]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - arch/x86/entry/entry_64.S
e119f6a9662853b104aea57854520fc8a03ab713
[mirror_ubuntu-disco-kernel.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <asm/nospec-branch.h>
41 #include <linux/err.h>
42
43 #include "calling.h"
44
45 .code64
46 .section .entry.text, "ax"
47
48 #ifdef CONFIG_PARAVIRT
49 ENTRY(native_usergs_sysret64)
50 UNWIND_HINT_EMPTY
51 swapgs
52 sysretq
53 END(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_FLAGS flags:req
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 .macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67 .endm
68
69 /*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82 .macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_OFF
85 call debug_stack_reset
86 .endm
87
88 .macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
90 TRACE_IRQS_ON
91 call debug_stack_reset
92 .endm
93
94 .macro TRACE_IRQS_IRETQ_DEBUG
95 btl $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
97 TRACE_IRQS_ON_DEBUG
98 1:
99 .endm
100
101 #else
102 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
105 #endif
106
107 /*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax system call number
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi arg0
131 * rsi arg1
132 * rdx arg2
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8 arg4
135 * r9 arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145 ENTRY(entry_SYSCALL_64)
146 UNWIND_HINT_EMPTY
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
152
153 swapgs
154 /* tss.sp2 is scratch space. */
155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 /* Construct struct pt_regs on stack */
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
165 GLOBAL(entry_SYSCALL_64_after_hwframe)
166 pushq %rax /* pt_regs->orig_ax */
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169
170 TRACE_IRQS_OFF
171
172 /* IRQs are off. */
173 movq %rax, %rdi
174 movq %rsp, %rsi
175 call do_syscall_64 /* returns with IRQs disabled */
176
177 TRACE_IRQS_IRETQ /* we're about to change IF */
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
183 */
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
193 * the kernel, since userspace controls RSP.
194 *
195 * If width of "canonical tail" ever becomes variable, this will need
196 * to be updated to remain correct on both old and new CPUs.
197 *
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
200 */
201 #ifdef CONFIG_X86_5LEVEL
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204 #else
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207 #endif
208
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
211 jne swapgs_restore_regs_and_return_to_usermode
212
213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
214 jne swapgs_restore_regs_and_return_to_usermode
215
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
218 jne swapgs_restore_regs_and_return_to_usermode
219
220 /*
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
230 *
231 * movq $stuck_here, %rcx
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239 jnz swapgs_restore_regs_and_return_to_usermode
240
241 /* nothing to check for RSP */
242
243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
244 jne swapgs_restore_regs_and_return_to_usermode
245
246 /*
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
249 */
250 syscall_return_via_sysret:
251 /* rcx and r11 are already restored (see code above) */
252 UNWIND_HINT_EMPTY
253 POP_REGS pop_rdi=0 skip_r11rcx=1
254
255 /*
256 * Now all regs are restored except RSP and RDI.
257 * Save old stack pointer and switch to trampoline stack.
258 */
259 movq %rsp, %rdi
260 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
269 STACKLEAK_ERASE_NOCLOBBER
270
271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272
273 popq %rdi
274 popq %rsp
275 USERGS_SYSRET64
276 END(entry_SYSCALL_64)
277
278 /*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282 ENTRY(__switch_to_asm)
283 UNWIND_HINT_FUNC
284 /*
285 * Save callee-saved registers
286 * This must match the order in inactive_task_frame
287 */
288 pushq %rbp
289 pushq %rbx
290 pushq %r12
291 pushq %r13
292 pushq %r14
293 pushq %r15
294 pushfq
295
296 /* switch stack */
297 movq %rsp, TASK_threadsp(%rdi)
298 movq TASK_threadsp(%rsi), %rsp
299
300 #ifdef CONFIG_STACKPROTECTOR
301 movq TASK_stack_canary(%rsi), %rbx
302 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
303 #endif
304
305 #ifdef CONFIG_RETPOLINE
306 /*
307 * When switching from a shallower to a deeper call stack
308 * the RSB may either underflow or use entries populated
309 * with userspace addresses. On CPUs where those concerns
310 * exist, overwrite the RSB with entries which capture
311 * speculative execution to prevent attack.
312 */
313 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
314 #endif
315
316 /* restore callee-saved registers */
317 popfq
318 popq %r15
319 popq %r14
320 popq %r13
321 popq %r12
322 popq %rbx
323 popq %rbp
324
325 jmp __switch_to
326 END(__switch_to_asm)
327
328 /*
329 * A newly forked process directly context switches into this address.
330 *
331 * rax: prev task we switched from
332 * rbx: kernel thread func (NULL for user thread)
333 * r12: kernel thread arg
334 */
335 ENTRY(ret_from_fork)
336 UNWIND_HINT_EMPTY
337 movq %rax, %rdi
338 call schedule_tail /* rdi: 'prev' task parameter */
339
340 testq %rbx, %rbx /* from kernel_thread? */
341 jnz 1f /* kernel threads are uncommon */
342
343 2:
344 UNWIND_HINT_REGS
345 movq %rsp, %rdi
346 call syscall_return_slowpath /* returns with IRQs disabled */
347 TRACE_IRQS_ON /* user mode is traced as IRQS on */
348 jmp swapgs_restore_regs_and_return_to_usermode
349
350 1:
351 /* kernel thread */
352 UNWIND_HINT_EMPTY
353 movq %r12, %rdi
354 CALL_NOSPEC %rbx
355 /*
356 * A kernel thread is allowed to return here after successfully
357 * calling do_execve(). Exit to userspace to complete the execve()
358 * syscall.
359 */
360 movq $0, RAX(%rsp)
361 jmp 2b
362 END(ret_from_fork)
363
364 /*
365 * Build the entry stubs with some assembler magic.
366 * We pack 1 stub into every 8-byte block.
367 */
368 .align 8
369 ENTRY(irq_entries_start)
370 vector=FIRST_EXTERNAL_VECTOR
371 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
372 UNWIND_HINT_IRET_REGS
373 pushq $(~vector+0x80) /* Note: always in signed byte range */
374 jmp common_interrupt
375 .align 8
376 vector=vector+1
377 .endr
378 END(irq_entries_start)
379
380 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
381 #ifdef CONFIG_DEBUG_ENTRY
382 pushq %rax
383 SAVE_FLAGS(CLBR_RAX)
384 testl $X86_EFLAGS_IF, %eax
385 jz .Lokay_\@
386 ud2
387 .Lokay_\@:
388 popq %rax
389 #endif
390 .endm
391
392 /*
393 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
394 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
395 * Requires kernel GSBASE.
