]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/entry/entry_64.S
Merge tag 'iwlwifi-for-kalle-2017-11-28' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include "calling.h"
27 #include <asm/asm-offsets.h>
28 #include <asm/msr.h>
29 #include <asm/unistd.h>
30 #include <asm/thread_info.h>
31 #include <asm/hw_irq.h>
32 #include <asm/page_types.h>
33 #include <asm/irqflags.h>
34 #include <asm/paravirt.h>
35 #include <asm/percpu.h>
36 #include <asm/asm.h>
37 #include <asm/smap.h>
38 #include <asm/pgtable_types.h>
39 #include <asm/export.h>
40 #include <asm/frame.h>
41 #include <linux/err.h>
42
43 .code64
44 .section .entry.text, "ax"
45
46 #ifdef CONFIG_PARAVIRT
47 ENTRY(native_usergs_sysret64)
48 UNWIND_HINT_EMPTY
49 swapgs
50 sysretq
51 END(native_usergs_sysret64)
52 #endif /* CONFIG_PARAVIRT */
53
54 .macro TRACE_IRQS_FLAGS flags:req
55 #ifdef CONFIG_TRACE_IRQFLAGS
56 bt $9, \flags /* interrupts off? */
57 jnc 1f
58 TRACE_IRQS_ON
59 1:
60 #endif
61 .endm
62
63 .macro TRACE_IRQS_IRETQ
64 TRACE_IRQS_FLAGS EFLAGS(%rsp)
65 .endm
66
67 /*
68 * When dynamic function tracer is enabled it will add a breakpoint
69 * to all locations that it is about to modify, sync CPUs, update
70 * all the code, sync CPUs, then remove the breakpoints. In this time
71 * if lockdep is enabled, it might jump back into the debug handler
72 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
73 *
74 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
75 * make sure the stack pointer does not get reset back to the top
76 * of the debug stack, and instead just reuses the current stack.
77 */
78 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
79
80 .macro TRACE_IRQS_OFF_DEBUG
81 call debug_stack_set_zero
82 TRACE_IRQS_OFF
83 call debug_stack_reset
84 .endm
85
86 .macro TRACE_IRQS_ON_DEBUG
87 call debug_stack_set_zero
88 TRACE_IRQS_ON
89 call debug_stack_reset
90 .endm
91
92 .macro TRACE_IRQS_IRETQ_DEBUG
93 bt $9, EFLAGS(%rsp) /* interrupts off? */
94 jnc 1f
95 TRACE_IRQS_ON_DEBUG
96 1:
97 .endm
98
99 #else
100 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
101 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
102 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
103 #endif
104
105 /*
106 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
107 *
108 * This is the only entry point used for 64-bit system calls. The
109 * hardware interface is reasonably well designed and the register to
110 * argument mapping Linux uses fits well with the registers that are
111 * available when SYSCALL is used.
112 *
113 * SYSCALL instructions can be found inlined in libc implementations as
114 * well as some other programs and libraries. There are also a handful
115 * of SYSCALL instructions in the vDSO used, for example, as a
116 * clock_gettimeofday fallback.
117 *
118 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
119 * then loads new ss, cs, and rip from previously programmed MSRs.
120 * rflags gets masked by a value from another MSR (so CLD and CLAC
121 * are not needed). SYSCALL does not save anything on the stack
122 * and does not change rsp.
123 *
124 * Registers on entry:
125 * rax system call number
126 * rcx return address
127 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
128 * rdi arg0
129 * rsi arg1
130 * rdx arg2
131 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
132 * r8 arg4
133 * r9 arg5
134 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
135 *
136 * Only called from user space.
137 *
138 * When user can change pt_regs->foo always force IRET. That is because
139 * it deals with uncanonical addresses better. SYSRET has trouble
140 * with them due to bugs in both AMD and Intel CPUs.
141 */
142
143 ENTRY(entry_SYSCALL_64)
144 UNWIND_HINT_EMPTY
145 /*
146 * Interrupts are off on entry.
147 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
148 * it is too small to ever cause noticeable irq latency.
149 */
150
151 swapgs
152 movq %rsp, PER_CPU_VAR(rsp_scratch)
153 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
154
155 /* Construct struct pt_regs on stack */
156 pushq $__USER_DS /* pt_regs->ss */
157 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
158 pushq %r11 /* pt_regs->flags */
159 pushq $__USER_CS /* pt_regs->cs */
160 pushq %rcx /* pt_regs->ip */
161 GLOBAL(entry_SYSCALL_64_after_hwframe)
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173 UNWIND_HINT_REGS extra=0
174
175 TRACE_IRQS_OFF
176
177 /*
178 * If we need to do entry work or if we guess we'll need to do
179 * exit work, go straight to the slow path.
180 */
181 movq PER_CPU_VAR(current_task), %r11
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
183 jnz entry_SYSCALL64_slow_path
184
185 entry_SYSCALL_64_fastpath:
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
193 #if __SYSCALL_MASK == ~0
194 cmpq $__NR_syscall_max, %rax
195 #else
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
198 #endif
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
206 */
207 call *sys_call_table(, %rax, 8)
208 .Lentry_SYSCALL_64_after_fastpath_call:
209
210 movq %rax, RAX(%rsp)
211 1:
212
213 /*
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
217 */
218 DISABLE_INTERRUPTS(CLBR_ANY)
219 TRACE_IRQS_OFF
220 movq PER_CPU_VAR(current_task), %r11
221 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
222 jnz 1f
223
224 LOCKDEP_SYS_EXIT
225 TRACE_IRQS_ON /* user mode is traced as IRQs on */
226 movq RIP(%rsp), %rcx
227 movq EFLAGS(%rsp), %r11
228 addq $6*8, %rsp /* skip extra regs -- they were preserved */
229 UNWIND_HINT_EMPTY
230 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
231
232 1:
233 /*
234 * The fast path looked good when we started, but something changed
235 * along the way and we need to switch to the slow path. Calling
236 * raise(3) will trigger this, for example. IRQs are off.
237 */
238 TRACE_IRQS_ON
239 ENABLE_INTERRUPTS(CLBR_ANY)
240 SAVE_EXTRA_REGS
241 movq %rsp, %rdi
242 call syscall_return_slowpath /* returns with IRQs disabled */
243 jmp return_from_SYSCALL_64
244
245 entry_SYSCALL64_slow_path:
246 /* IRQs are off. */
247 SAVE_EXTRA_REGS
248 movq %rsp, %rdi
249 call do_syscall_64 /* returns with IRQs disabled */
250
251 return_from_SYSCALL_64:
252 TRACE_IRQS_IRETQ /* we're about to change IF */
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context. If we're not,
257 * go to the slow exit path.
