]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/events/core.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / events / core.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41
42 #include "perf_event.h"
43
44 struct x86_pmu x86_pmu __read_mostly;
45
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47 .enabled = 1,
48 };
49
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51
52 u64 __read_mostly hw_cache_event_ids
53 [PERF_COUNT_HW_CACHE_MAX]
54 [PERF_COUNT_HW_CACHE_OP_MAX]
55 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57 [PERF_COUNT_HW_CACHE_MAX]
58 [PERF_COUNT_HW_CACHE_OP_MAX]
59 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60
61 /*
62 * Propagate event elapsed time into the generic event.
63 * Can only be executed on the CPU where the event is active.
64 * Returns the delta events processed.
65 */
66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68 struct hw_perf_event *hwc = &event->hw;
69 int shift = 64 - x86_pmu.cntval_bits;
70 u64 prev_raw_count, new_raw_count;
71 int idx = hwc->idx;
72 u64 delta;
73
74 if (idx == INTEL_PMC_IDX_FIXED_BTS)
75 return 0;
76
77 /*
78 * Careful: an NMI might modify the previous event value.
79 *
80 * Our tactic to handle this is to first atomically read and
81 * exchange a new raw count - then add that new-prev delta
82 * count to the generic event atomically:
83 */
84 again:
85 prev_raw_count = local64_read(&hwc->prev_count);
86 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87
88 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89 new_raw_count) != prev_raw_count)
90 goto again;
91
92 /*
93 * Now we have the new raw value and have updated the prev
94 * timestamp already. We can now calculate the elapsed delta
95 * (event-)time and add that to the generic event.
96 *
97 * Careful, not all hw sign-extends above the physical width
98 * of the count.
99 */
100 delta = (new_raw_count << shift) - (prev_raw_count << shift);
101 delta >>= shift;
102
103 local64_add(delta, &event->count);
104 local64_sub(delta, &hwc->period_left);
105
106 return new_raw_count;
107 }
108
109 /*
110 * Find and validate any extra registers to set up.
111 */
112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114 struct hw_perf_event_extra *reg;
115 struct extra_reg *er;
116
117 reg = &event->hw.extra_reg;
118
119 if (!x86_pmu.extra_regs)
120 return 0;
121
122 for (er = x86_pmu.extra_regs; er->msr; er++) {
123 if (er->event != (config & er->config_mask))
124 continue;
125 if (event->attr.config1 & ~er->valid_mask)
126 return -EINVAL;
127 /* Check if the extra msrs can be safely accessed*/
128 if (!er->extra_msr_access)
129 return -ENXIO;
130
131 reg->idx = er->idx;
132 reg->config = event->attr.config1;
133 reg->reg = er->msr;
134 break;
135 }
136 return 0;
137 }
138
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142
143 #ifdef CONFIG_X86_LOCAL_APIC
144
145 static bool reserve_pmc_hardware(void)
146 {
147 int i;
148
149 for (i = 0; i < x86_pmu.num_counters; i++) {
150 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151 goto perfctr_fail;
152 }
153
154 for (i = 0; i < x86_pmu.num_counters; i++) {
155 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156 goto eventsel_fail;
157 }
158
159 return true;
160
161 eventsel_fail:
162 for (i--; i >= 0; i--)
163 release_evntsel_nmi(x86_pmu_config_addr(i));
164
165 i = x86_pmu.num_counters;
166
167 perfctr_fail:
168 for (i--; i >= 0; i--)
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170
171 return false;
172 }
173
174 static void release_pmc_hardware(void)
175 {
176 int i;
177
178 for (i = 0; i < x86_pmu.num_counters; i++) {
179 release_perfctr_nmi(x86_pmu_event_addr(i));
180 release_evntsel_nmi(x86_pmu_config_addr(i));
181 }
182 }
183
184 #else
185
186 static bool reserve_pmc_hardware(void) { return true; }
187 static void release_pmc_hardware(void) {}
188
189 #endif
190
191 static bool check_hw_exists(void)
192 {
193 u64 val, val_fail, val_new= ~0;
194 int i, reg, reg_fail, ret = 0;
195 int bios_fail = 0;
196 int reg_safe = -1;
197
198 /*
199 * Check to see if the BIOS enabled any of the counters, if so
200 * complain and bail.
201 */
202 for (i = 0; i < x86_pmu.num_counters; i++) {
203 reg = x86_pmu_config_addr(i);
204 ret = rdmsrl_safe(reg, &val);
205 if (ret)
206 goto msr_fail;
207 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208 bios_fail = 1;
209 val_fail = val;
210 reg_fail = reg;
211 } else {
212 reg_safe = i;
213 }
214 }
215
216 if (x86_pmu.num_counters_fixed) {
217 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218 ret = rdmsrl_safe(reg, &val);
219 if (ret)
220 goto msr_fail;
221 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222 if (val & (0x03 << i*4)) {
223 bios_fail = 1;
224 val_fail = val;
225 reg_fail = reg;
226 }
227 }
228 }
229
230 /*
231 * If all the counters are enabled, the below test will always
232 * fail. The tools will also become useless in this scenario.
233 * Just fail and disable the hardware counters.