396 *
397 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
398 */
399 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
400 DEBUG_ENTRY_ASSERT_IRQS_OFF
401
402 .if \save_ret
403 /*
404 * If save_ret is set, the original stack contains one additional
405 * entry -- the return address. Therefore, move the address one
406 * entry below %rsp to \old_rsp.
407 */
408 leaq 8(%rsp), \old_rsp
409 .else
410 movq %rsp, \old_rsp
411 .endif
412
413 .if \regs
414 UNWIND_HINT_REGS base=\old_rsp
415 .endif
416
417 incl PER_CPU_VAR(irq_count)
418 jnz .Lirq_stack_push_old_rsp_\@
419
420 /*
421 * Right now, if we just incremented irq_count to zero, we've
422 * claimed the IRQ stack but we haven't switched to it yet.
423 *
424 * If anything is added that can interrupt us here without using IST,
425 * it must be *extremely* careful to limit its stack usage. This
426 * could include kprobes and a hypothetical future IST-less #DB
427 * handler.
428 *
429 * The OOPS unwinder relies on the word at the top of the IRQ
430 * stack linking back to the previous RSP for the entire time we're
431 * on the IRQ stack. For this to work reliably, we need to write
432 * it before we actually move ourselves to the IRQ stack.
433 */
434
435 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
436 movq PER_CPU_VAR(irq_stack_ptr), %rsp
437
438 #ifdef CONFIG_DEBUG_ENTRY
439 /*
440 * If the first movq above becomes wrong due to IRQ stack layout
441 * changes, the only way we'll notice is if we try to unwind right
442 * here. Assert that we set up the stack right to catch this type
443 * of bug quickly.
444 */
445 cmpq -8(%rsp), \old_rsp
446 je .Lirq_stack_okay\@
447 ud2
448 .Lirq_stack_okay\@:
449 #endif
450
451 .Lirq_stack_push_old_rsp_\@:
452 pushq \old_rsp
453
454 .if \regs
455 UNWIND_HINT_REGS indirect=1
456 .endif
457
458 .if \save_ret
459 /*
460 * Push the return address to the stack. This return address can
461 * be found at the "real" original RSP, which was offset by 8 at
462 * the beginning of this macro.
463 */
464 pushq -8(\old_rsp)
465 .endif
466 .endm
467
468 /*
469 * Undoes ENTER_IRQ_STACK.
470 */
471 .macro LEAVE_IRQ_STACK regs=1
472 DEBUG_ENTRY_ASSERT_IRQS_OFF
473 /* We need to be off the IRQ stack before decrementing irq_count. */
474 popq %rsp
475
476 .if \regs
477 UNWIND_HINT_REGS
478 .endif
479
480 /*
481 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
482 * the irq stack but we're not on it.
483 */
484
485 decl PER_CPU_VAR(irq_count)
486 .endm
487
488 /*
489 * Interrupt entry helper function.
490 *
491 * Entry runs with interrupts off. Stack layout at entry:
492 * +----------------------------------------------------+
493 * | regs->ss |
494 * | regs->rsp |
495 * | regs->eflags |
496 * | regs->cs |
497 * | regs->ip |
498 * +----------------------------------------------------+
499 * | regs->orig_ax = ~(interrupt number) |
500 * +----------------------------------------------------+
501 * | return address |
502 * +----------------------------------------------------+
503 */
504 ENTRY(interrupt_entry)
505 UNWIND_HINT_FUNC
506 ASM_CLAC
507 cld
508
509 testb $3, CS-ORIG_RAX+8(%rsp)
510 jz 1f
511 SWAPGS
512 FENCE_SWAPGS_USER_ENTRY
513 /*
514 * Switch to the thread stack. The IRET frame and orig_ax are
515 * on the stack, as well as the return address. RDI..R12 are
516 * not (yet) on the stack and space has not (yet) been
517 * allocated for them.
518 */
519 pushq %rdi
520
521 /* Need to switch before accessing the thread stack. */
522 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
523 movq %rsp, %rdi
524 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
525
526 /*
527 * We have RDI, return address, and orig_ax on the stack on
528 * top of the IRET frame. That means offset=24
529 */
530 UNWIND_HINT_IRET_REGS base=%rdi offset=24
531
532 pushq 7*8(%rdi) /* regs->ss */
533 pushq 6*8(%rdi) /* regs->rsp */
534 pushq 5*8(%rdi) /* regs->eflags */
535 pushq 4*8(%rdi) /* regs->cs */
536 pushq 3*8(%rdi) /* regs->ip */
537 pushq 2*8(%rdi) /* regs->orig_ax */
538 pushq 8(%rdi) /* return address */
539 UNWIND_HINT_FUNC
540
541 movq (%rdi), %rdi
542 jmp 2f
543 1:
544 FENCE_SWAPGS_KERNEL_ENTRY
545 2:
546 PUSH_AND_CLEAR_REGS save_ret=1
547 ENCODE_FRAME_POINTER 8
548
549 testb $3, CS+8(%rsp)
550 jz 1f
551
552 /*
553 * IRQ from user mode.
554 *
555 * We need to tell lockdep that IRQs are off. We can't do this until
556 * we fix gsbase, and we should do it before enter_from_user_mode
557 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
558 * the simplest way to handle it is to just call it twice if
559 * we enter from user mode. There's no reason to optimize this since
560 * TRACE_IRQS_OFF is a no-op if lockdep is off.
561 */
562 TRACE_IRQS_OFF
563
564 CALL_enter_from_user_mode
565
566 1:
567 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
568 /* We entered an interrupt context - irqs are off: */
569 TRACE_IRQS_OFF
570
571 ret
572 END(interrupt_entry)
573 _ASM_NOKPROBE(interrupt_entry)
574
575
576 /* Interrupt entry/exit. */
577
578 /*
579 * The interrupt stubs push (~vector+0x80) onto the stack and
580 * then jump to common_interrupt.
