return_to_usermode
278
279 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
280 jne swapgs_restore_regs_and_return_to_usermode
281
282 movq R11(%rsp), %r11
283 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
284 jne swapgs_restore_regs_and_return_to_usermode
285
286 /*
287 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
288 * restore RF properly. If the slowpath sets it for whatever reason, we
289 * need to restore it correctly.
290 *
291 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
292 * trap from userspace immediately after SYSRET. This would cause an
293 * infinite loop whenever #DB happens with register state that satisfies
294 * the opportunistic SYSRET conditions. For example, single-stepping
295 * this user code:
296 *
297 * movq $stuck_here, %rcx
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz swapgs_restore_regs_and_return_to_usermode
306
307 /* nothing to check for RSP */
308
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne swapgs_restore_regs_and_return_to_usermode
311
312 /*
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
315 */
316 syscall_return_via_sysret:
317 /* rcx and r11 are already restored (see code above) */
318 UNWIND_HINT_EMPTY
319 POP_EXTRA_REGS
320 .Lpop_c_regs_except_rcx_r11_and_sysret:
321 popq %rsi /* skip r11 */
322 popq %r10
323 popq %r9
324 popq %r8
325 popq %rax
326 popq %rsi /* skip rcx */
327 popq %rdx
328 popq %rsi
329 popq %rdi
330 movq RSP-ORIG_RAX(%rsp), %rsp
331 USERGS_SYSRET64
332 END(entry_SYSCALL_64)
333
334 ENTRY(stub_ptregs_64)
335 /*
336 * Syscalls marked as needing ptregs land here.
337 * If we are on the fast path, we need to save the extra regs,
338 * which we achieve by trying again on the slow path. If we are on
339 * the slow path, the extra regs are already saved.
340 *
341 * RAX stores a pointer to the C function implementing the syscall.
342 * IRQs are on.
343 */
344 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
345 jne 1f
346
347 /*
348 * Called from fast path -- disable IRQs again, pop return address
349 * and jump to slow path
350 */
351 DISABLE_INTERRUPTS(CLBR_ANY)
352 TRACE_IRQS_OFF
353 popq %rax
354 UNWIND_HINT_REGS extra=0
355 jmp entry_SYSCALL64_slow_path
356
357 1:
358 jmp *%rax /* Called from C */
359 END(stub_ptregs_64)
360
361 .macro ptregs_stub func
362 ENTRY(ptregs_\func)
363 UNWIND_HINT_FUNC
364 leaq \func(%rip), %rax
365 jmp stub_ptregs_64
366 END(ptregs_\func)
367 .endm
368
369 /* Instantiate ptregs_stub for each ptregs-using syscall */
370 #define __SYSCALL_64_QUAL_(sym)
371 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
372 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
373 #include <asm/syscalls_64.h>
374
375 /*
376 * %rdi: prev task
377 * %rsi: next task
378 */
379 ENTRY(__switch_to_asm)
380 UNWIND_HINT_FUNC
381 /*
382 * Save callee-saved registers
383 * This must match the order in inactive_task_frame
384 */
385 pushq %rbp
386 pushq %rbx
387 pushq %r12
388 pushq %r13
389 pushq %r14
390 pushq %r15
391
392 /* switch stack */
393 movq %rsp, TASK_threadsp(%rdi)
394 movq TASK_threadsp(%rsi), %rsp
395
396 #ifdef CONFIG_CC_STACKPROTECTOR
397 movq TASK_stack_canary(%rsi), %rbx
398 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
399 #endif
400
401 /* restore callee-saved registers */
402 popq %r15
403 popq %r14
404 popq %r13
405 popq %r12
406 popq %rbx
407 popq %rbp
408
409 jmp __switch_to
410 END(__switch_to_asm)
411
412 /*
413 * A newly forked process directly context switches into this address.
414 *
415 * rax: prev task we switched from
416 * rbx: kernel thread func (NULL for user thread)
417 * r12: kernel thread arg
418 */
419 ENTRY(ret_from_fork)
420 UNWIND_HINT_EMPTY
421 movq %rax, %rdi
422 call schedule_tail /* rdi: 'prev' task parameter */
423
424 testq %rbx, %rbx /* from kernel_thread? */
425 jnz 1f /* kernel threads are uncommon */
426
427 2:
428 UNWIND_HINT_REGS
429 movq %rsp, %rdi
430 call syscall_return_slowpath /* returns with IRQs disabled */
431 TRACE_IRQS_ON /* user mode is traced as IRQS on */
432 jmp swapgs_restore_regs_and_return_to_usermode
433
434 1:
435 /* kernel thread */
436 movq %r12, %rdi
437 call *%rbx
438 /*
439 * A kernel thread is allowed to return here after successfully
440 * calling do_execve(). Exit to userspace to complete the execve()
441 * syscall.
442 */
443 movq $0, RAX(%rsp)
444 jmp 2b
445 END(ret_from_fork)
446
447 /*
448 * Build the entry stubs with some assembler magic.
449 * We pack 1 stub into every 8-byte block.
450 */
451 .align 8
452 ENTRY(irq_entries_start)
453 vector=FIRST_EXTERNAL_VECTOR
454 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
455 UNWIND_HINT_IRET_REGS
456 pushq $(~vector+0x80) /* Note: always in signed byte range */
457 jmp common_interrupt
458 .align 8
459 vector=vector+1
460 .endr
461 END(irq_entries_start)
462
463 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
464 #ifdef CONFIG_DEBUG_ENTRY
465 pushfq
466 testl $X86_EFLAGS_IF, (%rsp)
467 jz .Lokay_\@
468 ud2
469 .Lokay_\@:
470 addq $8, %rsp
471 #endif
472 .endm
473
474 /*
475 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
476 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
477 * Requires kernel GSBASE.