258 */
259 movq RCX(%rsp), %rcx
260 movq RIP(%rsp), %r11
261
262 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
263 jne swapgs_restore_regs_and_return_to_usermode
264
265 /*
266 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
267 * in kernel space. This essentially lets the user take over
268 * the kernel, since userspace controls RSP.
269 *
270 * If width of "canonical tail" ever becomes variable, this will need
271 * to be updated to remain correct on both old and new CPUs.
272 *
273 * Change top bits to match most significant bit (47th or 56th bit
274 * depending on paging mode) in the address.
275 */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne swapgs_restore_regs_and_return_to_usermode
282
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne swapgs_restore_regs_and_return_to_usermode
285
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne swapgs_restore_regs_and_return_to_usermode
289
290 /*
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
300 *
301 * movq $stuck_here, %rcx
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz swapgs_restore_regs_and_return_to_usermode
310
311 /* nothing to check for RSP */
312
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne swapgs_restore_regs_and_return_to_usermode
315
316 /*
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
319 */
320 syscall_return_via_sysret:
321 /* rcx and r11 are already restored (see code above) */
322 UNWIND_HINT_EMPTY
323 POP_EXTRA_REGS
324 .Lpop_c_regs_except_rcx_r11_and_sysret:
325 popq %rsi /* skip r11 */
326 popq %r10
327 popq %r9
328 popq %r8
329 popq %rax
330 popq %rsi /* skip rcx */
331 popq %rdx
332 popq %rsi
333 popq %rdi
334 movq RSP-ORIG_RAX(%rsp), %rsp
335 USERGS_SYSRET64
336 END(entry_SYSCALL_64)
337
338 ENTRY(stub_ptregs_64)
339 /*
340 * Syscalls marked as needing ptregs land here.
341 * If we are on the fast path, we need to save the extra regs,
342 * which we achieve by trying again on the slow path. If we are on
343 * the slow path, the extra regs are already saved.
344 *
345 * RAX stores a pointer to the C function implementing the syscall.
346 * IRQs are on.
347 */
348 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
349 jne 1f
350
351 /*
352 * Called from fast path -- disable IRQs again, pop return address
353 * and jump to slow path
354 */
355 DISABLE_INTERRUPTS(CLBR_ANY)
356 TRACE_IRQS_OFF
357 popq %rax
358 UNWIND_HINT_REGS extra=0
359 jmp entry_SYSCALL64_slow_path
360
361 1:
362 jmp *%rax /* Called from C */
363 END(stub_ptregs_64)
364
365 .macro ptregs_stub func
366 ENTRY(ptregs_\func)
367 UNWIND_HINT_FUNC
368 leaq \func(%rip), %rax
369 jmp stub_ptregs_64
370 END(ptregs_\func)
371 .endm
372
373 /* Instantiate ptregs_stub for each ptregs-using syscall */
374 #define __SYSCALL_64_QUAL_(sym)
375 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
376 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
377 #include <asm/syscalls_64.h>
378
379 /*
380 * %rdi: prev task
381 * %rsi: next task
382 */
383 ENTRY(__switch_to_asm)
384 UNWIND_HINT_FUNC
385 /*
386 * Save callee-saved registers
387 * This must match the order in inactive_task_frame
388 */
389 pushq %rbp
390 pushq %rbx
391 pushq %r12
392 pushq %r13
393 pushq %r14
394 pushq %r15
395
396 /* switch stack */
397 movq %rsp, TASK_threadsp(%rdi)
398 movq TASK_threadsp(%rsi), %rsp
399
400 #ifdef CONFIG_CC_STACKPROTECTOR
401 movq TASK_stack_canary(%rsi), %rbx
402 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
403 #endif
404
405 /* restore callee-saved registers */
406 popq %r15
407 popq %r14
408 popq %r13
409 popq %r12
410 popq %rbx
411 popq %rbp
412
413 jmp __switch_to
414 END(__switch_to_asm)
415
416 /*
417 * A newly forked process directly context switches into this address.
418 *
419 * rax: prev task we switched from
420 * rbx: kernel thread func (NULL for user thread)
421 * r12: kernel thread arg
422 */
423 ENTRY(ret_from_fork)
424 UNWIND_HINT_EMPTY
425 movq %rax, %rdi
426 call schedule_tail /* rdi: 'prev' task parameter */
427
428 testq %rbx, %rbx /* from kernel_thread? */
429 jnz 1f /* kernel threads are uncommon */
430
431 2:
432 UNWIND_HINT_REGS
433 movq %rsp, %rdi
434 call syscall_return_slowpath /* returns with IRQs disabled */
435 TRACE_IRQS_ON /* user mode is traced as IRQS on */
436 jmp swapgs_restore_regs_and_return_to_usermode
437
438 1:
439 /* kernel thread */
440 movq %r12, %rdi
441 call *%rbx
442 /*
443 * A kernel thread is allowed to return here after successfully
444 * calling do_execve(). Exit to userspace to complete the execve()
445 * syscall.
446 */
447 movq $0, RAX(%rsp)
448 jmp 2b
449 END(ret_from_fork)
450
451 /*
452 * Build the entry stubs with some assembler magic.
453 * We pack 1 stub into every 8-byte block.
454 */
455 .align 8
456 ENTRY(irq_entries_start)
457 vector=FIRST_EXTERNAL_VECTOR
458 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
459 UNWIND_HINT_IRET_REGS
460 pushq $(~vector+0x80) /* Note: always in signed byte range */
461 jmp common_interrupt
462 .align 8
463 vector=vector+1
464 .endr
465 END(irq_entries_start)
466
467 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
468 #ifdef CONFIG_DEBUG_ENTRY
469 pushfq
470 testl $X86_EFLAGS_IF, (%rsp)
471 jz .Lokay_\@
472 ud2
473 .Lokay_\@:
474 addq $8, %rsp
475 #endif
476 .endm
477
478 /*
479 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
480 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
481 * Requires kernel GSBASE.