581 */
582 .p2align CONFIG_X86_L1_CACHE_SHIFT
583 common_interrupt:
584 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
585 call interrupt_entry
586 UNWIND_HINT_REGS indirect=1
587 call do_IRQ /* rdi points to pt_regs */
588 /* 0(%rsp): old RSP */
589 ret_from_intr:
590 DISABLE_INTERRUPTS(CLBR_ANY)
591 TRACE_IRQS_OFF
592
593 LEAVE_IRQ_STACK
594
595 testb $3, CS(%rsp)
596 jz retint_kernel
597
598 /* Interrupt came from user space */
599 GLOBAL(retint_user)
600 mov %rsp,%rdi
601 call prepare_exit_to_usermode
602 TRACE_IRQS_IRETQ
603
604 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
605 #ifdef CONFIG_DEBUG_ENTRY
606 /* Assert that pt_regs indicates user mode. */
607 testb $3, CS(%rsp)
608 jnz 1f
609 ud2
610 1:
611 #endif
612 POP_REGS pop_rdi=0
613
614 /*
615 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
616 * Save old stack pointer and switch to trampoline stack.
617 */
618 movq %rsp, %rdi
619 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
620
621 /* Copy the IRET frame to the trampoline stack. */
622 pushq 6*8(%rdi) /* SS */
623 pushq 5*8(%rdi) /* RSP */
624 pushq 4*8(%rdi) /* EFLAGS */
625 pushq 3*8(%rdi) /* CS */
626 pushq 2*8(%rdi) /* RIP */
627
628 /* Push user RDI on the trampoline stack. */
629 pushq (%rdi)
630
631 /*
632 * We are on the trampoline stack. All regs except RDI are live.
633 * We can do future final exit work right here.
634 */
635 STACKLEAK_ERASE_NOCLOBBER
636
637 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
638
639 /* Restore RDI. */
640 popq %rdi
641 SWAPGS
642 INTERRUPT_RETURN
643
644
645 /* Returning to kernel space */
646 retint_kernel:
647 #ifdef CONFIG_PREEMPT
648 /* Interrupts are off */
649 /* Check if we need preemption */
650 btl $9, EFLAGS(%rsp) /* were interrupts off? */
651 jnc 1f
652 0: cmpl $0, PER_CPU_VAR(__preempt_count)
653 jnz 1f
654 call preempt_schedule_irq
655 jmp 0b
656 1:
657 #endif
658 /*
659 * The iretq could re-enable interrupts:
660 */
661 TRACE_IRQS_IRETQ
662
663 GLOBAL(restore_regs_and_return_to_kernel)
664 #ifdef CONFIG_DEBUG_ENTRY
665 /* Assert that pt_regs indicates kernel mode. */
666 testb $3, CS(%rsp)
667 jz 1f
668 ud2
669 1:
670 #endif
671 POP_REGS
672 addq $8, %rsp /* skip regs->orig_ax */
673 /*
674 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
675 * when returning from IPI handler.
676 */
677 INTERRUPT_RETURN
678
679 ENTRY(native_iret)
680 UNWIND_HINT_IRET_REGS
681 /*
682 * Are we returning to a stack segment from the LDT? Note: in
683 * 64-bit mode SS:RSP on the exception stack is always valid.
684 */
685 #ifdef CONFIG_X86_ESPFIX64
686 testb $4, (SS-RIP)(%rsp)
687 jnz native_irq_return_ldt
688 #endif
689
690 .global native_irq_return_iret
691 native_irq_return_iret:
692 /*
693 * This may fault. Non-paranoid faults on return to userspace are
694 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
695 * Double-faults due to espfix64 are handled in do_double_fault.
696 * Other faults here are fatal.
697 */
698 iretq
699
700 #ifdef CONFIG_X86_ESPFIX64
701 native_irq_return_ldt:
702 /*
703 * We are running with user GSBASE. All GPRs contain their user
704 * values. We have a percpu ESPFIX stack that is eight slots
705 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
706 * of the ESPFIX stack.
707 *
708 * We clobber RAX and RDI in this code. We stash RDI on the
709 * normal stack and RAX on the ESPFIX stack.
710 *
711 * The ESPFIX stack layout we set up looks like this:
712 *
713 * --- top of ESPFIX stack ---
714 * SS
715 * RSP
716 * RFLAGS
717 * CS
718 * RIP <-- RSP points here when we're done
719 * RAX <-- espfix_waddr points here
720 * --- bottom of ESPFIX stack ---
721 */
722
723 pushq %rdi /* Stash user RDI */
724 SWAPGS /* to kernel GS */
725 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
726
727 movq PER_CPU_VAR(espfix_waddr), %rdi
728 movq %rax, (0*8)(%rdi) /* user RAX */
729 movq (1*8)(%rsp), %rax /* user RIP */
730 movq %rax, (1*8)(%rdi)
731 movq (2*8)(%rsp), %rax /* user CS */
732 movq %rax, (2*8)(%rdi)
733 movq (3*8)(%rsp), %rax /* user RFLAGS */
734 movq %rax, (3*8)(%rdi)
735 movq (5*8)(%rsp), %rax /* user SS */
736 movq %rax, (5*8)(%rdi)
737 movq (4*8)(%rsp), %rax /* user RSP */
738 movq %rax, (4*8)(%rdi)
739 /* Now RAX == RSP. */
740
741 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
742
743 /*
744 * espfix_stack[31:16] == 0. The page tables are set up such that
745 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
746 * espfix_waddr for any X. That is, there are 65536 RO aliases of
747 * the same page. Set up RSP so that RSP[31:16] contains the
748 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
749 * still points to an RO alias of the ESPFIX stack.
750 */
751 orq PER_CPU_VAR(espfix_stack), %rax
752
753 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
754 SWAPGS /* to user GS */
755 popq %rdi /* Restore user RDI */
756
757 movq %rax, %rsp
758 UNWIND_HINT_IRET_REGS offset=8
759
760 /*
761 * At this point, we cannot write to the stack any more, but we can
762 * still read.
763 */
764 popq %rax /* Restore user RAX */
765
766 /*
767 * RSP now points to an ordinary IRET frame, except that the page
768 * is read-only and RSP[31:16] are preloaded with the userspace
769 * values. We can now IRET back to userspace.
770 */
771 jmp native_irq_return_iret
772 #endif
773 END(common_interrupt)
774 _ASM_NOKPROBE(common_interrupt)
775
776 /*
777 * APIC interrupts.