478 *
479 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
480 */
481 .macro ENTER_IRQ_STACK regs=1 old_rsp
482 DEBUG_ENTRY_ASSERT_IRQS_OFF
483 movq %rsp, \old_rsp
484
485 .if \regs
486 UNWIND_HINT_REGS base=\old_rsp
487 .endif
488
489 incl PER_CPU_VAR(irq_count)
490 jnz .Lirq_stack_push_old_rsp_\@
491
492 /*
493 * Right now, if we just incremented irq_count to zero, we've
494 * claimed the IRQ stack but we haven't switched to it yet.
495 *
496 * If anything is added that can interrupt us here without using IST,
497 * it must be *extremely* careful to limit its stack usage. This
498 * could include kprobes and a hypothetical future IST-less #DB
499 * handler.
500 *
501 * The OOPS unwinder relies on the word at the top of the IRQ
502 * stack linking back to the previous RSP for the entire time we're
503 * on the IRQ stack. For this to work reliably, we need to write
504 * it before we actually move ourselves to the IRQ stack.
505 */
506
507 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
508 movq PER_CPU_VAR(irq_stack_ptr), %rsp
509
510 #ifdef CONFIG_DEBUG_ENTRY
511 /*
512 * If the first movq above becomes wrong due to IRQ stack layout
513 * changes, the only way we'll notice is if we try to unwind right
514 * here. Assert that we set up the stack right to catch this type
515 * of bug quickly.
516 */
517 cmpq -8(%rsp), \old_rsp
518 je .Lirq_stack_okay\@
519 ud2
520 .Lirq_stack_okay\@:
521 #endif
522
523 .Lirq_stack_push_old_rsp_\@:
524 pushq \old_rsp
525
526 .if \regs
527 UNWIND_HINT_REGS indirect=1
528 .endif
529 .endm
530
531 /*
532 * Undoes ENTER_IRQ_STACK.
533 */
534 .macro LEAVE_IRQ_STACK regs=1
535 DEBUG_ENTRY_ASSERT_IRQS_OFF
536 /* We need to be off the IRQ stack before decrementing irq_count. */
537 popq %rsp
538
539 .if \regs
540 UNWIND_HINT_REGS
541 .endif
542
543 /*
544 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
545 * the irq stack but we're not on it.
546 */
547
548 decl PER_CPU_VAR(irq_count)
549 .endm
550
551 /*
552 * Interrupt entry/exit.
553 *
554 * Interrupt entry points save only callee clobbered registers in fast path.
555 *
556 * Entry runs with interrupts off.
557 */
558
559 /* 0(%rsp): ~(interrupt number) */
560 .macro interrupt func
561 cld
562 ALLOC_PT_GPREGS_ON_STACK
563 SAVE_C_REGS
564 SAVE_EXTRA_REGS
565 ENCODE_FRAME_POINTER
566
567 testb $3, CS(%rsp)
568 jz 1f
569
570 /*
571 * IRQ from user mode. Switch to kernel gsbase and inform context
572 * tracking that we're in kernel mode.
573 */
574 SWAPGS
575
576 /*
577 * We need to tell lockdep that IRQs are off. We can't do this until
578 * we fix gsbase, and we should do it before enter_from_user_mode
579 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
580 * the simplest way to handle it is to just call it twice if
581 * we enter from user mode. There's no reason to optimize this since
582 * TRACE_IRQS_OFF is a no-op if lockdep is off.
583 */
584 TRACE_IRQS_OFF
585
586 CALL_enter_from_user_mode
587
588 1:
589 ENTER_IRQ_STACK old_rsp=%rdi
590 /* We entered an interrupt context - irqs are off: */
591 TRACE_IRQS_OFF
592
593 call \func /* rdi points to pt_regs */
594 .endm
595
596 /*
597 * The interrupt stubs push (~vector+0x80) onto the stack and
598 * then jump to common_interrupt.
599 */
600 .p2align CONFIG_X86_L1_CACHE_SHIFT
601 common_interrupt:
602 ASM_CLAC
603 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
604 interrupt do_IRQ
605 /* 0(%rsp): old RSP */
606 ret_from_intr:
607 DISABLE_INTERRUPTS(CLBR_ANY)
608 TRACE_IRQS_OFF
609
610 LEAVE_IRQ_STACK
611
612 testb $3, CS(%rsp)
613 jz retint_kernel
614
615 /* Interrupt came from user space */
616 GLOBAL(retint_user)
617 mov %rsp,%rdi
618 call prepare_exit_to_usermode
619 TRACE_IRQS_IRETQ
620
621 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
622 #ifdef CONFIG_DEBUG_ENTRY
623 /* Assert that pt_regs indicates user mode. */
624 testb $3, CS(%rsp)
625 jnz 1f
626 ud2
627 1:
628 #endif
629 SWAPGS
630 POP_EXTRA_REGS
631 POP_C_REGS
632 addq $8, %rsp /* skip regs->orig_ax */
633 INTERRUPT_RETURN
634
635
636 /* Returning to kernel space */
637 retint_kernel:
638 #ifdef CONFIG_PREEMPT
639 /* Interrupts are off */
640 /* Check if we need preemption */
641 bt $9, EFLAGS(%rsp) /* were interrupts off? */
642 jnc 1f
643 0: cmpl $0, PER_CPU_VAR(__preempt_count)
644 jnz 1f
645 call preempt_schedule_irq
646 jmp 0b
647 1:
648 #endif
649 /*
650 * The iretq could re-enable interrupts:
651 */
652 TRACE_IRQS_IRETQ
653
654 GLOBAL(restore_regs_and_return_to_kernel)
655 #ifdef CONFIG_DEBUG_ENTRY
656 /* Assert that pt_regs indicates kernel mode. */
657 testb $3, CS(%rsp)
658 jz 1f
659 ud2
660 1:
661 #endif
662 POP_EXTRA_REGS
663 POP_C_REGS
664 addq $8, %rsp /* skip regs->orig_ax */
665 INTERRUPT_RETURN
666
667 ENTRY(native_iret)
668 UNWIND_HINT_IRET_REGS
669 /*
670 * Are we returning to a stack segment from the LDT? Note: in
671 * 64-bit mode SS:RSP on the exception stack is always valid.