234 */
235
236 if (reg_safe == -1) {
237 reg = reg_safe;
238 goto msr_fail;
239 }
240
241 /*
242 * Read the current value, change it and read it back to see if it
243 * matches, this is needed to detect certain hardware emulators
244 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245 */
246 reg = x86_pmu_event_addr(reg_safe);
247 if (rdmsrl_safe(reg, &val))
248 goto msr_fail;
249 val ^= 0xffffUL;
250 ret = wrmsrl_safe(reg, val);
251 ret |= rdmsrl_safe(reg, &val_new);
252 if (ret || val != val_new)
253 goto msr_fail;
254
255 /*
256 * We still allow the PMU driver to operate:
257 */
258 if (bios_fail) {
259 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261 reg_fail, val_fail);
262 }
263
264 return true;
265
266 msr_fail:
267 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268 pr_cont("PMU not available due to virtualization, using software events only.\n");
269 } else {
270 pr_cont("Broken PMU hardware detected, using software events only.\n");
271 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272 reg, val_new);
273 }
274
275 return false;
276 }
277
278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280 x86_release_hardware();
281 atomic_dec(&active_events);
282 }
283
284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286 hw_perf_event_destroy(event);
287
288 /* undo the lbr/bts event accounting */
289 x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291
292 static inline int x86_pmu_initialized(void)
293 {
294 return x86_pmu.handle_irq != NULL;
295 }
296
297 static inline int
298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300 struct perf_event_attr *attr = &event->attr;
301 unsigned int cache_type, cache_op, cache_result;
302 u64 config, val;
303
304 config = attr->config;
305
306 cache_type = (config >> 0) & 0xff;
307 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308 return -EINVAL;
309
310 cache_op = (config >> 8) & 0xff;
311 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312 return -EINVAL;
313
314 cache_result = (config >> 16) & 0xff;
315 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316 return -EINVAL;
317
318 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319
320 if (val == 0)
321 return -ENOENT;
322
323 if (val == -1)
324 return -EINVAL;
325
326 hwc->config |= val;
327 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328 return x86_pmu_extra_regs(val, event);
329 }
330
331 int x86_reserve_hardware(void)
332 {
333 int err = 0;
334
335 if (!atomic_inc_not_zero(&pmc_refcount)) {
336 mutex_lock(&pmc_reserve_mutex);
337 if (atomic_read(&pmc_refcount) == 0) {
338 if (!reserve_pmc_hardware())
339 err = -EBUSY;
340 else
341 reserve_ds_buffers();
342 }
343 if (!err)
344 atomic_inc(&pmc_refcount);
345 mutex_unlock(&pmc_reserve_mutex);
346 }
347
348 return err;
349 }
350
351 void x86_release_hardware(void)
352 {
353 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354 release_pmc_hardware();
355 release_ds_buffers();
356 mutex_unlock(&pmc_reserve_mutex);
357 }
358 }
359
360 /*
361 * Check if we can create event of a certain type (that no conflicting events
362 * are present).
363 */
364 int x86_add_exclusive(unsigned int what)
365 {
366 int i;
367
368 /*
369 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
370 * LBR and BTS are still mutually exclusive.
371 */
372 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
373 return 0;
374
375 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
376 mutex_lock(&pmc_reserve_mutex);
377 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
378 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
379 goto fail_unlock;
380 }
381 atomic_inc(&x86_pmu.lbr_exclusive[what]);
382 mutex_unlock(&pmc_reserve_mutex);
383 }
384
385 atomic_inc(&active_events);
386 return 0;
387
388 fail_unlock:
389 mutex_unlock(&pmc_reserve_mutex);
390 return -EBUSY;
391 }
392
393 void x86_del_exclusive(unsigned int what)
394 {
395 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
396 return;
397
398 atomic_dec(&x86_pmu.lbr_exclusive[what]);
399 atomic_dec(&active_events);
400 }
401
402 int x86_setup_perfctr(struct perf_event *event)
403 {
404 struct perf_event_attr *attr = &event->attr;
405 struct hw_perf_event *hwc = &event->hw;
406 u64 config;
407
408 if (!is_sampling_event(event)) {
409 hwc->sample_period = x86_pmu.max_period;
410 hwc->last_period = hwc->sample_period;
411 local64_set(&hwc->period_left, hwc->sample_period);
412 }
413
414 if (attr->type == PERF_TYPE_RAW)
415 return x86_pmu_extra_regs(event->attr.config, event);
416
417 if (attr->type == PERF_TYPE_HW_CACHE)
418 return set_ext_hw_attr(hwc, event);
419
420 if (attr->config >= x86_pmu.max_events)
421 return -EINVAL;
422
423 /*
424 * The generic map:
425 */
426 config = x86_pmu.event_map(attr->config);
427
428 if (config == 0)
429 return -ENOENT;
430
431 if (config == -1LL)
432 return -EINVAL;
433
434 /*
435 * Branch tracing:
436 */
437 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
438 !attr->freq && hwc->sample_period == 1) {
439 /* BTS is not supported by this architecture. */
440 if (!x86_pmu.bts_active)
441 return -EOPNOTSUPP;
442
443 /* BTS is currently only allowed for user-mode. */
444 if (!attr->exclude_kernel)
445 return -EOPNOTSUPP;
446
447 /* disallow bts if conflicting events are present */
448 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
449 return -EBUSY;
450
451 event->destroy = hw_perf_lbr_event_destroy;
452 }
453
454 hwc->config |= config;
455
456 return 0;
457 }
458
459 /*
460 * check that branch_sample_type is compatible with