778 */
779 .macro apicinterrupt3 num sym do_sym
780 ENTRY(\sym)
781 UNWIND_HINT_IRET_REGS
782 pushq $~(\num)
783 .Lcommon_\sym:
784 call interrupt_entry
785 UNWIND_HINT_REGS indirect=1
786 call \do_sym /* rdi points to pt_regs */
787 jmp ret_from_intr
788 END(\sym)
789 _ASM_NOKPROBE(\sym)
790 .endm
791
792 /* Make sure APIC interrupt handlers end up in the irqentry section: */
793 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
794 #define POP_SECTION_IRQENTRY .popsection
795
796 .macro apicinterrupt num sym do_sym
797 PUSH_SECTION_IRQENTRY
798 apicinterrupt3 \num \sym \do_sym
799 POP_SECTION_IRQENTRY
800 .endm
801
802 #ifdef CONFIG_SMP
803 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
804 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
805 #endif
806
807 #ifdef CONFIG_X86_UV
808 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
809 #endif
810
811 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
812 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
813
814 #ifdef CONFIG_HAVE_KVM
815 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
816 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
817 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
818 #endif
819
820 #ifdef CONFIG_X86_MCE_THRESHOLD
821 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
822 #endif
823
824 #ifdef CONFIG_X86_MCE_AMD
825 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
826 #endif
827
828 #ifdef CONFIG_X86_THERMAL_VECTOR
829 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
830 #endif
831
832 #ifdef CONFIG_SMP
833 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
834 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
835 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
836 #endif
837
838 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
839 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
840
841 #ifdef CONFIG_IRQ_WORK
842 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
843 #endif
844
845 /*
846 * Exception entry points.
847 */
848 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
849
850 /**
851 * idtentry - Generate an IDT entry stub
852 * @sym: Name of the generated entry point
853 * @do_sym: C function to be called
854 * @has_error_code: True if this IDT vector has an error code on the stack
855 * @paranoid: non-zero means that this vector may be invoked from
856 * kernel mode with user GSBASE and/or user CR3.
857 * 2 is special -- see below.
858 * @shift_ist: Set to an IST index if entries from kernel mode should
859 * decrement the IST stack so that nested entries get a
860 * fresh stack. (This is for #DB, which has a nasty habit
861 * of recursing.)
862 *
863 * idtentry generates an IDT stub that sets up a usable kernel context,
864 * creates struct pt_regs, and calls @do_sym. The stub has the following
865 * special behaviors:
866 *
867 * On an entry from user mode, the stub switches from the trampoline or
868 * IST stack to the normal thread stack. On an exit to user mode, the
869 * normal exit-to-usermode path is invoked.
870 *
871 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
872 * whereas we omit the preemption check if @paranoid != 0. This is purely
873 * because the implementation is simpler this way. The kernel only needs
874 * to check for asynchronous kernel preemption when IRQ handlers return.
875 *
876 * If @paranoid == 0, then the stub will handle IRET faults by pretending
877 * that the fault came from user mode. It will handle gs_change faults by
878 * pretending that the fault happened with kernel GSBASE. Since this handling
879 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
880 * @paranoid == 0. This special handling will do the wrong thing for
881 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
882 *
883 * @paranoid == 2 is special: the stub will never switch stacks. This is for
884 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
885 */
886 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 create_gap=0
887 ENTRY(\sym)
888 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
889
890 /* Sanity check */
891 .if \shift_ist != -1 && \paranoid == 0
892 .error "using shift_ist requires paranoid=1"
893 .endif
894
895 ASM_CLAC
896
897 .if \has_error_code == 0
898 pushq $-1 /* ORIG_RAX: no syscall to restart */
899 .endif
900
901 .if \paranoid == 1
902 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
903 jnz .Lfrom_usermode_switch_stack_\@
904 .endif
905
906 .if \create_gap == 1
907 /*
908 * If coming from kernel space, create a 6-word gap to allow the
909 * int3 handler to emulate a call instruction.
910 */
911 testb $3, CS-ORIG_RAX(%rsp)
912 jnz .Lfrom_usermode_no_gap_\@
913 .rept 6
914 pushq 5*8(%rsp)
915 .endr
916 UNWIND_HINT_IRET_REGS offset=8
917 .Lfrom_usermode_no_gap_\@:
918 .endif
919
920 .if \paranoid
921 call paranoid_entry
922 .else
923 call error_entry
924 .endif
925 UNWIND_HINT_REGS
926 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
927
928 .if \paranoid
929 .if \shift_ist != -1
930 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
931 .else
932 TRACE_IRQS_OFF
933 .endif
934 .endif
935
936 movq %rsp, %rdi /* pt_regs pointer */
937
938 .if \has_error_code
939 movq ORIG_RAX(%rsp), %rsi /* get error code */
940 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
941 .else
942 xorl %esi, %esi /* no error code */
943 .endif
944
945 .if \shift_ist != -1
946 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
947 .endif
948
949 call \do_sym
950
951 .if \shift_ist != -1
952 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
953 .endif
954
955 /* these procedures expect "no swapgs" flag in ebx */
956 .if \paranoid
957 jmp paranoid_exit
958 .else
959 jmp error_exit
960 .endif
961
962 .if \paranoid == 1
963 /*
964 * Entry from userspace. Switch stacks and treat it
965 * as a normal entry. This means that paranoid handlers
966 * run in real process context if user_mode(regs).