482 *
483 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
484 */
485 .macro ENTER_IRQ_STACK regs=1 old_rsp
486 DEBUG_ENTRY_ASSERT_IRQS_OFF
487 movq %rsp, \old_rsp
488
489 .if \regs
490 UNWIND_HINT_REGS base=\old_rsp
491 .endif
492
493 incl PER_CPU_VAR(irq_count)
494 jnz .Lirq_stack_push_old_rsp_\@
495
496 /*
497 * Right now, if we just incremented irq_count to zero, we've
498 * claimed the IRQ stack but we haven't switched to it yet.
499 *
500 * If anything is added that can interrupt us here without using IST,
501 * it must be *extremely* careful to limit its stack usage. This
502 * could include kprobes and a hypothetical future IST-less #DB
503 * handler.
504 *
505 * The OOPS unwinder relies on the word at the top of the IRQ
506 * stack linking back to the previous RSP for the entire time we're
507 * on the IRQ stack. For this to work reliably, we need to write
508 * it before we actually move ourselves to the IRQ stack.
509 */
510
511 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
512 movq PER_CPU_VAR(irq_stack_ptr), %rsp
513
514 #ifdef CONFIG_DEBUG_ENTRY
515 /*
516 * If the first movq above becomes wrong due to IRQ stack layout
517 * changes, the only way we'll notice is if we try to unwind right
518 * here. Assert that we set up the stack right to catch this type
519 * of bug quickly.
520 */
521 cmpq -8(%rsp), \old_rsp
522 je .Lirq_stack_okay\@
523 ud2
524 .Lirq_stack_okay\@:
525 #endif
526
527 .Lirq_stack_push_old_rsp_\@:
528 pushq \old_rsp
529
530 .if \regs
531 UNWIND_HINT_REGS indirect=1
532 .endif
533 .endm
534
535 /*
536 * Undoes ENTER_IRQ_STACK.
537 */
538 .macro LEAVE_IRQ_STACK regs=1
539 DEBUG_ENTRY_ASSERT_IRQS_OFF
540 /* We need to be off the IRQ stack before decrementing irq_count. */
541 popq %rsp
542
543 .if \regs
544 UNWIND_HINT_REGS
545 .endif
546
547 /*
548 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
549 * the irq stack but we're not on it.
550 */
551
552 decl PER_CPU_VAR(irq_count)
553 .endm
554
555 /*
556 * Interrupt entry/exit.
557 *
558 * Interrupt entry points save only callee clobbered registers in fast path.
559 *
560 * Entry runs with interrupts off.
561 */
562
563 /* 0(%rsp): ~(interrupt number) */
564 .macro interrupt func
565 cld
566 ALLOC_PT_GPREGS_ON_STACK
567 SAVE_C_REGS
568 SAVE_EXTRA_REGS
569 ENCODE_FRAME_POINTER
570
571 testb $3, CS(%rsp)
572 jz 1f
573
574 /*
575 * IRQ from user mode. Switch to kernel gsbase and inform context
576 * tracking that we're in kernel mode.
577 */
578 SWAPGS
579
580 /*
581 * We need to tell lockdep that IRQs are off. We can't do this until
582 * we fix gsbase, and we should do it before enter_from_user_mode
583 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
584 * the simplest way to handle it is to just call it twice if
585 * we enter from user mode. There's no reason to optimize this since
586 * TRACE_IRQS_OFF is a no-op if lockdep is off.
587 */
588 TRACE_IRQS_OFF
589
590 CALL_enter_from_user_mode
591
592 1:
593 ENTER_IRQ_STACK old_rsp=%rdi
594 /* We entered an interrupt context - irqs are off: */
595 TRACE_IRQS_OFF
596
597 call \func /* rdi points to pt_regs */
598 .endm
599
600 /*
601 * The interrupt stubs push (~vector+0x80) onto the stack and
602 * then jump to common_interrupt.
603 */
604 .p2align CONFIG_X86_L1_CACHE_SHIFT
605 common_interrupt:
606 ASM_CLAC
607 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
608 interrupt do_IRQ
609 /* 0(%rsp): old RSP */
610 ret_from_intr:
611 DISABLE_INTERRUPTS(CLBR_ANY)
612 TRACE_IRQS_OFF
613
614 LEAVE_IRQ_STACK
615
616 testb $3, CS(%rsp)
617 jz retint_kernel
618
619 /* Interrupt came from user space */
620 GLOBAL(retint_user)
621 mov %rsp,%rdi
622 call prepare_exit_to_usermode
623 TRACE_IRQS_IRETQ
624
625 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
626 #ifdef CONFIG_DEBUG_ENTRY
627 /* Assert that pt_regs indicates user mode. */
628 testb $3, CS(%rsp)
629 jnz 1f
630 ud2
631 1:
632 #endif
633 SWAPGS
634 POP_EXTRA_REGS
635 POP_C_REGS
636 addq $8, %rsp /* skip regs->orig_ax */
637 INTERRUPT_RETURN
638
639
640 /* Returning to kernel space */
641 retint_kernel:
642 #ifdef CONFIG_PREEMPT
643 /* Interrupts are off */
644 /* Check if we need preemption */
645 bt $9, EFLAGS(%rsp) /* were interrupts off? */
646 jnc 1f
647 0: cmpl $0, PER_CPU_VAR(__preempt_count)
648 jnz 1f
649 call preempt_schedule_irq
650 jmp 0b
651 1:
652 #endif
653 /*
654 * The iretq could re-enable interrupts:
655 */
656 TRACE_IRQS_IRETQ
657
658 GLOBAL(restore_regs_and_return_to_kernel)
659 #ifdef CONFIG_DEBUG_ENTRY
660 /* Assert that pt_regs indicates kernel mode. */
661 testb $3, CS(%rsp)
662 jz 1f
663 ud2
664 1:
665 #endif
666 POP_EXTRA_REGS
667 POP_C_REGS
668 addq $8, %rsp /* skip regs->orig_ax */
669 INTERRUPT_RETURN
670
671 ENTRY(native_iret)
672 UNWIND_HINT_IRET_REGS
673 /*
674 * Are we returning to a stack segment from the LDT? Note: in
675 * 64-bit mode SS:RSP on the exception stack is always valid.
676 */
677 #ifdef CONFIG_X86_ESPFIX64
678 testb $4, (SS-RIP)(%rsp)
679 jnz native_irq_return_ldt
680 #endif
681
682 .global native_irq_return_iret
683 native_irq_return_iret:
684 /*
685 * This may fault. Non-paranoid faults on return to userspace are
686 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
687 * Double-faults due to espfix64 are handled in do_double_fault.