461 * settings needed for precise_ip > 1 which implies
462 * using the LBR to capture ALL taken branches at the
463 * priv levels of the measurement
464 */
465 static inline int precise_br_compat(struct perf_event *event)
466 {
467 u64 m = event->attr.branch_sample_type;
468 u64 b = 0;
469
470 /* must capture all branches */
471 if (!(m & PERF_SAMPLE_BRANCH_ANY))
472 return 0;
473
474 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
475
476 if (!event->attr.exclude_user)
477 b |= PERF_SAMPLE_BRANCH_USER;
478
479 if (!event->attr.exclude_kernel)
480 b |= PERF_SAMPLE_BRANCH_KERNEL;
481
482 /*
483 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
484 */
485
486 return m == b;
487 }
488
489 int x86_pmu_hw_config(struct perf_event *event)
490 {
491 if (event->attr.precise_ip) {
492 int precise = 0;
493
494 /* Support for constant skid */
495 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496 precise++;
497
498 /* Support for IP fixup */
499 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500 precise++;
501
502 if (x86_pmu.pebs_prec_dist)
503 precise++;
504 }
505
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
508 }
509 /*
510 * check that PEBS LBR correction does not conflict with
511 * whatever the user is asking with attr->branch_sample_type
512 */
513 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
514 u64 *br_type = &event->attr.branch_sample_type;
515
516 if (has_branch_stack(event)) {
517 if (!precise_br_compat(event))
518 return -EOPNOTSUPP;
519
520 /* branch_sample_type is compatible */
521
522 } else {
523 /*
524 * user did not specify branch_sample_type
525 *
526 * For PEBS fixups, we capture all
527 * the branches at the priv level of the
528 * event.
529 */
530 *br_type = PERF_SAMPLE_BRANCH_ANY;
531
532 if (!event->attr.exclude_user)
533 *br_type |= PERF_SAMPLE_BRANCH_USER;
534
535 if (!event->attr.exclude_kernel)
536 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
537 }
538 }
539
540 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
541 event->attach_state |= PERF_ATTACH_TASK_DATA;
542
543 /*
544 * Generate PMC IRQs:
545 * (keep 'enabled' bit clear for now)
546 */
547 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
548
549 /*
550 * Count user and OS events unless requested not to
551 */
552 if (!event->attr.exclude_user)
553 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
554 if (!event->attr.exclude_kernel)
555 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
556
557 if (event->attr.type == PERF_TYPE_RAW)
558 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
559
560 if (event->attr.sample_period && x86_pmu.limit_period) {
561 if (x86_pmu.limit_period(event, event->attr.sample_period) >
562 event->attr.sample_period)
563 return -EINVAL;
564 }
565
566 return x86_setup_perfctr(event);
567 }
568
569 /*
570 * Setup the hardware configuration for a given attr_type
571 */
572 static int __x86_pmu_event_init(struct perf_event *event)
573 {
574 int err;
575
576 if (!x86_pmu_initialized())
577 return -ENODEV;
578
579 err = x86_reserve_hardware();
580 if (err)
581 return err;
582
583 atomic_inc(&active_events);
584 event->destroy = hw_perf_event_destroy;
585
586 event->hw.idx = -1;
587 event->hw.last_cpu = -1;
588 event->hw.last_tag = ~0ULL;
589
590 /* mark unused */
591 event->hw.extra_reg.idx = EXTRA_REG_NONE;
592 event->hw.branch_reg.idx = EXTRA_REG_NONE;
593
594 return x86_pmu.hw_config(event);
595 }
596
597 void x86_pmu_disable_all(void)
598 {
599 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
600 int idx;
601
602 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
603 u64 val;
604
605 if (!test_bit(idx, cpuc->active_mask))
606 continue;
607 rdmsrl(x86_pmu_config_addr(idx), val);
608 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
609 continue;
610 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
611 wrmsrl(x86_pmu_config_addr(idx), val);
612 }
613 }
614
615 /*
616 * There may be PMI landing after enabled=0. The PMI hitting could be before or
617 * after disable_all.
618 *
619 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
620 * It will not be re-enabled in the NMI handler again, because enabled=0. After
621 * handling the NMI, disable_all will be called, which will not change the
622 * state either. If PMI hits after disable_all, the PMU is already disabled
623 * before entering NMI handler. The NMI handler will not change the state
624 * either.
625 *
626 * So either situation is harmless.
627 */
628 static void x86_pmu_disable(struct pmu *pmu)
629 {
630 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
631
632 if (!x86_pmu_initialized())
633 return;
634
635 if (!cpuc->enabled)
636 return;
637
638 cpuc->n_added = 0;
639 cpuc->enabled = 0;
640 barrier();
641
642 x86_pmu.disable_all();
643 }
644
645 void x86_pmu_enable_all(int added)
646 {
647 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648 int idx;
649
650 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
651 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
652
653 if (!test_bit(idx, cpuc->active_mask))
654 continue;
655
656 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
657 }
658 }
659
660 static struct pmu pmu;
661
662 static inline int is_x86_event(struct perf_event *event)
663 {
664 return event->pmu == &pmu;
665 }
666
667 /*
668 * Event scheduler state:
669 *
670 * Assign events iterating over all events and counters, beginning
671 * with events with least weights first. Keep the current iterator
672 * state in struct sched_state.