967 */
968 .Lfrom_usermode_switch_stack_\@:
969 call error_entry
970
971 movq %rsp, %rdi /* pt_regs pointer */
972
973 .if \has_error_code
974 movq ORIG_RAX(%rsp), %rsi /* get error code */
975 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
976 .else
977 xorl %esi, %esi /* no error code */
978 .endif
979
980 call \do_sym
981
982 jmp error_exit
983 .endif
984 _ASM_NOKPROBE(\sym)
985 END(\sym)
986 .endm
987
988 idtentry divide_error do_divide_error has_error_code=0
989 idtentry overflow do_overflow has_error_code=0
990 idtentry bounds do_bounds has_error_code=0
991 idtentry invalid_op do_invalid_op has_error_code=0
992 idtentry device_not_available do_device_not_available has_error_code=0
993 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
994 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
995 idtentry invalid_TSS do_invalid_TSS has_error_code=1
996 idtentry segment_not_present do_segment_not_present has_error_code=1
997 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
998 idtentry coprocessor_error do_coprocessor_error has_error_code=0
999 idtentry alignment_check do_alignment_check has_error_code=1
1000 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1001
1002
1003 /*
1004 * Reload gs selector with exception handling
1005 * edi: new selector
1006 */
1007 ENTRY(native_load_gs_index)
1008 FRAME_BEGIN
1009 pushfq
1010 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1011 TRACE_IRQS_OFF
1012 SWAPGS
1013 .Lgs_change:
1014 movl %edi, %gs
1015 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1016 SWAPGS
1017 TRACE_IRQS_FLAGS (%rsp)
1018 popfq
1019 FRAME_END
1020 ret
1021 ENDPROC(native_load_gs_index)
1022 EXPORT_SYMBOL(native_load_gs_index)
1023
1024 _ASM_EXTABLE(.Lgs_change, bad_gs)
1025 .section .fixup, "ax"
1026 /* running with kernelgs */
1027 bad_gs:
1028 SWAPGS /* switch back to user gs */
1029 .macro ZAP_GS
1030 /* This can't be a string because the preprocessor needs to see it. */
1031 movl $__USER_DS, %eax
1032 movl %eax, %gs
1033 .endm
1034 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1035 xorl %eax, %eax
1036 movl %eax, %gs
1037 jmp 2b
1038 .previous
1039
1040 /* Call softirq on interrupt stack. Interrupts are off. */
1041 ENTRY(do_softirq_own_stack)
1042 pushq %rbp
1043 mov %rsp, %rbp
1044 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1045 call __do_softirq
1046 LEAVE_IRQ_STACK regs=0
1047 leaveq
1048 ret
1049 ENDPROC(do_softirq_own_stack)
1050
1051 #ifdef CONFIG_XEN_PV
1052 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1053
1054 /*
1055 * A note on the "critical region" in our callback handler.
1056 * We want to avoid stacking callback handlers due to events occurring
1057 * during handling of the last event. To do this, we keep events disabled
1058 * until we've done all processing. HOWEVER, we must enable events before
1059 * popping the stack frame (can't be done atomically) and so it would still
1060 * be possible to get enough handler activations to overflow the stack.
1061 * Although unlikely, bugs of that kind are hard to track down, so we'd
1062 * like to avoid the possibility.
1063 * So, on entry to the handler we detect whether we interrupted an
1064 * existing activation in its critical region -- if so, we pop the current
1065 * activation and restart the handler using the previous one.
1066 */
1067 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1068
1069 /*
1070 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1071 * see the correct pointer to the pt_regs
1072 */
1073 UNWIND_HINT_FUNC
1074 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1075 UNWIND_HINT_REGS
1076
1077 ENTER_IRQ_STACK old_rsp=%r10
1078 call xen_evtchn_do_upcall
1079 LEAVE_IRQ_STACK
1080
1081 #ifndef CONFIG_PREEMPT
1082 call xen_maybe_preempt_hcall
1083 #endif
1084 jmp error_exit
1085 END(xen_do_hypervisor_callback)
1086
1087 /*
1088 * Hypervisor uses this for application faults while it executes.
1089 * We get here for two reasons:
1090 * 1. Fault while reloading DS, ES, FS or GS
1091 * 2. Fault while executing IRET
1092 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1093 * registers that could be reloaded and zeroed the others.
1094 * Category 2 we fix up by killing the current process. We cannot use the
1095 * normal Linux return path in this case because if we use the IRET hypercall
1096 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1097 * We distinguish between categories by comparing each saved segment register
1098 * with its current contents: any discrepancy means we in category 1.
1099 */
1100 ENTRY(xen_failsafe_callback)
1101 UNWIND_HINT_EMPTY
1102 movl %ds, %ecx
1103 cmpw %cx, 0x10(%rsp)
1104 jne 1f
1105 movl %es, %ecx
1106 cmpw %cx, 0x18(%rsp)
1107 jne 1f
1108 movl %fs, %ecx
1109 cmpw %cx, 0x20(%rsp)
1110 jne 1f
1111 movl %gs, %ecx
1112 cmpw %cx, 0x28(%rsp)
1113 jne 1f
1114 /* All segments match their saved values => Category 2 (Bad IRET). */
1115 movq (%rsp), %rcx
1116 movq 8(%rsp), %r11
1117 addq $0x30, %rsp
1118 pushq $0 /* RIP */
1119 UNWIND_HINT_IRET_REGS offset=8
1120 jmp general_protection
1121 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1122 movq (%rsp), %rcx
1123 movq 8(%rsp), %r11
1124 addq $0x30, %rsp
1125 UNWIND_HINT_IRET_REGS
1126 pushq $-1 /* orig_ax = -1 => not a system call */
1127 PUSH_AND_CLEAR_REGS
1128 ENCODE_FRAME_POINTER
1129 jmp error_exit
1130 END(xen_failsafe_callback)
1131 #endif /* CONFIG_XEN_PV */
1132
1133 #ifdef CONFIG_XEN_PVHVM
1134 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1135 xen_hvm_callback_vector xen_evtchn_do_upcall
1136 #endif
1137
1138
1139 #if IS_ENABLED(CONFIG_HYPERV)
1140 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1141 hyperv_callback_vector hyperv_vector_handler
1142
1143 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1144 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1145
1146 apicinterrupt3 HYPERV_STIMER0_VECTOR \
1147 hv_stimer0_callback_vector hv_stimer0_vector_handler
1148 #endif /* CONFIG_HYPERV */
1149
1150 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1151 idtentry int3 do_int3 has_error_code=0 create_gap=1
1152 idtentry stack_segment do_stack_segment has_error_code=1
1153
1154 #ifdef CONFIG_XEN_PV
1155 idtentry xennmi do_nmi has_error_code=0
1156 idtentry xendebug do_debug has_error_code=0
1157 idtentry xenint3 do_int3 has_error_code=0
1158 #endif
1159
1160 idtentry general_protection do_general_protection has_error_code=1
1161 idtentry page_fault do_page_fault has_error_code=1
1162
1163 #ifdef CONFIG_KVM_GUEST
1164 idtentry async_page_fault do_async_page_fault has_error_code=1
1165 #endif
1166
1167 #ifdef CONFIG_X86_MCE
1168 idtentry machine_check do_mce has_error_code=0 paranoid=1
1169 #endif
1170
1171 /*
1172 * Save all registers in pt_regs, and switch gs if needed.
1173 * Use slow, but surefire "are we in kernel?" check.