688 * Other faults here are fatal.
689 */
690 iretq
691
692 #ifdef CONFIG_X86_ESPFIX64
693 native_irq_return_ldt:
694 /*
695 * We are running with user GSBASE. All GPRs contain their user
696 * values. We have a percpu ESPFIX stack that is eight slots
697 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
698 * of the ESPFIX stack.
699 *
700 * We clobber RAX and RDI in this code. We stash RDI on the
701 * normal stack and RAX on the ESPFIX stack.
702 *
703 * The ESPFIX stack layout we set up looks like this:
704 *
705 * --- top of ESPFIX stack ---
706 * SS
707 * RSP
708 * RFLAGS
709 * CS
710 * RIP <-- RSP points here when we're done
711 * RAX <-- espfix_waddr points here
712 * --- bottom of ESPFIX stack ---
713 */
714
715 pushq %rdi /* Stash user RDI */
716 SWAPGS
717 movq PER_CPU_VAR(espfix_waddr), %rdi
718 movq %rax, (0*8)(%rdi) /* user RAX */
719 movq (1*8)(%rsp), %rax /* user RIP */
720 movq %rax, (1*8)(%rdi)
721 movq (2*8)(%rsp), %rax /* user CS */
722 movq %rax, (2*8)(%rdi)
723 movq (3*8)(%rsp), %rax /* user RFLAGS */
724 movq %rax, (3*8)(%rdi)
725 movq (5*8)(%rsp), %rax /* user SS */
726 movq %rax, (5*8)(%rdi)
727 movq (4*8)(%rsp), %rax /* user RSP */
728 movq %rax, (4*8)(%rdi)
729 /* Now RAX == RSP. */
730
731 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
732 popq %rdi /* Restore user RDI */
733
734 /*
735 * espfix_stack[31:16] == 0. The page tables are set up such that
736 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
737 * espfix_waddr for any X. That is, there are 65536 RO aliases of
738 * the same page. Set up RSP so that RSP[31:16] contains the
739 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
740 * still points to an RO alias of the ESPFIX stack.
741 */
742 orq PER_CPU_VAR(espfix_stack), %rax
743 SWAPGS
744 movq %rax, %rsp
745 UNWIND_HINT_IRET_REGS offset=8
746
747 /*
748 * At this point, we cannot write to the stack any more, but we can
749 * still read.
750 */
751 popq %rax /* Restore user RAX */
752
753 /*
754 * RSP now points to an ordinary IRET frame, except that the page
755 * is read-only and RSP[31:16] are preloaded with the userspace
756 * values. We can now IRET back to userspace.
757 */
758 jmp native_irq_return_iret
759 #endif
760 END(common_interrupt)
761
762 /*
763 * APIC interrupts.
764 */
765 .macro apicinterrupt3 num sym do_sym
766 ENTRY(\sym)
767 UNWIND_HINT_IRET_REGS
768 ASM_CLAC
769 pushq $~(\num)
770 .Lcommon_\sym:
771 interrupt \do_sym
772 jmp ret_from_intr
773 END(\sym)
774 .endm
775
776 /* Make sure APIC interrupt handlers end up in the irqentry section: */
777 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
778 #define POP_SECTION_IRQENTRY .popsection
779
780 .macro apicinterrupt num sym do_sym
781 PUSH_SECTION_IRQENTRY
782 apicinterrupt3 \num \sym \do_sym
783 POP_SECTION_IRQENTRY
784 .endm
785
786 #ifdef CONFIG_SMP
787 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
788 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
789 #endif
790
791 #ifdef CONFIG_X86_UV
792 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
793 #endif
794
795 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
796 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
797
798 #ifdef CONFIG_HAVE_KVM
799 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
800 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
801 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
802 #endif
803
804 #ifdef CONFIG_X86_MCE_THRESHOLD
805 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
806 #endif
807
808 #ifdef CONFIG_X86_MCE_AMD
809 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
810 #endif
811
812 #ifdef CONFIG_X86_THERMAL_VECTOR
813 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
814 #endif
815
816 #ifdef CONFIG_SMP
817 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
818 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
819 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
820 #endif
821
822 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
823 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
824
825 #ifdef CONFIG_IRQ_WORK
826 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
827 #endif
828
829 /*
830 * Exception entry points.
831 */
832 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
833
834 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
835 ENTRY(\sym)
836 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
837
838 /* Sanity check */
839 .if \shift_ist != -1 && \paranoid == 0
840 .error "using shift_ist requires paranoid=1"
841 .endif
842
843 ASM_CLAC
844
845 .if \has_error_code == 0
846 pushq $-1 /* ORIG_RAX: no syscall to restart */
847 .endif
848
849 ALLOC_PT_GPREGS_ON_STACK
850
851 .if \paranoid
852 .if \paranoid == 1
853 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
854 jnz 1f
855 .endif
856 call paranoid_entry
857 .else
858 call error_entry
859 .endif
860 UNWIND_HINT_REGS
861 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
862
863 .if \paranoid
864 .if \shift_ist != -1
865 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
866 .else
867 TRACE_IRQS_OFF
868 .endif
869 .endif
870
871 movq %rsp, %rdi /* pt_regs pointer */
872
873 .if \has_error_code
874 movq ORIG_RAX(%rsp), %rsi /* get error code */
875 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
876 .else
877 xorl %esi, %esi /* no error code */
878 .endif
879
880 .if \shift_ist != -1
881 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
882 .endif
883
884 call \do_sym
885
886 .if \shift_ist != -1
887 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
888 .endif
889
890 /* these procedures expect "no swapgs" flag in ebx */
891 .if \paranoid
892 jmp paranoid_exit
893 .else
894 jmp error_exit
895 .endif
896
897 .if \paranoid == 1
898 /*
899 * Paranoid entry from userspace. Switch stacks and treat it
900 * as a normal entry. This means that paranoid handlers
901 * run in real process context if user_mode(regs).