673 */
674 struct sched_state {
675 int weight;
676 int event; /* event index */
677 int counter; /* counter index */
678 int unassigned; /* number of events to be assigned left */
679 int nr_gp; /* number of GP counters used */
680 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
681 };
682
683 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
684 #define SCHED_STATES_MAX 2
685
686 struct perf_sched {
687 int max_weight;
688 int max_events;
689 int max_gp;
690 int saved_states;
691 struct event_constraint **constraints;
692 struct sched_state state;
693 struct sched_state saved[SCHED_STATES_MAX];
694 };
695
696 /*
697 * Initialize interator that runs through all events and counters.
698 */
699 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
700 int num, int wmin, int wmax, int gpmax)
701 {
702 int idx;
703
704 memset(sched, 0, sizeof(*sched));
705 sched->max_events = num;
706 sched->max_weight = wmax;
707 sched->max_gp = gpmax;
708 sched->constraints = constraints;
709
710 for (idx = 0; idx < num; idx++) {
711 if (constraints[idx]->weight == wmin)
712 break;
713 }
714
715 sched->state.event = idx; /* start with min weight */
716 sched->state.weight = wmin;
717 sched->state.unassigned = num;
718 }
719
720 static void perf_sched_save_state(struct perf_sched *sched)
721 {
722 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
723 return;
724
725 sched->saved[sched->saved_states] = sched->state;
726 sched->saved_states++;
727 }
728
729 static bool perf_sched_restore_state(struct perf_sched *sched)
730 {
731 if (!sched->saved_states)
732 return false;
733
734 sched->saved_states--;
735 sched->state = sched->saved[sched->saved_states];
736
737 /* continue with next counter: */
738 clear_bit(sched->state.counter++, sched->state.used);
739
740 return true;
741 }
742
743 /*
744 * Select a counter for the current event to schedule. Return true on
745 * success.
746 */
747 static bool __perf_sched_find_counter(struct perf_sched *sched)
748 {
749 struct event_constraint *c;
750 int idx;
751
752 if (!sched->state.unassigned)
753 return false;
754
755 if (sched->state.event >= sched->max_events)
756 return false;
757
758 c = sched->constraints[sched->state.event];
759 /* Prefer fixed purpose counters */
760 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
761 idx = INTEL_PMC_IDX_FIXED;
762 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
763 if (!__test_and_set_bit(idx, sched->state.used))
764 goto done;
765 }
766 }
767
768 /* Grab the first unused counter starting with idx */
769 idx = sched->state.counter;
770 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
771 if (!__test_and_set_bit(idx, sched->state.used)) {
772 if (sched->state.nr_gp++ >= sched->max_gp)
773 return false;
774
775 goto done;
776 }
777 }
778
779 return false;
780
781 done:
782 sched->state.counter = idx;
783
784 if (c->overlap)
785 perf_sched_save_state(sched);
786
787 return true;
788 }
789
790 static bool perf_sched_find_counter(struct perf_sched *sched)
791 {
792 while (!__perf_sched_find_counter(sched)) {
793 if (!perf_sched_restore_state(sched))
794 return false;
795 }
796
797 return true;
798 }
799
800 /*
801 * Go through all unassigned events and find the next one to schedule.
802 * Take events with the least weight first. Return true on success.
803 */
804 static bool perf_sched_next_event(struct perf_sched *sched)
805 {
806 struct event_constraint *c;
807
808 if (!sched->state.unassigned || !--sched->state.unassigned)
809 return false;
810
811 do {
812 /* next event */
813 sched->state.event++;
814 if (sched->state.event >= sched->max_events) {
815 /* next weight */
816 sched->state.event = 0;
817 sched->state.weight++;
818 if (sched->state.weight > sched->max_weight)
819 return false;
820 }
821 c = sched->constraints[sched->state.event];
822 } while (c->weight != sched->state.weight);
823
824 sched->state.counter = 0; /* start with first counter */
825
826 return true;
827 }
828
829 /*
830 * Assign a counter for each event.
831 */
832 int perf_assign_events(struct event_constraint **constraints, int n,
833 int wmin, int wmax, int gpmax, int *assign)
834 {
835 struct perf_sched sched;
836
837 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
838
839 do {
840 if (!perf_sched_find_counter(&sched))
841 break; /* failed */
842 if (assign)
843 assign[sched.state.event] = sched.state.counter;
844 } while (perf_sched_next_event(&sched));
845
846 return sched.state.unassigned;
847 }
848 EXPORT_SYMBOL_GPL(perf_assign_events);
849
850 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
851 {
852 struct event_constraint *c;
853 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
854 struct perf_event *e;
855 int i, wmin, wmax, unsched = 0;
856 struct hw_perf_event *hwc;
857
858 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
859
860 if (x86_pmu.start_scheduling)
861 x86_pmu.start_scheduling(cpuc);
862
863 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
864 cpuc->event_constraint[i] = NULL;
865 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
866 cpuc->event_constraint[i] = c;
867
868 wmin = min(wmin, c->weight);
869 wmax = max(wmax, c->weight);
870 }
871
872 /*
873 * fastpath, try to reuse previous register
874 */
875 for (i = 0; i < n; i++) {
876 hwc = &cpuc->event_list[i]->hw;
877 c = cpuc->event_constraint[i];
878
879 /* never assigned */
880 if (hwc->idx == -1)
881 break;
882
883 /* constraint still honored */
884 if (!test_bit(hwc->idx, c->idxmsk))
885 break;
886
887 /* not already used */
888 if (test_bit(hwc->idx, used_mask))
889 break;
890
891 __set_bit(hwc->idx, used_mask);
892 if (assign)
893 assign[i] = hwc->idx;
894 }
895
896 /* slow path */
897 if (i != n) {
898 int gpmax = x86_pmu.num_counters;
899
900 /*
901 * Do not allow scheduling of more than half the available
902 * generic counters.