1174 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1175 */
1176 ENTRY(paranoid_entry)
1177 UNWIND_HINT_FUNC
1178 cld
1179 PUSH_AND_CLEAR_REGS save_ret=1
1180 ENCODE_FRAME_POINTER 8
1181 movl $1, %ebx
1182 movl $MSR_GS_BASE, %ecx
1183 rdmsr
1184 testl %edx, %edx
1185 js 1f /* negative -> in kernel */
1186 SWAPGS
1187 xorl %ebx, %ebx
1188
1189 1:
1190 /*
1191 * Always stash CR3 in %r14. This value will be restored,
1192 * verbatim, at exit. Needed if paranoid_entry interrupted
1193 * another entry that already switched to the user CR3 value
1194 * but has not yet returned to userspace.
1195 *
1196 * This is also why CS (stashed in the "iret frame" by the
1197 * hardware at entry) can not be used: this may be a return
1198 * to kernel code, but with a user CR3 value.
1199 */
1200 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1201
1202 /*
1203 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1204 * unconditional CR3 write, even in the PTI case. So do an lfence
1205 * to prevent GS speculation, regardless of whether PTI is enabled.
1206 */
1207 FENCE_SWAPGS_KERNEL_ENTRY
1208
1209 ret
1210 END(paranoid_entry)
1211
1212 /*
1213 * "Paranoid" exit path from exception stack. This is invoked
1214 * only on return from non-NMI IST interrupts that came
1215 * from kernel space.
1216 *
1217 * We may be returning to very strange contexts (e.g. very early
1218 * in syscall entry), so checking for preemption here would
1219 * be complicated. Fortunately, we there's no good reason
1220 * to try to handle preemption here.
1221 *
1222 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1223 */
1224 ENTRY(paranoid_exit)
1225 UNWIND_HINT_REGS
1226 DISABLE_INTERRUPTS(CLBR_ANY)
1227 TRACE_IRQS_OFF_DEBUG
1228 testl %ebx, %ebx /* swapgs needed? */
1229 jnz .Lparanoid_exit_no_swapgs
1230 TRACE_IRQS_IRETQ
1231 /* Always restore stashed CR3 value (see paranoid_entry) */
1232 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1233 SWAPGS_UNSAFE_STACK
1234 jmp .Lparanoid_exit_restore
1235 .Lparanoid_exit_no_swapgs:
1236 TRACE_IRQS_IRETQ_DEBUG
1237 /* Always restore stashed CR3 value (see paranoid_entry) */
1238 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1239 .Lparanoid_exit_restore:
1240 jmp restore_regs_and_return_to_kernel
1241 END(paranoid_exit)
1242
1243 /*
1244 * Save all registers in pt_regs, and switch GS if needed.
1245 */
1246 ENTRY(error_entry)
1247 UNWIND_HINT_FUNC
1248 cld
1249 PUSH_AND_CLEAR_REGS save_ret=1
1250 ENCODE_FRAME_POINTER 8
1251 testb $3, CS+8(%rsp)
1252 jz .Lerror_kernelspace
1253
1254 /*
1255 * We entered from user mode or we're pretending to have entered
1256 * from user mode due to an IRET fault.
1257 */
1258 SWAPGS
1259 FENCE_SWAPGS_USER_ENTRY
1260 /* We have user CR3. Change to kernel CR3. */
1261 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1262
1263 .Lerror_entry_from_usermode_after_swapgs:
1264 /* Put us onto the real thread stack. */
1265 popq %r12 /* save return addr in %12 */
1266 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1267 call sync_regs
1268 movq %rax, %rsp /* switch stack */
1269 ENCODE_FRAME_POINTER
1270 pushq %r12
1271
1272 /*
1273 * We need to tell lockdep that IRQs are off. We can't do this until
1274 * we fix gsbase, and we should do it before enter_from_user_mode
1275 * (which can take locks).
1276 */
1277 TRACE_IRQS_OFF
1278 CALL_enter_from_user_mode
1279 ret
1280
1281 .Lerror_entry_done_lfence:
1282 FENCE_SWAPGS_KERNEL_ENTRY
1283 .Lerror_entry_done:
1284 TRACE_IRQS_OFF
1285 ret
1286
1287 /*
1288 * There are two places in the kernel that can potentially fault with
1289 * usergs. Handle them here. B stepping K8s sometimes report a
1290 * truncated RIP for IRET exceptions returning to compat mode. Check
1291 * for these here too.
1292 */
1293 .Lerror_kernelspace:
1294 leaq native_irq_return_iret(%rip), %rcx
1295 cmpq %rcx, RIP+8(%rsp)
1296 je .Lerror_bad_iret
1297 movl %ecx, %eax /* zero extend */
1298 cmpq %rax, RIP+8(%rsp)
1299 je .Lbstep_iret
1300 cmpq $.Lgs_change, RIP+8(%rsp)
1301 jne .Lerror_entry_done_lfence
1302
1303 /*
1304 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1305 * gsbase and proceed. We'll fix up the exception and land in
1306 * .Lgs_change's error handler with kernel gsbase.
1307 */
1308 SWAPGS
1309 FENCE_SWAPGS_USER_ENTRY
1310 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1311 jmp .Lerror_entry_done
1312
1313 .Lbstep_iret:
1314 /* Fix truncated RIP */
1315 movq %rcx, RIP+8(%rsp)
1316 /* fall through */
1317
1318 .Lerror_bad_iret:
1319 /*
1320 * We came from an IRET to user mode, so we have user
1321 * gsbase and CR3. Switch to kernel gsbase and CR3:
1322 */
1323 SWAPGS
1324 FENCE_SWAPGS_USER_ENTRY
1325 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1326
1327 /*
1328 * Pretend that the exception came from user mode: set up pt_regs
1329 * as if we faulted immediately after IRET.
1330 */
1331 mov %rsp, %rdi
1332 call fixup_bad_iret
1333 mov %rax, %rsp
1334 jmp .Lerror_entry_from_usermode_after_swapgs
1335 END(error_entry)
1336
1337 ENTRY(error_exit)
1338 UNWIND_HINT_REGS
1339 DISABLE_INTERRUPTS(CLBR_ANY)
1340 TRACE_IRQS_OFF
1341 testb $3, CS(%rsp)
1342 jz retint_kernel
1343 jmp retint_user
1344 END(error_exit)
1345
1346 /*
1347 * Runs on exception stack. Xen PV does not go through this path at all,
1348 * so we can use real assembly here.
1349 *
1350 * Registers:
1351 * %r14: Used to save/restore the CR3 of the interrupted context
1352 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1353 */
1354 ENTRY(nmi)
1355 UNWIND_HINT_IRET_REGS
1356
1357 /*
1358 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1359 * the iretq it performs will take us out of NMI context.