902 */
903 1:
904 call error_entry
905
906
907 movq %rsp, %rdi /* pt_regs pointer */
908 call sync_regs
909 movq %rax, %rsp /* switch stack */
910
911 movq %rsp, %rdi /* pt_regs pointer */
912
913 .if \has_error_code
914 movq ORIG_RAX(%rsp), %rsi /* get error code */
915 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
916 .else
917 xorl %esi, %esi /* no error code */
918 .endif
919
920 call \do_sym
921
922 jmp error_exit /* %ebx: no swapgs flag */
923 .endif
924 END(\sym)
925 .endm
926
927 idtentry divide_error do_divide_error has_error_code=0
928 idtentry overflow do_overflow has_error_code=0
929 idtentry bounds do_bounds has_error_code=0
930 idtentry invalid_op do_invalid_op has_error_code=0
931 idtentry device_not_available do_device_not_available has_error_code=0
932 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
933 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
934 idtentry invalid_TSS do_invalid_TSS has_error_code=1
935 idtentry segment_not_present do_segment_not_present has_error_code=1
936 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
937 idtentry coprocessor_error do_coprocessor_error has_error_code=0
938 idtentry alignment_check do_alignment_check has_error_code=1
939 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
940
941
942 /*
943 * Reload gs selector with exception handling
944 * edi: new selector
945 */
946 ENTRY(native_load_gs_index)
947 FRAME_BEGIN
948 pushfq
949 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
950 TRACE_IRQS_OFF
951 SWAPGS
952 .Lgs_change:
953 movl %edi, %gs
954 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
955 SWAPGS
956 TRACE_IRQS_FLAGS (%rsp)
957 popfq
958 FRAME_END
959 ret
960 ENDPROC(native_load_gs_index)
961 EXPORT_SYMBOL(native_load_gs_index)
962
963 _ASM_EXTABLE(.Lgs_change, bad_gs)
964 .section .fixup, "ax"
965 /* running with kernelgs */
966 bad_gs:
967 SWAPGS /* switch back to user gs */
968 .macro ZAP_GS
969 /* This can't be a string because the preprocessor needs to see it. */
970 movl $__USER_DS, %eax
971 movl %eax, %gs
972 .endm
973 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
974 xorl %eax, %eax
975 movl %eax, %gs
976 jmp 2b
977 .previous
978
979 /* Call softirq on interrupt stack. Interrupts are off. */
980 ENTRY(do_softirq_own_stack)
981 pushq %rbp
982 mov %rsp, %rbp
983 ENTER_IRQ_STACK regs=0 old_rsp=%r11
984 call __do_softirq
985 LEAVE_IRQ_STACK regs=0
986 leaveq
987 ret
988 ENDPROC(do_softirq_own_stack)
989
990 #ifdef CONFIG_XEN
991 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
992
993 /*
994 * A note on the "critical region" in our callback handler.
995 * We want to avoid stacking callback handlers due to events occurring
996 * during handling of the last event. To do this, we keep events disabled
997 * until we've done all processing. HOWEVER, we must enable events before
998 * popping the stack frame (can't be done atomically) and so it would still
999 * be possible to get enough handler activations to overflow the stack.
1000 * Although unlikely, bugs of that kind are hard to track down, so we'd
1001 * like to avoid the possibility.
1002 * So, on entry to the handler we detect whether we interrupted an
1003 * existing activation in its critical region -- if so, we pop the current
1004 * activation and restart the handler using the previous one.
1005 */
1006 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1007
1008 /*
1009 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1010 * see the correct pointer to the pt_regs
1011 */
1012 UNWIND_HINT_FUNC
1013 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1014 UNWIND_HINT_REGS
1015
1016 ENTER_IRQ_STACK old_rsp=%r10
1017 call xen_evtchn_do_upcall
1018 LEAVE_IRQ_STACK
1019
1020 #ifndef CONFIG_PREEMPT
1021 call xen_maybe_preempt_hcall
1022 #endif
1023 jmp error_exit
1024 END(xen_do_hypervisor_callback)
1025
1026 /*
1027 * Hypervisor uses this for application faults while it executes.
1028 * We get here for two reasons:
1029 * 1. Fault while reloading DS, ES, FS or GS
1030 * 2. Fault while executing IRET
1031 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1032 * registers that could be reloaded and zeroed the others.
1033 * Category 2 we fix up by killing the current process. We cannot use the
1034 * normal Linux return path in this case because if we use the IRET hypercall
1035 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1036 * We distinguish between categories by comparing each saved segment register
1037 * with its current contents: any discrepancy means we in category 1.
1038 */
1039 ENTRY(xen_failsafe_callback)
1040 UNWIND_HINT_EMPTY
1041 movl %ds, %ecx
1042 cmpw %cx, 0x10(%rsp)
1043 jne 1f
1044 movl %es, %ecx
1045 cmpw %cx, 0x18(%rsp)
1046 jne 1f
1047 movl %fs, %ecx
1048 cmpw %cx, 0x20(%rsp)
1049 jne 1f
1050 movl %gs, %ecx
1051 cmpw %cx, 0x28(%rsp)
1052 jne 1f
1053 /* All segments match their saved values => Category 2 (Bad IRET). */
1054 movq (%rsp), %rcx
1055 movq 8(%rsp), %r11
1056 addq $0x30, %rsp
1057 pushq $0 /* RIP */
1058 UNWIND_HINT_IRET_REGS offset=8
1059 jmp general_protection
1060 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1061 movq (%rsp), %rcx
1062 movq 8(%rsp), %r11
1063 addq $0x30, %rsp
1064 UNWIND_HINT_IRET_REGS
1065 pushq $-1 /* orig_ax = -1 => not a system call */
1066 ALLOC_PT_GPREGS_ON_STACK
1067 SAVE_C_REGS
1068 SAVE_EXTRA_REGS
1069 ENCODE_FRAME_POINTER
1070 jmp error_exit
1071 END(xen_failsafe_callback)
1072
1073 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1074 xen_hvm_callback_vector xen_evtchn_do_upcall
1075
1076 #endif /* CONFIG_XEN */
1077
1078 #if IS_ENABLED(CONFIG_HYPERV)
1079 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1080 hyperv_callback_vector hyperv_vector_handler
1081 #endif /* CONFIG_HYPERV */
1082
1083 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1084 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1085 idtentry stack_segment do_stack_segment has_error_code=1
1086
1087 #ifdef CONFIG_XEN
1088 idtentry xennmi do_nmi has_error_code=0
1089 idtentry xendebug do_debug has_error_code=0
1090 idtentry xenint3 do_int3 has_error_code=0
1091 #endif
1092
1093 idtentry general_protection do_general_protection has_error_code=1
1094 idtentry page_fault do_page_fault has_error_code=1
1095
1096 #ifdef CONFIG_KVM_GUEST
1097 idtentry async_page_fault do_async_page_fault has_error_code=1
1098 #endif
1099
1100 #ifdef CONFIG_X86_MCE
1101 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
1102 #endif
1103
1104 /*
1105 * Save all registers in pt_regs, and switch gs if needed.