672 */
673 #ifdef CONFIG_X86_ESPFIX64
674 testb $4, (SS-RIP)(%rsp)
675 jnz native_irq_return_ldt
676 #endif
677
678 .global native_irq_return_iret
679 native_irq_return_iret:
680 /*
681 * This may fault. Non-paranoid faults on return to userspace are
682 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
683 * Double-faults due to espfix64 are handled in do_double_fault.
684 * Other faults here are fatal.
685 */
686 iretq
687
688 #ifdef CONFIG_X86_ESPFIX64
689 native_irq_return_ldt:
690 /*
691 * We are running with user GSBASE. All GPRs contain their user
692 * values. We have a percpu ESPFIX stack that is eight slots
693 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
694 * of the ESPFIX stack.
695 *
696 * We clobber RAX and RDI in this code. We stash RDI on the
697 * normal stack and RAX on the ESPFIX stack.
698 *
699 * The ESPFIX stack layout we set up looks like this:
700 *
701 * --- top of ESPFIX stack ---
702 * SS
703 * RSP
704 * RFLAGS
705 * CS
706 * RIP <-- RSP points here when we're done
707 * RAX <-- espfix_waddr points here
708 * --- bottom of ESPFIX stack ---
709 */
710
711 pushq %rdi /* Stash user RDI */
712 SWAPGS
713 movq PER_CPU_VAR(espfix_waddr), %rdi
714 movq %rax, (0*8)(%rdi) /* user RAX */
715 movq (1*8)(%rsp), %rax /* user RIP */
716 movq %rax, (1*8)(%rdi)
717 movq (2*8)(%rsp), %rax /* user CS */
718 movq %rax, (2*8)(%rdi)
719 movq (3*8)(%rsp), %rax /* user RFLAGS */
720 movq %rax, (3*8)(%rdi)
721 movq (5*8)(%rsp), %rax /* user SS */
722 movq %rax, (5*8)(%rdi)
723 movq (4*8)(%rsp), %rax /* user RSP */
724 movq %rax, (4*8)(%rdi)
725 /* Now RAX == RSP. */
726
727 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
728 popq %rdi /* Restore user RDI */
729
730 /*
731 * espfix_stack[31:16] == 0. The page tables are set up such that
732 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
733 * espfix_waddr for any X. That is, there are 65536 RO aliases of
734 * the same page. Set up RSP so that RSP[31:16] contains the
735 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
736 * still points to an RO alias of the ESPFIX stack.
737 */
738 orq PER_CPU_VAR(espfix_stack), %rax
739 SWAPGS
740 movq %rax, %rsp
741 UNWIND_HINT_IRET_REGS offset=8
742
743 /*
744 * At this point, we cannot write to the stack any more, but we can
745 * still read.
746 */
747 popq %rax /* Restore user RAX */
748
749 /*
750 * RSP now points to an ordinary IRET frame, except that the page
751 * is read-only and RSP[31:16] are preloaded with the userspace
752 * values. We can now IRET back to userspace.
753 */
754 jmp native_irq_return_iret
755 #endif
756 END(common_interrupt)
757
758 /*
759 * APIC interrupts.
760 */
761 .macro apicinterrupt3 num sym do_sym
762 ENTRY(\sym)
763 UNWIND_HINT_IRET_REGS
764 ASM_CLAC
765 pushq $~(\num)
766 .Lcommon_\sym:
767 interrupt \do_sym
768 jmp ret_from_intr
769 END(\sym)
770 .endm
771
772 /* Make sure APIC interrupt handlers end up in the irqentry section: */
773 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
774 #define POP_SECTION_IRQENTRY .popsection
775
776 .macro apicinterrupt num sym do_sym
777 PUSH_SECTION_IRQENTRY
778 apicinterrupt3 \num \sym \do_sym
779 POP_SECTION_IRQENTRY
780 .endm
781
782 #ifdef CONFIG_SMP
783 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
784 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
785 #endif
786
787 #ifdef CONFIG_X86_UV
788 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
789 #endif
790
791 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
792 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
793
794 #ifdef CONFIG_HAVE_KVM
795 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
796 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
797 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
798 #endif
799
800 #ifdef CONFIG_X86_MCE_THRESHOLD
801 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
802 #endif
803
804 #ifdef CONFIG_X86_MCE_AMD
805 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
806 #endif
807
808 #ifdef CONFIG_X86_THERMAL_VECTOR
809 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
810 #endif
811
812 #ifdef CONFIG_SMP
813 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
814 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
815 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
816 #endif
817
818 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
819 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
820
821 #ifdef CONFIG_IRQ_WORK
822 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
823 #endif
824
825 /*
826 * Exception entry points.