1360 * This means that we can have nested NMIs where the next
1361 * NMI is using the top of the stack of the previous NMI. We
1362 * can't let it execute because the nested NMI will corrupt the
1363 * stack of the previous NMI. NMI handlers are not re-entrant
1364 * anyway.
1365 *
1366 * To handle this case we do the following:
1367 * Check the a special location on the stack that contains
1368 * a variable that is set when NMIs are executing.
1369 * The interrupted task's stack is also checked to see if it
1370 * is an NMI stack.
1371 * If the variable is not set and the stack is not the NMI
1372 * stack then:
1373 * o Set the special variable on the stack
1374 * o Copy the interrupt frame into an "outermost" location on the
1375 * stack
1376 * o Copy the interrupt frame into an "iret" location on the stack
1377 * o Continue processing the NMI
1378 * If the variable is set or the previous stack is the NMI stack:
1379 * o Modify the "iret" location to jump to the repeat_nmi
1380 * o return back to the first NMI
1381 *
1382 * Now on exit of the first NMI, we first clear the stack variable
1383 * The NMI stack will tell any nested NMIs at that point that it is
1384 * nested. Then we pop the stack normally with iret, and if there was
1385 * a nested NMI that updated the copy interrupt stack frame, a
1386 * jump will be made to the repeat_nmi code that will handle the second
1387 * NMI.
1388 *
1389 * However, espfix prevents us from directly returning to userspace
1390 * with a single IRET instruction. Similarly, IRET to user mode
1391 * can fault. We therefore handle NMIs from user space like
1392 * other IST entries.
1393 */
1394
1395 ASM_CLAC
1396
1397 /* Use %rdx as our temp variable throughout */
1398 pushq %rdx
1399
1400 testb $3, CS-RIP+8(%rsp)
1401 jz .Lnmi_from_kernel
1402
1403 /*
1404 * NMI from user mode. We need to run on the thread stack, but we
1405 * can't go through the normal entry paths: NMIs are masked, and
1406 * we don't want to enable interrupts, because then we'll end
1407 * up in an awkward situation in which IRQs are on but NMIs
1408 * are off.
1409 *
1410 * We also must not push anything to the stack before switching
1411 * stacks lest we corrupt the "NMI executing" variable.
1412 */
1413
1414 swapgs
1415 cld
1416 FENCE_SWAPGS_USER_ENTRY
1417 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1418 movq %rsp, %rdx
1419 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1420 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1421 pushq 5*8(%rdx) /* pt_regs->ss */
1422 pushq 4*8(%rdx) /* pt_regs->rsp */
1423 pushq 3*8(%rdx) /* pt_regs->flags */
1424 pushq 2*8(%rdx) /* pt_regs->cs */
1425 pushq 1*8(%rdx) /* pt_regs->rip */
1426 UNWIND_HINT_IRET_REGS
1427 pushq $-1 /* pt_regs->orig_ax */
1428 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1429 ENCODE_FRAME_POINTER
1430
1431 /*
1432 * At this point we no longer need to worry about stack damage
1433 * due to nesting -- we're on the normal thread stack and we're
1434 * done with the NMI stack.
1435 */
1436
1437 movq %rsp, %rdi
1438 movq $-1, %rsi
1439 call do_nmi
1440
1441 /*
1442 * Return back to user mode. We must *not* do the normal exit
1443 * work, because we don't want to enable interrupts.
1444 */
1445 jmp swapgs_restore_regs_and_return_to_usermode
1446
1447 .Lnmi_from_kernel:
1448 /*
1449 * Here's what our stack frame will look like:
1450 * +---------------------------------------------------------+
1451 * | original SS |
1452 * | original Return RSP |
1453 * | original RFLAGS |
1454 * | original CS |
1455 * | original RIP |
1456 * +---------------------------------------------------------+
1457 * | temp storage for rdx |
1458 * +---------------------------------------------------------+
1459 * | "NMI executing" variable |
1460 * +---------------------------------------------------------+
1461 * | iret SS } Copied from "outermost" frame |
1462 * | iret Return RSP } on each loop iteration; overwritten |
1463 * | iret RFLAGS } by a nested NMI to force another |
1464 * | iret CS } iteration if needed. |
1465 * | iret RIP } |
1466 * +---------------------------------------------------------+
1467 * | outermost SS } initialized in first_nmi; |
1468 * | outermost Return RSP } will not be changed before |
1469 * | outermost RFLAGS } NMI processing is done. |
1470 * | outermost CS } Copied to "iret" frame on each |
1471 * | outermost RIP } iteration. |
1472 * +---------------------------------------------------------+
1473 * | pt_regs |
1474 * +---------------------------------------------------------+
1475 *
1476 * The "original" frame is used by hardware. Before re-enabling
1477 * NMIs, we need to be done with it, and we need to leave enough
1478 * space for the asm code here.
1479 *
1480 * We return by executing IRET while RSP points to the "iret" frame.
1481 * That will either return for real or it will loop back into NMI
1482 * processing.
1483 *
1484 * The "outermost" frame is copied to the "iret" frame on each
1485 * iteration of the loop, so each iteration starts with the "iret"
1486 * frame pointing to the final return target.
1487 */
1488
1489 /*
1490 * Determine whether we're a nested NMI.
1491 *
1492 * If we interrupted kernel code between repeat_nmi and
1493 * end_repeat_nmi, then we are a nested NMI. We must not
1494 * modify the "iret" frame because it's being written by
1495 * the outer NMI. That's okay; the outer NMI handler is
1496 * about to about to call do_nmi anyway, so we can just
1497 * resume the outer NMI.
1498 */
1499
1500 movq $repeat_nmi, %rdx
1501 cmpq 8(%rsp), %rdx
1502 ja 1f
1503 movq $end_repeat_nmi, %rdx
1504 cmpq 8(%rsp), %rdx
1505 ja nested_nmi_out
1506 1:
1507
1508 /*
1509 * Now check "NMI executing". If it's set, then we're nested.
1510 * This will not detect if we interrupted an outer NMI just
1511 * before IRET.