1106 * Use slow, but surefire "are we in kernel?" check.
1107 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1108 */
1109 ENTRY(paranoid_entry)
1110 UNWIND_HINT_FUNC
1111 cld
1112 SAVE_C_REGS 8
1113 SAVE_EXTRA_REGS 8
1114 ENCODE_FRAME_POINTER 8
1115 movl $1, %ebx
1116 movl $MSR_GS_BASE, %ecx
1117 rdmsr
1118 testl %edx, %edx
1119 js 1f /* negative -> in kernel */
1120 SWAPGS
1121 xorl %ebx, %ebx
1122 1: ret
1123 END(paranoid_entry)
1124
1125 /*
1126 * "Paranoid" exit path from exception stack. This is invoked
1127 * only on return from non-NMI IST interrupts that came
1128 * from kernel space.
1129 *
1130 * We may be returning to very strange contexts (e.g. very early
1131 * in syscall entry), so checking for preemption here would
1132 * be complicated. Fortunately, we there's no good reason
1133 * to try to handle preemption here.
1134 *
1135 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1136 */
1137 ENTRY(paranoid_exit)
1138 UNWIND_HINT_REGS
1139 DISABLE_INTERRUPTS(CLBR_ANY)
1140 TRACE_IRQS_OFF_DEBUG
1141 testl %ebx, %ebx /* swapgs needed? */
1142 jnz .Lparanoid_exit_no_swapgs
1143 TRACE_IRQS_IRETQ
1144 SWAPGS_UNSAFE_STACK
1145 jmp .Lparanoid_exit_restore
1146 .Lparanoid_exit_no_swapgs:
1147 TRACE_IRQS_IRETQ_DEBUG
1148 .Lparanoid_exit_restore:
1149 jmp restore_regs_and_return_to_kernel
1150 END(paranoid_exit)
1151
1152 /*
1153 * Save all registers in pt_regs, and switch gs if needed.
1154 * Return: EBX=0: came from user mode; EBX=1: otherwise
1155 */
1156 ENTRY(error_entry)
1157 UNWIND_HINT_FUNC
1158 cld
1159 SAVE_C_REGS 8
1160 SAVE_EXTRA_REGS 8
1161 ENCODE_FRAME_POINTER 8
1162 xorl %ebx, %ebx
1163 testb $3, CS+8(%rsp)
1164 jz .Lerror_kernelspace
1165
1166 /*
1167 * We entered from user mode or we're pretending to have entered
1168 * from user mode due to an IRET fault.
1169 */
1170 SWAPGS
1171
1172 .Lerror_entry_from_usermode_after_swapgs:
1173 /*
1174 * We need to tell lockdep that IRQs are off. We can't do this until
1175 * we fix gsbase, and we should do it before enter_from_user_mode
1176 * (which can take locks).
1177 */
1178 TRACE_IRQS_OFF
1179 CALL_enter_from_user_mode
1180 ret
1181
1182 .Lerror_entry_done:
1183 TRACE_IRQS_OFF
1184 ret
1185
1186 /*
1187 * There are two places in the kernel that can potentially fault with
1188 * usergs. Handle them here. B stepping K8s sometimes report a
1189 * truncated RIP for IRET exceptions returning to compat mode. Check
1190 * for these here too.
1191 */
1192 .Lerror_kernelspace:
1193 incl %ebx
1194 leaq native_irq_return_iret(%rip), %rcx
1195 cmpq %rcx, RIP+8(%rsp)
1196 je .Lerror_bad_iret
1197 movl %ecx, %eax /* zero extend */
1198 cmpq %rax, RIP+8(%rsp)
1199 je .Lbstep_iret
1200 cmpq $.Lgs_change, RIP+8(%rsp)
1201 jne .Lerror_entry_done
1202
1203 /*
1204 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1205 * gsbase and proceed. We'll fix up the exception and land in
1206 * .Lgs_change's error handler with kernel gsbase.
1207 */
1208 SWAPGS
1209 jmp .Lerror_entry_done
1210
1211 .Lbstep_iret:
1212 /* Fix truncated RIP */
1213 movq %rcx, RIP+8(%rsp)
1214 /* fall through */
1215
1216 .Lerror_bad_iret:
1217 /*
1218 * We came from an IRET to user mode, so we have user gsbase.
1219 * Switch to kernel gsbase:
1220 */
1221 SWAPGS
1222
1223 /*
1224 * Pretend that the exception came from user mode: set up pt_regs
1225 * as if we faulted immediately after IRET and clear EBX so that
1226 * error_exit knows that we will be returning to user mode.
1227 */
1228 mov %rsp, %rdi
1229 call fixup_bad_iret
1230 mov %rax, %rsp
1231 decl %ebx
1232 jmp .Lerror_entry_from_usermode_after_swapgs
1233 END(error_entry)
1234
1235
1236 /*
1237 * On entry, EBX is a "return to kernel mode" flag:
1238 * 1: already in kernel mode, don't need SWAPGS
1239 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1240 */
1241 ENTRY(error_exit)
1242 UNWIND_HINT_REGS
1243 DISABLE_INTERRUPTS(CLBR_ANY)
1244 TRACE_IRQS_OFF
1245 testl %ebx, %ebx
1246 jnz retint_kernel
1247 jmp retint_user
1248 END(error_exit)
1249
1250 /*
1251 * Runs on exception stack. Xen PV does not go through this path at all,
1252 * so we can use real assembly here.
1253 */
1254 ENTRY(nmi)
1255 UNWIND_HINT_IRET_REGS
1256
1257 /*
1258 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1259 * the iretq it performs will take us out of NMI context.
1260 * This means that we can have nested NMIs where the next
1261 * NMI is using the top of the stack of the previous NMI. We
1262 * can't let it execute because the nested NMI will corrupt the
1263 * stack of the previous NMI. NMI handlers are not re-entrant
1264 * anyway.
1265 *
1266 * To handle this case we do the following:
1267 * Check the a special location on the stack that contains
1268 * a variable that is set when NMIs are executing.
1269 * The interrupted task's stack is also checked to see if it
1270 * is an NMI stack.