827 */
828 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
829
830 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
831 ENTRY(\sym)
832 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
833
834 /* Sanity check */
835 .if \shift_ist != -1 && \paranoid == 0
836 .error "using shift_ist requires paranoid=1"
837 .endif
838
839 ASM_CLAC
840
841 .if \has_error_code == 0
842 pushq $-1 /* ORIG_RAX: no syscall to restart */
843 .endif
844
845 ALLOC_PT_GPREGS_ON_STACK
846
847 .if \paranoid
848 .if \paranoid == 1
849 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
850 jnz 1f
851 .endif
852 call paranoid_entry
853 .else
854 call error_entry
855 .endif
856 UNWIND_HINT_REGS
857 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
858
859 .if \paranoid
860 .if \shift_ist != -1
861 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
862 .else
863 TRACE_IRQS_OFF
864 .endif
865 .endif
866
867 movq %rsp, %rdi /* pt_regs pointer */
868
869 .if \has_error_code
870 movq ORIG_RAX(%rsp), %rsi /* get error code */
871 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
872 .else
873 xorl %esi, %esi /* no error code */
874 .endif
875
876 .if \shift_ist != -1
877 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
878 .endif
879
880 call \do_sym
881
882 .if \shift_ist != -1
883 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
884 .endif
885
886 /* these procedures expect "no swapgs" flag in ebx */
887 .if \paranoid
888 jmp paranoid_exit
889 .else
890 jmp error_exit
891 .endif
892
893 .if \paranoid == 1
894 /*
895 * Paranoid entry from userspace. Switch stacks and treat it
896 * as a normal entry. This means that paranoid handlers
897 * run in real process context if user_mode(regs).
898 */
899 1:
900 call error_entry
901
902
903 movq %rsp, %rdi /* pt_regs pointer */
904 call sync_regs
905 movq %rax, %rsp /* switch stack */
906
907 movq %rsp, %rdi /* pt_regs pointer */
908
909 .if \has_error_code
910 movq ORIG_RAX(%rsp), %rsi /* get error code */
911 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
912 .else
913 xorl %esi, %esi /* no error code */
914 .endif
915
916 call \do_sym
917
918 jmp error_exit /* %ebx: no swapgs flag */
919 .endif
920 END(\sym)
921 .endm
922
923 idtentry divide_error do_divide_error has_error_code=0
924 idtentry overflow do_overflow has_error_code=0
925 idtentry bounds do_bounds has_error_code=0
926 idtentry invalid_op do_invalid_op has_error_code=0
927 idtentry device_not_available do_device_not_available has_error_code=0
928 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
929 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
930 idtentry invalid_TSS do_invalid_TSS has_error_code=1
931 idtentry segment_not_present do_segment_not_present has_error_code=1
932 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
933 idtentry coprocessor_error do_coprocessor_error has_error_code=0
934 idtentry alignment_check do_alignment_check has_error_code=1
935 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
936
937
938 /*
939 * Reload gs selector with exception handling
940 * edi: new selector
941 */
942 ENTRY(native_load_gs_index)
943 FRAME_BEGIN
944 pushfq
945 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
946 SWAPGS
947 .Lgs_change:
948 movl %edi, %gs
949 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
950 SWAPGS
951 popfq
952 FRAME_END
953 ret
954 ENDPROC(native_load_gs_index)
955 EXPORT_SYMBOL(native_load_gs_index)
956
957 _ASM_EXTABLE(.Lgs_change, bad_gs)
958 .section .fixup, "ax"
959 /* running with kernelgs */
960 bad_gs:
961 SWAPGS /* switch back to user gs */
962 .macro ZAP_GS
963 /* This can't be a string because the preprocessor needs to see it. */
964 movl $__USER_DS, %eax
965 movl %eax, %gs
966 .endm
967 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
968 xorl %eax, %eax
969 movl %eax, %gs
970 jmp 2b
971 .previous
972
973 /* Call softirq on interrupt stack. Interrupts are off. */
974 ENTRY(do_softirq_own_stack)
975 pushq %rbp
976 mov %rsp, %rbp
977 ENTER_IRQ_STACK regs=0 old_rsp=%r11
978 call __do_softirq
979 LEAVE_IRQ_STACK regs=0
980 leaveq
981 ret
982 ENDPROC(do_softirq_own_stack)
983
984 #ifdef CONFIG_XEN
985 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
986
987 /*
988 * A note on the "critical region" in our callback handler.
989 * We want to avoid stacking callback handlers due to events occurring
990 * during handling of the last event. To do this, we keep events disabled
991 * until we've done all processing. HOWEVER, we must enable events before
992 * popping the stack frame (can't be done atomically) and so it would still
993 * be possible to get enough handler activations to overflow the stack.
994 * Although unlikely, bugs of that kind are hard to track down, so we'd
995 * like to avoid the possibility.
996 * So, on entry to the handler we detect whether we interrupted an
997 * existing activation in its critical region -- if so, we pop the current
998 * activation and restart the handler using the previous one.
999 */
1000 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1001
1002 /*
1003 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1004 * see the correct pointer to the pt_regs
1005 */
1006 UNWIND_HINT_FUNC
1007 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1008 UNWIND_HINT_REGS
1009
1010 ENTER_IRQ_STACK old_rsp=%r10
1011 call xen_evtchn_do_upcall
1012 LEAVE_IRQ_STACK
1013
1014 #ifndef CONFIG_PREEMPT
1015 call xen_maybe_preempt_hcall
1016 #endif
1017 jmp error_exit
1018 END(xen_do_hypervisor_callback)
1019
1020 /*
1021 * Hypervisor uses this for application faults while it executes.