903 *
904 * This helps avoid counter starvation of sibling thread by
905 * ensuring at most half the counters cannot be in exclusive
906 * mode. There is no designated counters for the limits. Any
907 * N/2 counters can be used. This helps with events with
908 * specific counter constraints.
909 */
910 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
911 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
912 gpmax /= 2;
913
914 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
915 wmax, gpmax, assign);
916 }
917
918 /*
919 * In case of success (unsched = 0), mark events as committed,
920 * so we do not put_constraint() in case new events are added
921 * and fail to be scheduled
922 *
923 * We invoke the lower level commit callback to lock the resource
924 *
925 * We do not need to do all of this in case we are called to
926 * validate an event group (assign == NULL)
927 */
928 if (!unsched && assign) {
929 for (i = 0; i < n; i++) {
930 e = cpuc->event_list[i];
931 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
932 if (x86_pmu.commit_scheduling)
933 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
934 }
935 } else {
936 for (i = 0; i < n; i++) {
937 e = cpuc->event_list[i];
938 /*
939 * do not put_constraint() on comitted events,
940 * because they are good to go
941 */
942 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
943 continue;
944
945 /*
946 * release events that failed scheduling
947 */
948 if (x86_pmu.put_event_constraints)
949 x86_pmu.put_event_constraints(cpuc, e);
950 }
951 }
952
953 if (x86_pmu.stop_scheduling)
954 x86_pmu.stop_scheduling(cpuc);
955
956 return unsched ? -EINVAL : 0;
957 }
958
959 /*
960 * dogrp: true if must collect siblings events (group)
961 * returns total number of events and error code
962 */
963 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
964 {
965 struct perf_event *event;
966 int n, max_count;
967
968 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
969
970 /* current number of events already accepted */
971 n = cpuc->n_events;
972
973 if (is_x86_event(leader)) {
974 if (n >= max_count)
975 return -EINVAL;
976 cpuc->event_list[n] = leader;
977 n++;
978 }
979 if (!dogrp)
980 return n;
981
982 list_for_each_entry(event, &leader->sibling_list, group_entry) {
983 if (!is_x86_event(event) ||
984 event->state <= PERF_EVENT_STATE_OFF)
985 continue;
986
987 if (n >= max_count)
988 return -EINVAL;
989
990 cpuc->event_list[n] = event;
991 n++;
992 }
993 return n;
994 }
995
996 static inline void x86_assign_hw_event(struct perf_event *event,
997 struct cpu_hw_events *cpuc, int i)
998 {
999 struct hw_perf_event *hwc = &event->hw;
1000
1001 hwc->idx = cpuc->assign[i];
1002 hwc->last_cpu = smp_processor_id();
1003 hwc->last_tag = ++cpuc->tags[i];
1004
1005 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1006 hwc->config_base = 0;
1007 hwc->event_base = 0;
1008 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1009 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1010 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1011 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1012 } else {
1013 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1014 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1015 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1016 }
1017 }
1018
1019 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1020 struct cpu_hw_events *cpuc,
1021 int i)
1022 {
1023 return hwc->idx == cpuc->assign[i] &&
1024 hwc->last_cpu == smp_processor_id() &&
1025 hwc->last_tag == cpuc->tags[i];
1026 }
1027
1028 static void x86_pmu_start(struct perf_event *event, int flags);
1029
1030 static void x86_pmu_enable(struct pmu *pmu)
1031 {
1032 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1033 struct perf_event *event;
1034 struct hw_perf_event *hwc;
1035 int i, added = cpuc->n_added;
1036
1037 if (!x86_pmu_initialized())
1038 return;
1039
1040 if (cpuc->enabled)
1041 return;
1042
1043 if (cpuc->n_added) {
1044 int n_running = cpuc->n_events - cpuc->n_added;
1045 /*
1046 * apply assignment obtained either from
1047 * hw_perf_group_sched_in() or x86_pmu_enable()
1048 *
1049 * step1: save events moving to new counters
1050 */
1051 for (i = 0; i < n_running; i++) {
1052 event = cpuc->event_list[i];
1053 hwc = &event->hw;
1054
1055 /*
1056 * we can avoid reprogramming counter if:
1057 * - assigned same counter as last time
1058 * - running on same CPU as last time
1059 * - no other event has used the counter since
1060 */
1061 if (hwc->idx == -1 ||
1062 match_prev_assignment(hwc, cpuc, i))
1063 continue;
1064
1065 /*
1066 * Ensure we don't accidentally enable a stopped
1067 * counter simply because we rescheduled.