1271 * If the variable is not set and the stack is not the NMI
1272 * stack then:
1273 * o Set the special variable on the stack
1274 * o Copy the interrupt frame into an "outermost" location on the
1275 * stack
1276 * o Copy the interrupt frame into an "iret" location on the stack
1277 * o Continue processing the NMI
1278 * If the variable is set or the previous stack is the NMI stack:
1279 * o Modify the "iret" location to jump to the repeat_nmi
1280 * o return back to the first NMI
1281 *
1282 * Now on exit of the first NMI, we first clear the stack variable
1283 * The NMI stack will tell any nested NMIs at that point that it is
1284 * nested. Then we pop the stack normally with iret, and if there was
1285 * a nested NMI that updated the copy interrupt stack frame, a
1286 * jump will be made to the repeat_nmi code that will handle the second
1287 * NMI.
1288 *
1289 * However, espfix prevents us from directly returning to userspace
1290 * with a single IRET instruction. Similarly, IRET to user mode
1291 * can fault. We therefore handle NMIs from user space like
1292 * other IST entries.
1293 */
1294
1295 ASM_CLAC
1296
1297 /* Use %rdx as our temp variable throughout */
1298 pushq %rdx
1299
1300 testb $3, CS-RIP+8(%rsp)
1301 jz .Lnmi_from_kernel
1302
1303 /*
1304 * NMI from user mode. We need to run on the thread stack, but we
1305 * can't go through the normal entry paths: NMIs are masked, and
1306 * we don't want to enable interrupts, because then we'll end
1307 * up in an awkward situation in which IRQs are on but NMIs
1308 * are off.
1309 *
1310 * We also must not push anything to the stack before switching
1311 * stacks lest we corrupt the "NMI executing" variable.
1312 */
1313
1314 swapgs
1315 cld
1316 movq %rsp, %rdx
1317 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1318 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1319 pushq 5*8(%rdx) /* pt_regs->ss */
1320 pushq 4*8(%rdx) /* pt_regs->rsp */
1321 pushq 3*8(%rdx) /* pt_regs->flags */
1322 pushq 2*8(%rdx) /* pt_regs->cs */
1323 pushq 1*8(%rdx) /* pt_regs->rip */
1324 UNWIND_HINT_IRET_REGS
1325 pushq $-1 /* pt_regs->orig_ax */
1326 pushq %rdi /* pt_regs->di */
1327 pushq %rsi /* pt_regs->si */
1328 pushq (%rdx) /* pt_regs->dx */
1329 pushq %rcx /* pt_regs->cx */
1330 pushq %rax /* pt_regs->ax */
1331 pushq %r8 /* pt_regs->r8 */
1332 pushq %r9 /* pt_regs->r9 */
1333 pushq %r10 /* pt_regs->r10 */
1334 pushq %r11 /* pt_regs->r11 */
1335 pushq %rbx /* pt_regs->rbx */
1336 pushq %rbp /* pt_regs->rbp */
1337 pushq %r12 /* pt_regs->r12 */
1338 pushq %r13 /* pt_regs->r13 */
1339 pushq %r14 /* pt_regs->r14 */
1340 pushq %r15 /* pt_regs->r15 */
1341 UNWIND_HINT_REGS
1342 ENCODE_FRAME_POINTER
1343
1344 /*
1345 * At this point we no longer need to worry about stack damage
1346 * due to nesting -- we're on the normal thread stack and we're
1347 * done with the NMI stack.
1348 */
1349
1350 movq %rsp, %rdi
1351 movq $-1, %rsi
1352 call do_nmi
1353
1354 /*
1355 * Return back to user mode. We must *not* do the normal exit
1356 * work, because we don't want to enable interrupts.
1357 */
1358 jmp swapgs_restore_regs_and_return_to_usermode
1359
1360 .Lnmi_from_kernel:
1361 /*
1362 * Here's what our stack frame will look like:
1363 * +---------------------------------------------------------+
1364 * | original SS |
1365 * | original Return RSP |
1366 * | original RFLAGS |
1367 * | original CS |
1368 * | original RIP |
1369 * +---------------------------------------------------------+
1370 * | temp storage for rdx |
1371 * +---------------------------------------------------------+
1372 * | "NMI executing" variable |
1373 * +---------------------------------------------------------+
1374 * | iret SS } Copied from "outermost" frame |
1375 * | iret Return RSP } on each loop iteration; overwritten |
1376 * | iret RFLAGS } by a nested NMI to force another |
1377 * | iret CS } iteration if needed. |
1378 * | iret RIP } |
1379 * +---------------------------------------------------------+
1380 * | outermost SS } initialized in first_nmi; |
1381 * | outermost Return RSP } will not be changed before |
1382 * | outermost RFLAGS } NMI processing is done. |
1383 * | outermost CS } Copied to "iret" frame on each |
1384 * | outermost RIP } iteration. |
1385 * +---------------------------------------------------------+
1386 * | pt_regs |
1387 * +---------------------------------------------------------+
1388 *
1389 * The "original" frame is used by hardware. Before re-enabling
1390 * NMIs, we need to be done with it, and we need to leave enough
1391 * space for the asm code here.
1392 *
1393 * We return by executing IRET while RSP points to the "iret" frame.
1394 * That will either return for real or it will loop back into NMI
1395 * processing.
1396 *
1397 * The "outermost" frame is copied to the "iret" frame on each
1398 * iteration of the loop, so each iteration starts with the "iret"
1399 * frame pointing to the final return target.
1400 */
1401
1402 /*
1403 * Determine whether we're a nested NMI.
1404 *
1405 * If we interrupted kernel code between repeat_nmi and
1406 * end_repeat_nmi, then we are a nested NMI. We must not
1407 * modify the "iret" frame because it's being written by
1408 * the outer NMI. That's okay; the outer NMI handler is
1409 * about to about to call do_nmi anyway, so we can just
1410 * resume the outer NMI.
1411 */
1412
1413 movq $repeat_nmi, %rdx
1414 cmpq 8(%rsp), %rdx
1415 ja 1f
1416 movq $end_repeat_nmi, %rdx
1417 cmpq 8(%rsp), %rdx
1418 ja nested_nmi_out
1419 1:
1420
1421 /*
1422 * Now check "NMI executing". If it's set, then we're nested.
1423 * This will not detect if we interrupted an outer NMI just
1424 * before IRET.