1022 * We get here for two reasons:
1023 * 1. Fault while reloading DS, ES, FS or GS
1024 * 2. Fault while executing IRET
1025 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1026 * registers that could be reloaded and zeroed the others.
1027 * Category 2 we fix up by killing the current process. We cannot use the
1028 * normal Linux return path in this case because if we use the IRET hypercall
1029 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1030 * We distinguish between categories by comparing each saved segment register
1031 * with its current contents: any discrepancy means we in category 1.
1032 */
1033 ENTRY(xen_failsafe_callback)
1034 UNWIND_HINT_EMPTY
1035 movl %ds, %ecx
1036 cmpw %cx, 0x10(%rsp)
1037 jne 1f
1038 movl %es, %ecx
1039 cmpw %cx, 0x18(%rsp)
1040 jne 1f
1041 movl %fs, %ecx
1042 cmpw %cx, 0x20(%rsp)
1043 jne 1f
1044 movl %gs, %ecx
1045 cmpw %cx, 0x28(%rsp)
1046 jne 1f
1047 /* All segments match their saved values => Category 2 (Bad IRET). */
1048 movq (%rsp), %rcx
1049 movq 8(%rsp), %r11
1050 addq $0x30, %rsp
1051 pushq $0 /* RIP */
1052 UNWIND_HINT_IRET_REGS offset=8
1053 jmp general_protection
1054 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1055 movq (%rsp), %rcx
1056 movq 8(%rsp), %r11
1057 addq $0x30, %rsp
1058 UNWIND_HINT_IRET_REGS
1059 pushq $-1 /* orig_ax = -1 => not a system call */
1060 ALLOC_PT_GPREGS_ON_STACK
1061 SAVE_C_REGS
1062 SAVE_EXTRA_REGS
1063 ENCODE_FRAME_POINTER
1064 jmp error_exit
1065 END(xen_failsafe_callback)
1066
1067 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1068 xen_hvm_callback_vector xen_evtchn_do_upcall
1069
1070 #endif /* CONFIG_XEN */
1071
1072 #if IS_ENABLED(CONFIG_HYPERV)
1073 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1074 hyperv_callback_vector hyperv_vector_handler
1075 #endif /* CONFIG_HYPERV */
1076
1077 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1078 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1079 idtentry stack_segment do_stack_segment has_error_code=1
1080
1081 #ifdef CONFIG_XEN
1082 idtentry xennmi do_nmi has_error_code=0
1083 idtentry xendebug do_debug has_error_code=0
1084 idtentry xenint3 do_int3 has_error_code=0
1085 #endif
1086
1087 idtentry general_protection do_general_protection has_error_code=1
1088 idtentry page_fault do_page_fault has_error_code=1
1089
1090 #ifdef CONFIG_KVM_GUEST
1091 idtentry async_page_fault do_async_page_fault has_error_code=1
1092 #endif
1093
1094 #ifdef CONFIG_X86_MCE
1095 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1096 #endif
1097
1098 /*
1099 * Save all registers in pt_regs, and switch gs if needed.
1100 * Use slow, but surefire "are we in kernel?" check.
1101 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1102 */
1103 ENTRY(paranoid_entry)
1104 UNWIND_HINT_FUNC
1105 cld
1106 SAVE_C_REGS 8
1107 SAVE_EXTRA_REGS 8
1108 ENCODE_FRAME_POINTER 8
1109 movl $1, %ebx
1110 movl $MSR_GS_BASE, %ecx
1111 rdmsr
1112 testl %edx, %edx
1113 js 1f /* negative -> in kernel */
1114 SWAPGS
1115 xorl %ebx, %ebx
1116 1: ret
1117 END(paranoid_entry)
1118
1119 /*
1120 * "Paranoid" exit path from exception stack. This is invoked
1121 * only on return from non-NMI IST interrupts that came
1122 * from kernel space.
1123 *
1124 * We may be returning to very strange contexts (e.g. very early
1125 * in syscall entry), so checking for preemption here would
1126 * be complicated. Fortunately, we there's no good reason
1127 * to try to handle preemption here.
1128 *
1129 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1130 */
1131 ENTRY(paranoid_exit)
1132 UNWIND_HINT_REGS
1133 DISABLE_INTERRUPTS(CLBR_ANY)
1134 TRACE_IRQS_OFF_DEBUG
1135 testl %ebx, %ebx /* swapgs needed? */
1136 jnz .Lparanoid_exit_no_swapgs
1137 TRACE_IRQS_IRETQ
1138 SWAPGS_UNSAFE_STACK
1139 jmp .Lparanoid_exit_restore
1140 .Lparanoid_exit_no_swapgs:
1141 TRACE_IRQS_IRETQ_DEBUG
1142 .Lparanoid_exit_restore:
1143 jmp restore_regs_and_return_to_kernel
1144 END(paranoid_exit)
1145
1146 /*
1147 * Save all registers in pt_regs, and switch gs if needed.
1148 * Return: EBX=0: came from user mode; EBX=1: otherwise
1149 */
1150 ENTRY(error_entry)
1151 UNWIND_HINT_FUNC
1152 cld
1153 SAVE_C_REGS 8
1154 SAVE_EXTRA_REGS 8
1155 ENCODE_FRAME_POINTER 8
1156 xorl %ebx, %ebx
1157 testb $3, CS+8(%rsp)
1158 jz .Lerror_kernelspace
1159
1160 /*
1161 * We entered from user mode or we're pretending to have entered
1162 * from user mode due to an IRET fault.