1068 */
1069 if (hwc->state & PERF_HES_STOPPED)
1070 hwc->state |= PERF_HES_ARCH;
1071
1072 x86_pmu_stop(event, PERF_EF_UPDATE);
1073 }
1074
1075 /*
1076 * step2: reprogram moved events into new counters
1077 */
1078 for (i = 0; i < cpuc->n_events; i++) {
1079 event = cpuc->event_list[i];
1080 hwc = &event->hw;
1081
1082 if (!match_prev_assignment(hwc, cpuc, i))
1083 x86_assign_hw_event(event, cpuc, i);
1084 else if (i < n_running)
1085 continue;
1086
1087 if (hwc->state & PERF_HES_ARCH)
1088 continue;
1089
1090 x86_pmu_start(event, PERF_EF_RELOAD);
1091 }
1092 cpuc->n_added = 0;
1093 perf_events_lapic_init();
1094 }
1095
1096 cpuc->enabled = 1;
1097 barrier();
1098
1099 x86_pmu.enable_all(added);
1100 }
1101
1102 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1103
1104 /*
1105 * Set the next IRQ period, based on the hwc->period_left value.
1106 * To be called with the event disabled in hw:
1107 */
1108 int x86_perf_event_set_period(struct perf_event *event)
1109 {
1110 struct hw_perf_event *hwc = &event->hw;
1111 s64 left = local64_read(&hwc->period_left);
1112 s64 period = hwc->sample_period;
1113 int ret = 0, idx = hwc->idx;
1114
1115 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1116 return 0;
1117
1118 /*
1119 * If we are way outside a reasonable range then just skip forward:
1120 */
1121 if (unlikely(left <= -period)) {
1122 left = period;
1123 local64_set(&hwc->period_left, left);
1124 hwc->last_period = period;
1125 ret = 1;
1126 }
1127
1128 if (unlikely(left <= 0)) {
1129 left += period;
1130 local64_set(&hwc->period_left, left);
1131 hwc->last_period = period;
1132 ret = 1;
1133 }
1134 /*
1135 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1136 */
1137 if (unlikely(left < 2))
1138 left = 2;
1139
1140 if (left > x86_pmu.max_period)
1141 left = x86_pmu.max_period;
1142
1143 if (x86_pmu.limit_period)
1144 left = x86_pmu.limit_period(event, left);
1145
1146 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1147
1148 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1149 local64_read(&hwc->prev_count) != (u64)-left) {
1150 /*
1151 * The hw event starts counting from this event offset,
1152 * mark it to be able to extra future deltas:
1153 */
1154 local64_set(&hwc->prev_count, (u64)-left);
1155
1156 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1157 }
1158
1159 /*
1160 * Due to erratum on certan cpu we need
1161 * a second write to be sure the register
1162 * is updated properly
1163 */
1164 if (x86_pmu.perfctr_second_write) {
1165 wrmsrl(hwc->event_base,
1166 (u64)(-left) & x86_pmu.cntval_mask);
1167 }
1168
1169 perf_event_update_userpage(event);
1170
1171 return ret;
1172 }
1173
1174 void x86_pmu_enable_event(struct perf_event *event)
1175 {
1176 if (__this_cpu_read(cpu_hw_events.enabled))
1177 __x86_pmu_enable_event(&event->hw,
1178 ARCH_PERFMON_EVENTSEL_ENABLE);
1179 }
1180
1181 /*
1182 * Add a single event to the PMU.
1183 *
1184 * The event is added to the group of enabled events
1185 * but only if it can be scehduled with existing events.
1186 */
1187 static int x86_pmu_add(struct perf_event *event, int flags)
1188 {
1189 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1190 struct hw_perf_event *hwc;
1191 int assign[X86_PMC_IDX_MAX];
1192 int n, n0, ret;
1193
1194 hwc = &event->hw;
1195
1196 n0 = cpuc->n_events;
1197 ret = n = collect_events(cpuc, event, false);
1198 if (ret < 0)
1199 goto out;
1200
1201 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1202 if (!(flags & PERF_EF_START))
1203 hwc->state |= PERF_HES_ARCH;
1204
1205 /*
1206 * If group events scheduling transaction was started,
1207 * skip the schedulability test here, it will be performed
1208 * at commit time (->commit_txn) as a whole.
1209 *
1210 * If commit fails, we'll call ->del() on all events
1211 * for which ->add() was called.
1212 */
1213 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1214 goto done_collect;
1215
1216 ret = x86_pmu.schedule_events(cpuc, n, assign);
1217 if (ret)
1218 goto out;
1219 /*
1220 * copy new assignment, now we know it is possible
1221 * will be used by hw_perf_enable()
1222 */
1223 memcpy(cpuc->assign, assign, n*sizeof(int));
1224
1225 done_collect:
1226 /*
1227 * Commit the collect_events() state. See x86_pmu_del() and
1228 * x86_pmu_*_txn().
1229 */
1230 cpuc->n_events = n;
1231 cpuc->n_added += n - n0;
1232 cpuc->n_txn += n - n0;
1233
1234 if (x86_pmu.add) {
1235 /*
1236 * This is before x86_pmu_enable() will call x86_pmu_start(),
1237 * so we enable LBRs before an event needs them etc..