1425 */
1426 cmpl $1, -8(%rsp)
1427 je nested_nmi
1428
1429 /*
1430 * Now test if the previous stack was an NMI stack. This covers
1431 * the case where we interrupt an outer NMI after it clears
1432 * "NMI executing" but before IRET. We need to be careful, though:
1433 * there is one case in which RSP could point to the NMI stack
1434 * despite there being no NMI active: naughty userspace controls
1435 * RSP at the very beginning of the SYSCALL targets. We can
1436 * pull a fast one on naughty userspace, though: we program
1437 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1438 * if it controls the kernel's RSP. We set DF before we clear
1439 * "NMI executing".
1440 */
1441 lea 6*8(%rsp), %rdx
1442 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1443 cmpq %rdx, 4*8(%rsp)
1444 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1445 ja first_nmi
1446
1447 subq $EXCEPTION_STKSZ, %rdx
1448 cmpq %rdx, 4*8(%rsp)
1449 /* If it is below the NMI stack, it is a normal NMI */
1450 jb first_nmi
1451
1452 /* Ah, it is within the NMI stack. */
1453
1454 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1455 jz first_nmi /* RSP was user controlled. */
1456
1457 /* This is a nested NMI. */
1458
1459 nested_nmi:
1460 /*
1461 * Modify the "iret" frame to point to repeat_nmi, forcing another
1462 * iteration of NMI handling.
1463 */
1464 subq $8, %rsp
1465 leaq -10*8(%rsp), %rdx
1466 pushq $__KERNEL_DS
1467 pushq %rdx
1468 pushfq
1469 pushq $__KERNEL_CS
1470 pushq $repeat_nmi
1471
1472 /* Put stack back */
1473 addq $(6*8), %rsp
1474
1475 nested_nmi_out:
1476 popq %rdx
1477
1478 /* We are returning to kernel mode, so this cannot result in a fault. */
1479 iretq
1480
1481 first_nmi:
1482 /* Restore rdx. */
1483 movq (%rsp), %rdx
1484
1485 /* Make room for "NMI executing". */
1486 pushq $0
1487
1488 /* Leave room for the "iret" frame */
1489 subq $(5*8), %rsp
1490
1491 /* Copy the "original" frame to the "outermost" frame */
1492 .rept 5
1493 pushq 11*8(%rsp)
1494 .endr
1495 UNWIND_HINT_IRET_REGS
1496
1497 /* Everything up to here is safe from nested NMIs */
1498
1499 #ifdef CONFIG_DEBUG_ENTRY
1500 /*
1501 * For ease of testing, unmask NMIs right away. Disabled by
1502 * default because IRET is very expensive.
1503 */
1504 pushq $0 /* SS */
1505 pushq %rsp /* RSP (minus 8 because of the previous push) */
1506 addq $8, (%rsp) /* Fix up RSP */
1507 pushfq /* RFLAGS */
1508 pushq $__KERNEL_CS /* CS */
1509 pushq $1f /* RIP */
1510 iretq /* continues at repeat_nmi below */
1511 UNWIND_HINT_IRET_REGS
1512 1:
1513 #endif
1514
1515 repeat_nmi:
1516 /*
1517 * If there was a nested NMI, the first NMI's iret will return
1518 * here. But NMIs are still enabled and we can take another
1519 * nested NMI. The nested NMI checks the interrupted RIP to see
1520 * if it is between repeat_nmi and end_repeat_nmi, and if so
1521 * it will just return, as we are about to repeat an NMI anyway.
1522 * This makes it safe to copy to the stack frame that a nested
1523 * NMI will update.
1524 *
1525 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1526 * we're repeating an NMI, gsbase has the same value that it had on
1527 * the first iteration. paranoid_entry will load the kernel
1528 * gsbase if needed before we call do_nmi. "NMI executing"
1529 * is zero.
1530 */
1531 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1532
1533 /*
1534 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1535 * here must not modify the "iret" frame while we're writing to
1536 * it or it will end up containing garbage.
1537 */
1538 addq $(10*8), %rsp
1539 .rept 5
1540 pushq -6*8(%rsp)
1541 .endr
1542 subq $(5*8), %rsp
1543 end_repeat_nmi:
1544
1545 /*
1546 * Everything below this point can be preempted by a nested NMI.
1547 * If this happens, then the inner NMI will change the "iret"
1548 * frame to point back to repeat_nmi.
1549 */
1550 pushq $-1 /* ORIG_RAX: no syscall to restart */
1551 ALLOC_PT_GPREGS_ON_STACK
1552
1553 /*
1554 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1555 * as we should not be calling schedule in NMI context.
1556 * Even with normal interrupts enabled. An NMI should not be
1557 * setting NEED_RESCHED or anything that normal interrupts and
1558 * exceptions might do.
1559 */
1560 call paranoid_entry
1561 UNWIND_HINT_REGS
1562
1563 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1564 movq %rsp, %rdi
1565 movq $-1, %rsi
1566 call do_nmi
1567
1568 testl %ebx, %ebx /* swapgs needed? */
1569 jnz nmi_restore
1570 nmi_swapgs:
1571 SWAPGS_UNSAFE_STACK
1572 nmi_restore:
1573 POP_EXTRA_REGS
1574 POP_C_REGS
1575
1576 /*
1577 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1578 * at the "iret" frame.
1579 */
1580 addq $6*8, %rsp
1581
1582 /*
1583 * Clear "NMI executing". Set DF first so that we can easily
1584 * distinguish the remaining code between here and IRET from
1585 * the SYSCALL entry and exit paths.
1586 *
1587 * We arguably should just inspect RIP instead, but I (Andy) wrote
1588 * this code when I had the misapprehension that Xen PV supported
1589 * NMIs, and Xen PV would break that approach.
1590 */
1591 std
1592 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1593
1594 /*
1595 * iretq reads the "iret" frame and exits the NMI stack in a
1596 * single instruction. We are returning to kernel mode, so this
1597 * cannot result in a fault. Similarly, we don't need to worry
1598 * about espfix64 on the way back to kernel mode.
1599 */
1600 iretq
1601 END(nmi)
1602
1603 ENTRY(ignore_sysret)
1604 UNWIND_HINT_EMPTY
1605 mov $-ENOSYS, %eax
1606 sysret
1607 END(ignore_sysret)
1608
1609 ENTRY(rewind_stack_do_exit)
1610 UNWIND_HINT_FUNC
1611 /* Prevent any naive code from trying to unwind to our caller. */
1612 xorl %ebp, %ebp
1613
1614 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1615 leaq -PTREGS_SIZE(%rax), %rsp
1616 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1617
1618 call do_exit
1619 END(rewind_stack_do_exit)