1163 */
1164 SWAPGS
1165
1166 .Lerror_entry_from_usermode_after_swapgs:
1167 /*
1168 * We need to tell lockdep that IRQs are off. We can't do this until
1169 * we fix gsbase, and we should do it before enter_from_user_mode
1170 * (which can take locks).
1171 */
1172 TRACE_IRQS_OFF
1173 CALL_enter_from_user_mode
1174 ret
1175
1176 .Lerror_entry_done:
1177 TRACE_IRQS_OFF
1178 ret
1179
1180 /*
1181 * There are two places in the kernel that can potentially fault with
1182 * usergs. Handle them here. B stepping K8s sometimes report a
1183 * truncated RIP for IRET exceptions returning to compat mode. Check
1184 * for these here too.
1185 */
1186 .Lerror_kernelspace:
1187 incl %ebx
1188 leaq native_irq_return_iret(%rip), %rcx
1189 cmpq %rcx, RIP+8(%rsp)
1190 je .Lerror_bad_iret
1191 movl %ecx, %eax /* zero extend */
1192 cmpq %rax, RIP+8(%rsp)
1193 je .Lbstep_iret
1194 cmpq $.Lgs_change, RIP+8(%rsp)
1195 jne .Lerror_entry_done
1196
1197 /*
1198 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1199 * gsbase and proceed. We'll fix up the exception and land in
1200 * .Lgs_change's error handler with kernel gsbase.
1201 */
1202 SWAPGS
1203 jmp .Lerror_entry_done
1204
1205 .Lbstep_iret:
1206 /* Fix truncated RIP */
1207 movq %rcx, RIP+8(%rsp)
1208 /* fall through */
1209
1210 .Lerror_bad_iret:
1211 /*
1212 * We came from an IRET to user mode, so we have user gsbase.
1213 * Switch to kernel gsbase:
1214 */
1215 SWAPGS
1216
1217 /*
1218 * Pretend that the exception came from user mode: set up pt_regs
1219 * as if we faulted immediately after IRET and clear EBX so that
1220 * error_exit knows that we will be returning to user mode.
1221 */
1222 mov %rsp, %rdi
1223 call fixup_bad_iret
1224 mov %rax, %rsp
1225 decl %ebx
1226 jmp .Lerror_entry_from_usermode_after_swapgs
1227 END(error_entry)
1228
1229
1230 /*
1231 * On entry, EBX is a "return to kernel mode" flag:
1232 * 1: already in kernel mode, don't need SWAPGS
1233 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1234 */
1235 ENTRY(error_exit)
1236 UNWIND_HINT_REGS
1237 DISABLE_INTERRUPTS(CLBR_ANY)
1238 TRACE_IRQS_OFF
1239 testl %ebx, %ebx
1240 jnz retint_kernel
1241 jmp retint_user
1242 END(error_exit)
1243
1244 /*
1245 * Runs on exception stack. Xen PV does not go through this path at all,
1246 * so we can use real assembly here.
1247 */
1248 ENTRY(nmi)
1249 UNWIND_HINT_IRET_REGS
1250
1251 /*
1252 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1253 * the iretq it performs will take us out of NMI context.
1254 * This means that we can have nested NMIs where the next
1255 * NMI is using the top of the stack of the previous NMI. We
1256 * can't let it execute because the nested NMI will corrupt the
1257 * stack of the previous NMI. NMI handlers are not re-entrant
1258 * anyway.
1259 *
1260 * To handle this case we do the following:
1261 * Check the a special location on the stack that contains
1262 * a variable that is set when NMIs are executing.
1263 * The interrupted task's stack is also checked to see if it
1264 * is an NMI stack.
1265 * If the variable is not set and the stack is not the NMI
1266 * stack then:
1267 * o Set the special variable on the stack
1268 * o Copy the interrupt frame into an "outermost" location on the
1269 * stack
1270 * o Copy the interrupt frame into an "iret" location on the stack
1271 * o Continue processing the NMI
1272 * If the variable is set or the previous stack is the NMI stack:
1273 * o Modify the "iret" location to jump to the repeat_nmi
1274 * o return back to the first NMI
1275 *
1276 * Now on exit of the first NMI, we first clear the stack variable
1277 * The NMI stack will tell any nested NMIs at that point that it is
1278 * nested. Then we pop the stack normally with iret, and if there was
1279 * a nested NMI that updated the copy interrupt stack frame, a
1280 * jump will be made to the repeat_nmi code that will handle the second
1281 * NMI.
1282 *
1283 * However, espfix prevents us from directly returning to userspace
1284 * with a single IRET instruction. Similarly, IRET to user mode
1285 * can fault. We therefore handle NMIs from user space like
1286 * other IST entries.
1287 */
1288
1289 ASM_CLAC
1290
1291 /* Use %rdx as our temp variable throughout */
1292 pushq %rdx
1293
1294 testb $3, CS-RIP+8(%rsp)
1295 jz .Lnmi_from_kernel
1296
1297 /*
1298 * NMI from user mode. We need to run on the thread stack, but we
1299 * can't go through the normal entry paths: NMIs are masked, and
1300 * we don't want to enable interrupts, because then we'll end
1301 * up in an awkward situation in which IRQs are on but NMIs
1302 * are off.
1303 *
1304 * We also must not push anything to the stack before switching
1305 * stacks lest we corrupt the "NMI executing" variable.