1238 */
1239 x86_pmu.add(event);
1240 }
1241
1242 ret = 0;
1243 out:
1244 return ret;
1245 }
1246
1247 static void x86_pmu_start(struct perf_event *event, int flags)
1248 {
1249 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1250 int idx = event->hw.idx;
1251
1252 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1253 return;
1254
1255 if (WARN_ON_ONCE(idx == -1))
1256 return;
1257
1258 if (flags & PERF_EF_RELOAD) {
1259 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1260 x86_perf_event_set_period(event);
1261 }
1262
1263 event->hw.state = 0;
1264
1265 cpuc->events[idx] = event;
1266 __set_bit(idx, cpuc->active_mask);
1267 __set_bit(idx, cpuc->running);
1268 x86_pmu.enable(event);
1269 perf_event_update_userpage(event);
1270 }
1271
1272 void perf_event_print_debug(void)
1273 {
1274 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1275 u64 pebs, debugctl;
1276 struct cpu_hw_events *cpuc;
1277 unsigned long flags;
1278 int cpu, idx;
1279
1280 if (!x86_pmu.num_counters)
1281 return;
1282
1283 local_irq_save(flags);
1284
1285 cpu = smp_processor_id();
1286 cpuc = &per_cpu(cpu_hw_events, cpu);
1287
1288 if (x86_pmu.version >= 2) {
1289 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1290 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1291 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1292 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1293
1294 pr_info("\n");
1295 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1296 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1297 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1298 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1299 if (x86_pmu.pebs_constraints) {
1300 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1301 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1302 }
1303 if (x86_pmu.lbr_nr) {
1304 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1305 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1306 }
1307 }
1308 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1309
1310 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1311 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1312 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1313
1314 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1315
1316 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1317 cpu, idx, pmc_ctrl);
1318 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1319 cpu, idx, pmc_count);
1320 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1321 cpu, idx, prev_left);
1322 }
1323 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1324 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1325
1326 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1327 cpu, idx, pmc_count);
1328 }
1329 local_irq_restore(flags);
1330 }
1331
1332 void x86_pmu_stop(struct perf_event *event, int flags)
1333 {
1334 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1335 struct hw_perf_event *hwc = &event->hw;
1336
1337 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1338 x86_pmu.disable(event);
1339 cpuc->events[hwc->idx] = NULL;
1340 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1341 hwc->state |= PERF_HES_STOPPED;
1342 }
1343
1344 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1345 /*
1346 * Drain the remaining delta count out of a event
1347 * that we are disabling:
1348 */
1349 x86_perf_event_update(event);
1350 hwc->state |= PERF_HES_UPTODATE;
1351 }
1352 }
1353
1354 static void x86_pmu_del(struct perf_event *event, int flags)
1355 {
1356 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357 int i;
1358
1359 /*
1360 * event is descheduled
1361 */
1362 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1363
1364 /*
1365 * If we're called during a txn, we only need to undo x86_pmu.add.
1366 * The events never got scheduled and ->cancel_txn will truncate
1367 * the event_list.
1368 *
1369 * XXX assumes any ->del() called during a TXN will only be on
1370 * an event added during that same TXN.
1371 */
1372 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1373 goto do_del;
1374
1375 /*
1376 * Not a TXN, therefore cleanup properly.
1377 */
1378 x86_pmu_stop(event, PERF_EF_UPDATE);
1379
1380 for (i = 0; i < cpuc->n_events; i++) {
1381 if (event == cpuc->event_list[i])
1382 break;
1383 }
1384
1385 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1386 return;
1387
1388 /* If we have a newly added event; make sure to decrease n_added. */
1389 if (i >= cpuc->n_events - cpuc->n_added)
1390 --cpuc->n_added;
1391
1392 if (x86_pmu.put_event_constraints)
1393 x86_pmu.put_event_constraints(cpuc, event);
1394
1395 /* Delete the array entry. */
1396 while (++i < cpuc->n_events) {
1397 cpuc->event_list[i-1] = cpuc->event_list[i];
1398 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1399 }
1400 --cpuc->n_events;
1401
1402 perf_event_update_userpage(event);
1403
1404 do_del:
1405 if (x86_pmu.del) {
1406 /*
1407 * This is after x86_pmu_stop(); so we disable LBRs after any
1408 * event can need them etc..
1409 */
1410 x86_pmu.del(event);
1411 }
1412 }
1413
1414 int x86_pmu_handle_irq(struct pt_regs *regs)
1415 {
1416 struct perf_sample_data data;
1417 struct cpu_hw_events *cpuc;
1418 struct perf_event *event;
1419 int idx, handled = 0;
1420 u64 val;
1421
1422 cpuc = this_cpu_ptr(&cpu_hw_events);
1423
1424 /*
1425 * Some chipsets need to unmask the LVTPC in a particular spot
1426 * inside the nmi handler. As a result, the unmasking was pushed
1427 * into all the nmi handlers.
1428 *
1429 * This generic handler doesn't seem to have any issues where the
1430 * unmasking occurs so it was left at the top.
1431 */
1432 apic_write(APIC_LVTPC, APIC_DM_NMI);
1433
1434 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1435 if (!test_bit(idx, cpuc->active_mask)) {
1436 /*
1437 * Though we deactivated the counter some cpus
1438 * might still deliver spurious interrupts still
1439 * in flight. Catch them:
1440 */
1441 if (__test_and_clear_bit(idx, cpuc->running))
1442 handled++;
1443 continue;
1444 }
1445
1446 event = cpuc->events[idx];
1447
1448 val = x86_perf_event_update(event);
1449 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1450 continue;
1451
1452 /*
1453 * event overflow
1454 */
1455 handled++;
1456 perf_sample_data_init(&data, 0, event->hw.last_period);
1457
1458 if (!x86_perf_event_set_period(event))
1459 continue;
1460
1461 if (perf_event_overflow(event, &data, regs))
1462 x86_pmu_stop(event, 0);
1463 }
1464
1465 if (handled)
1466 inc_irq_stat(apic_perf_irqs);
1467
1468 return handled;
1469 }
1470
1471 void perf_events_lapic_init(void)
1472 {
1473 if (!x86_pmu.apic || !x86_pmu_initialized())
1474 return;
1475
1476 /*
1477 * Always use NMI for PMU
1478 */
1479 apic_write(APIC_LVTPC, APIC_DM_NMI);
1480 }
1481
1482 static int
1483 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1484 {
1485 u64 start_clock;
1486 u64 finish_clock;
1487 int ret;
1488
1489 /*
1490 * All PMUs/events that share this PMI handler should make sure to
1491 * increment active_events for their events.