1512 */
1513 cmpl $1, -8(%rsp)
1514 je nested_nmi
1515
1516 /*
1517 * Now test if the previous stack was an NMI stack. This covers
1518 * the case where we interrupt an outer NMI after it clears
1519 * "NMI executing" but before IRET. We need to be careful, though:
1520 * there is one case in which RSP could point to the NMI stack
1521 * despite there being no NMI active: naughty userspace controls
1522 * RSP at the very beginning of the SYSCALL targets. We can
1523 * pull a fast one on naughty userspace, though: we program
1524 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1525 * if it controls the kernel's RSP. We set DF before we clear
1526 * "NMI executing".
1527 */
1528 lea 6*8(%rsp), %rdx
1529 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1530 cmpq %rdx, 4*8(%rsp)
1531 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1532 ja first_nmi
1533
1534 subq $EXCEPTION_STKSZ, %rdx
1535 cmpq %rdx, 4*8(%rsp)
1536 /* If it is below the NMI stack, it is a normal NMI */
1537 jb first_nmi
1538
1539 /* Ah, it is within the NMI stack. */
1540
1541 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1542 jz first_nmi /* RSP was user controlled. */
1543
1544 /* This is a nested NMI. */
1545
1546 nested_nmi:
1547 /*
1548 * Modify the "iret" frame to point to repeat_nmi, forcing another
1549 * iteration of NMI handling.
1550 */
1551 subq $8, %rsp
1552 leaq -10*8(%rsp), %rdx
1553 pushq $__KERNEL_DS
1554 pushq %rdx
1555 pushfq
1556 pushq $__KERNEL_CS
1557 pushq $repeat_nmi
1558
1559 /* Put stack back */
1560 addq $(6*8), %rsp
1561
1562 nested_nmi_out:
1563 popq %rdx
1564
1565 /* We are returning to kernel mode, so this cannot result in a fault. */
1566 iretq
1567
1568 first_nmi:
1569 /* Restore rdx. */
1570 movq (%rsp), %rdx
1571
1572 /* Make room for "NMI executing". */
1573 pushq $0
1574
1575 /* Leave room for the "iret" frame */
1576 subq $(5*8), %rsp
1577
1578 /* Copy the "original" frame to the "outermost" frame */
1579 .rept 5
1580 pushq 11*8(%rsp)
1581 .endr
1582 UNWIND_HINT_IRET_REGS
1583
1584 /* Everything up to here is safe from nested NMIs */
1585
1586 #ifdef CONFIG_DEBUG_ENTRY
1587 /*
1588 * For ease of testing, unmask NMIs right away. Disabled by
1589 * default because IRET is very expensive.
1590 */
1591 pushq $0 /* SS */
1592 pushq %rsp /* RSP (minus 8 because of the previous push) */
1593 addq $8, (%rsp) /* Fix up RSP */
1594 pushfq /* RFLAGS */
1595 pushq $__KERNEL_CS /* CS */
1596 pushq $1f /* RIP */
1597 iretq /* continues at repeat_nmi below */
1598 UNWIND_HINT_IRET_REGS
1599 1:
1600 #endif
1601
1602 repeat_nmi:
1603 /*
1604 * If there was a nested NMI, the first NMI's iret will return
1605 * here. But NMIs are still enabled and we can take another
1606 * nested NMI. The nested NMI checks the interrupted RIP to see
1607 * if it is between repeat_nmi and end_repeat_nmi, and if so
1608 * it will just return, as we are about to repeat an NMI anyway.
1609 * This makes it safe to copy to the stack frame that a nested
1610 * NMI will update.
1611 *
1612 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1613 * we're repeating an NMI, gsbase has the same value that it had on
1614 * the first iteration. paranoid_entry will load the kernel
1615 * gsbase if needed before we call do_nmi. "NMI executing"
1616 * is zero.
1617 */
1618 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1619
1620 /*
1621 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1622 * here must not modify the "iret" frame while we're writing to
1623 * it or it will end up containing garbage.
1624 */
1625 addq $(10*8), %rsp
1626 .rept 5
1627 pushq -6*8(%rsp)
1628 .endr
1629 subq $(5*8), %rsp
1630 end_repeat_nmi:
1631
1632 /*
1633 * Everything below this point can be preempted by a nested NMI.
1634 * If this happens, then the inner NMI will change the "iret"
1635 * frame to point back to repeat_nmi.
1636 */
1637 pushq $-1 /* ORIG_RAX: no syscall to restart */
1638
1639 /*
1640 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1641 * as we should not be calling schedule in NMI context.
1642 * Even with normal interrupts enabled. An NMI should not be
1643 * setting NEED_RESCHED or anything that normal interrupts and
1644 * exceptions might do.
1645 */
1646 call paranoid_entry
1647 UNWIND_HINT_REGS
1648
1649 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1650 movq %rsp, %rdi
1651 movq $-1, %rsi
1652 call do_nmi
1653
1654 /* Always restore stashed CR3 value (see paranoid_entry) */
1655 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1656
1657 testl %ebx, %ebx /* swapgs needed? */
1658 jnz nmi_restore
1659 nmi_swapgs:
1660 SWAPGS_UNSAFE_STACK
1661 nmi_restore:
1662 POP_REGS
1663
1664 /*
1665 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1666 * at the "iret" frame.
1667 */
1668 addq $6*8, %rsp
1669
1670 /*
1671 * Clear "NMI executing". Set DF first so that we can easily
1672 * distinguish the remaining code between here and IRET from
1673 * the SYSCALL entry and exit paths.
1674 *
1675 * We arguably should just inspect RIP instead, but I (Andy) wrote
1676 * this code when I had the misapprehension that Xen PV supported
1677 * NMIs, and Xen PV would break that approach.
1678 */
1679 std
1680 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1681
1682 /*
1683 * iretq reads the "iret" frame and exits the NMI stack in a
1684 * single instruction. We are returning to kernel mode, so this
1685 * cannot result in a fault. Similarly, we don't need to worry
1686 * about espfix64 on the way back to kernel mode.
1687 */
1688 iretq
1689 END(nmi)
1690
1691 ENTRY(ignore_sysret)
1692 UNWIND_HINT_EMPTY
1693 mov $-ENOSYS, %eax
1694 sysret
1695 END(ignore_sysret)
1696
1697 ENTRY(rewind_stack_do_exit)
1698 UNWIND_HINT_FUNC
1699 /* Prevent any naive code from trying to unwind to our caller. */
1700 xorl %ebp, %ebp
1701
1702 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1703 leaq -PTREGS_SIZE(%rax), %rsp
1704 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1705
1706 call do_exit
1707 END(rewind_stack_do_exit)