1306 */
1307
1308 swapgs
1309 cld
1310 movq %rsp, %rdx
1311 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1312 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1313 pushq 5*8(%rdx) /* pt_regs->ss */
1314 pushq 4*8(%rdx) /* pt_regs->rsp */
1315 pushq 3*8(%rdx) /* pt_regs->flags */
1316 pushq 2*8(%rdx) /* pt_regs->cs */
1317 pushq 1*8(%rdx) /* pt_regs->rip */
1318 UNWIND_HINT_IRET_REGS
1319 pushq $-1 /* pt_regs->orig_ax */
1320 pushq %rdi /* pt_regs->di */
1321 pushq %rsi /* pt_regs->si */
1322 pushq (%rdx) /* pt_regs->dx */
1323 pushq %rcx /* pt_regs->cx */
1324 pushq %rax /* pt_regs->ax */
1325 pushq %r8 /* pt_regs->r8 */
1326 pushq %r9 /* pt_regs->r9 */
1327 pushq %r10 /* pt_regs->r10 */
1328 pushq %r11 /* pt_regs->r11 */
1329 pushq %rbx /* pt_regs->rbx */
1330 pushq %rbp /* pt_regs->rbp */
1331 pushq %r12 /* pt_regs->r12 */
1332 pushq %r13 /* pt_regs->r13 */
1333 pushq %r14 /* pt_regs->r14 */
1334 pushq %r15 /* pt_regs->r15 */
1335 UNWIND_HINT_REGS
1336 ENCODE_FRAME_POINTER
1337
1338 /*
1339 * At this point we no longer need to worry about stack damage
1340 * due to nesting -- we're on the normal thread stack and we're
1341 * done with the NMI stack.
1342 */
1343
1344 movq %rsp, %rdi
1345 movq $-1, %rsi
1346 call do_nmi
1347
1348 /*
1349 * Return back to user mode. We must *not* do the normal exit
1350 * work, because we don't want to enable interrupts.
1351 */
1352 jmp swapgs_restore_regs_and_return_to_usermode
1353
1354 .Lnmi_from_kernel:
1355 /*
1356 * Here's what our stack frame will look like:
1357 * +---------------------------------------------------------+
1358 * | original SS |
1359 * | original Return RSP |
1360 * | original RFLAGS |
1361 * | original CS |
1362 * | original RIP |
1363 * +---------------------------------------------------------+
1364 * | temp storage for rdx |
1365 * +---------------------------------------------------------+
1366 * | "NMI executing" variable |
1367 * +---------------------------------------------------------+
1368 * | iret SS } Copied from "outermost" frame |
1369 * | iret Return RSP } on each loop iteration; overwritten |
1370 * | iret RFLAGS } by a nested NMI to force another |
1371 * | iret CS } iteration if needed. |
1372 * | iret RIP } |
1373 * +---------------------------------------------------------+
1374 * | outermost SS } initialized in first_nmi; |
1375 * | outermost Return RSP } will not be changed before |
1376 * | outermost RFLAGS } NMI processing is done. |
1377 * | outermost CS } Copied to "iret" frame on each |
1378 * | outermost RIP } iteration. |
1379 * +---------------------------------------------------------+
1380 * | pt_regs |
1381 * +---------------------------------------------------------+
1382 *
1383 * The "original" frame is used by hardware. Before re-enabling
1384 * NMIs, we need to be done with it, and we need to leave enough
1385 * space for the asm code here.
1386 *
1387 * We return by executing IRET while RSP points to the "iret" frame.
1388 * That will either return for real or it will loop back into NMI
1389 * processing.
1390 *
1391 * The "outermost" frame is copied to the "iret" frame on each
1392 * iteration of the loop, so each iteration starts with the "iret"
1393 * frame pointing to the final return target.
1394 */
1395
1396 /*
1397 * Determine whether we're a nested NMI.
1398 *
1399 * If we interrupted kernel code between repeat_nmi and
1400 * end_repeat_nmi, then we are a nested NMI. We must not
1401 * modify the "iret" frame because it's being written by
1402 * the outer NMI. That's okay; the outer NMI handler is
1403 * about to about to call do_nmi anyway, so we can just
1404 * resume the outer NMI.
1405 */
1406
1407 movq $repeat_nmi, %rdx
1408 cmpq 8(%rsp), %rdx
1409 ja 1f
1410 movq $end_repeat_nmi, %rdx
1411 cmpq 8(%rsp), %rdx
1412 ja nested_nmi_out
1413 1:
1414
1415 /*
1416 * Now check "NMI executing". If it's set, then we're nested.
1417 * This will not detect if we interrupted an outer NMI just
1418 * before IRET.
1419 */
1420 cmpl $1, -8(%rsp)
1421 je nested_nmi
1422
1423 /*
1424 * Now test if the previous stack was an NMI stack. This covers
1425 * the case where we interrupt an outer NMI after it clears
1426 * "NMI executing" but before IRET. We need to be careful, though:
1427 * there is one case in which RSP could point to the NMI stack
1428 * despite there being no NMI active: naughty userspace controls
1429 * RSP at the very beginning of the SYSCALL targets. We can
1430 * pull a fast one on naughty userspace, though: we program
1431 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1432 * if it controls the kernel's RSP. We set DF before we clear
1433 * "NMI executing".
1434 */
1435 lea 6*8(%rsp), %rdx
1436 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1437 cmpq %rdx, 4*8(%rsp)
1438 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1439 ja first_nmi
1440
1441 subq $EXCEPTION_STKSZ, %rdx
1442 cmpq %rdx, 4*8(%rsp)
1443 /* If it is below the NMI stack, it is a normal NMI */
1444 jb first_nmi
1445
1446 /* Ah, it is within the NMI stack. */
1447
1448 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1449 jz first_nmi /* RSP was user controlled. */
1450
1451 /* This is a nested NMI. */
1452
1453 nested_nmi:
1454 /*
1455 * Modify the "iret" frame to point to repeat_nmi, forcing another
1456 * iteration of NMI handling.
1457 */
1458 subq $8, %rsp
1459 leaq -10*8(%rsp), %rdx
1460 pushq $__KERNEL_DS
1461 pushq %rdx
1462 pushfq
1463 pushq $__KERNEL_CS
1464 pushq $repeat_nmi
1465
1466 /* Put stack back */
1467 addq $(6*8), %rsp
1468
1469 nested_nmi_out:
1470 popq %rdx
1471
1472 /* We are returning to kernel mode, so this cannot result in a fault. */
1473 iretq
1474
1475 first_nmi:
1476 /* Restore rdx. */
1477 movq (%rsp), %rdx
1478
1479 /* Make room for "NMI executing". */
1480 pushq $0
1481
1482 /* Leave room for the "iret" frame */
1483 subq $(5*8), %rsp
1484
1485 /* Copy the "original" frame to the "outermost" frame */
1486 .rept 5
1487 pushq 11*8(%rsp)
1488 .endr
1489 UNWIND_HINT_IRET_REGS
1490
1491 /* Everything up to here is safe from nested NMIs */
1492
1493 #ifdef CONFIG_DEBUG_ENTRY
1494 /*
1495 * For ease of testing, unmask NMIs right away. Disabled by
1496 * default because IRET is very expensive.
1497 */
1498 pushq $0 /* SS */
1499 pushq %rsp /* RSP (minus 8 because of the previous push) */
1500 addq $8, (%rsp) /* Fix up RSP */
1501 pushfq /* RFLAGS */
1502 pushq $__KERNEL_CS /* CS */
1503 pushq $1f /* RIP */
1504 iretq /* continues at repeat_nmi below */
1505 UNWIND_HINT_IRET_REGS
1506 1:
1507 #endif
1508
1509 repeat_nmi:
1510 /*
1511 * If there was a nested NMI, the first NMI's iret will return
1512 * here. But NMIs are still enabled and we can take another
1513 * nested NMI. The nested NMI checks the interrupted RIP to see
1514 * if it is between repeat_nmi and end_repeat_nmi, and if so
1515 * it will just return, as we are about to repeat an NMI anyway.
1516 * This makes it safe to copy to the stack frame that a nested
1517 * NMI will update.
1518 *
1519 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1520 * we're repeating an NMI, gsbase has the same value that it had on
1521 * the first iteration. paranoid_entry will load the kernel
1522 * gsbase if needed before we call do_nmi. "NMI executing"
1523 * is zero.
1524 */
1525 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1526
1527 /*
1528 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1529 * here must not modify the "iret" frame while we're writing to
1530 * it or it will end up containing garbage.
1531 */
1532 addq $(10*8), %rsp
1533 .rept 5
1534 pushq -6*8(%rsp)
1535 .endr
1536 subq $(5*8), %rsp
1537 end_repeat_nmi:
1538
1539 /*
1540 * Everything below this point can be preempted by a nested NMI.
1541 * If this happens, then the inner NMI will change the "iret"
1542 * frame to point back to repeat_nmi.
1543 */
1544 pushq $-1 /* ORIG_RAX: no syscall to restart */
1545 ALLOC_PT_GPREGS_ON_STACK
1546
1547 /*
1548 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1549 * as we should not be calling schedule in NMI context.
1550 * Even with normal interrupts enabled. An NMI should not be
1551 * setting NEED_RESCHED or anything that normal interrupts and
1552 * exceptions might do.
1553 */
1554 call paranoid_entry
1555 UNWIND_HINT_REGS
1556
1557 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1558 movq %rsp, %rdi
1559 movq $-1, %rsi
1560 call do_nmi
1561
1562 testl %ebx, %ebx /* swapgs needed? */
1563 jnz nmi_restore
1564 nmi_swapgs:
1565 SWAPGS_UNSAFE_STACK
1566 nmi_restore:
1567 POP_EXTRA_REGS
1568 POP_C_REGS
1569
1570 /*
1571 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1572 * at the "iret" frame.
1573 */
1574 addq $6*8, %rsp
1575
1576 /*
1577 * Clear "NMI executing". Set DF first so that we can easily
1578 * distinguish the remaining code between here and IRET from
1579 * the SYSCALL entry and exit paths.
1580 *
1581 * We arguably should just inspect RIP instead, but I (Andy) wrote
1582 * this code when I had the misapprehension that Xen PV supported
1583 * NMIs, and Xen PV would break that approach.
1584 */
1585 std
1586 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1587
1588 /*
1589 * iretq reads the "iret" frame and exits the NMI stack in a
1590 * single instruction. We are returning to kernel mode, so this
1591 * cannot result in a fault. Similarly, we don't need to worry
1592 * about espfix64 on the way back to kernel mode.
1593 */
1594 iretq
1595 END(nmi)
1596
1597 ENTRY(ignore_sysret)
1598 UNWIND_HINT_EMPTY
1599 mov $-ENOSYS, %eax
1600 sysret
1601 END(ignore_sysret)
1602
1603 ENTRY(rewind_stack_do_exit)
1604 UNWIND_HINT_FUNC
1605 /* Prevent any naive code from trying to unwind to our caller. */
1606 xorl %ebp, %ebp
1607
1608 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1609 leaq -PTREGS_SIZE(%rax), %rsp
1610 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1611
1612 call do_exit
1613 END(rewind_stack_do_exit)