1492 */
1493 if (!atomic_read(&active_events))
1494 return NMI_DONE;
1495
1496 start_clock = sched_clock();
1497 ret = x86_pmu.handle_irq(regs);
1498 finish_clock = sched_clock();
1499
1500 perf_sample_event_took(finish_clock - start_clock);
1501
1502 return ret;
1503 }
1504 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1505
1506 struct event_constraint emptyconstraint;
1507 struct event_constraint unconstrained;
1508
1509 static int x86_pmu_prepare_cpu(unsigned int cpu)
1510 {
1511 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1512 int i;
1513
1514 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1515 cpuc->kfree_on_online[i] = NULL;
1516 if (x86_pmu.cpu_prepare)
1517 return x86_pmu.cpu_prepare(cpu);
1518 return 0;
1519 }
1520
1521 static int x86_pmu_dead_cpu(unsigned int cpu)
1522 {
1523 if (x86_pmu.cpu_dead)
1524 x86_pmu.cpu_dead(cpu);
1525 return 0;
1526 }
1527
1528 static int x86_pmu_online_cpu(unsigned int cpu)
1529 {
1530 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1531 int i;
1532
1533 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1534 kfree(cpuc->kfree_on_online[i]);
1535 cpuc->kfree_on_online[i] = NULL;
1536 }
1537 return 0;
1538 }
1539
1540 static int x86_pmu_starting_cpu(unsigned int cpu)
1541 {
1542 if (x86_pmu.cpu_starting)
1543 x86_pmu.cpu_starting(cpu);
1544 return 0;
1545 }
1546
1547 static int x86_pmu_dying_cpu(unsigned int cpu)
1548 {
1549 if (x86_pmu.cpu_dying)
1550 x86_pmu.cpu_dying(cpu);
1551 return 0;
1552 }
1553
1554 static void __init pmu_check_apic(void)
1555 {
1556 if (boot_cpu_has(X86_FEATURE_APIC))
1557 return;
1558
1559 x86_pmu.apic = 0;
1560 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1561 pr_info("no hardware sampling interrupt available.\n");
1562
1563 /*
1564 * If we have a PMU initialized but no APIC
1565 * interrupts, we cannot sample hardware
1566 * events (user-space has to fall back and
1567 * sample via a hrtimer based software event):
1568 */
1569 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1570
1571 }
1572
1573 static struct attribute_group x86_pmu_format_group = {
1574 .name = "format",
1575 .attrs = NULL,
1576 };
1577
1578 /*
1579 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1580 * out of events_attr attributes.
1581 */
1582 static void __init filter_events(struct attribute **attrs)
1583 {
1584 struct device_attribute *d;
1585 struct perf_pmu_events_attr *pmu_attr;
1586 int offset = 0;
1587 int i, j;
1588
1589 for (i = 0; attrs[i]; i++) {
1590 d = (struct device_attribute *)attrs[i];
1591 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1592 /* str trumps id */
1593 if (pmu_attr->event_str)
1594 continue;
1595 if (x86_pmu.event_map(i + offset))
1596 continue;
1597
1598 for (j = i; attrs[j]; j++)
1599 attrs[j] = attrs[j + 1];
1600
1601 /* Check the shifted attr. */
1602 i--;
1603
1604 /*
1605 * event_map() is index based, the attrs array is organized
1606 * by increasing event index. If we shift the events, then
1607 * we need to compensate for the event_map(), otherwise
1608 * we are looking up the wrong event in the map
1609 */
1610 offset++;
1611 }
1612 }
1613
1614 /* Merge two pointer arrays */
1615 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1616 {
1617 struct attribute **new;
1618 int j, i;
1619
1620 for (j = 0; a[j]; j++)
1621 ;
1622 for (i = 0; b[i]; i++)
1623 j++;
1624 j++;
1625
1626 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1627 if (!new)
1628 return NULL;
1629
1630 j = 0;
1631 for (i = 0; a[i]; i++)
1632 new[j++] = a[i];
1633 for (i = 0; b[i]; i++)
1634 new[j++] = b[i];
1635 new[j] = NULL;
1636
1637 return new;
1638 }
1639
1640 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1641 {
1642 struct perf_pmu_events_attr *pmu_attr = \
1643 container_of(attr, struct perf_pmu_events_attr, attr);
1644 u64 config = x86_pmu.event_map(pmu_attr->id);
1645
1646 /* string trumps id */
1647 if (pmu_attr->event_str)
1648 return sprintf(page, "%s", pmu_attr->event_str);
1649
1650 return x86_pmu.events_sysfs_show(page, config);
1651 }
1652 EXPORT_SYMBOL_GPL(events_sysfs_show);
1653
1654 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1655 char *page)
1656 {
1657 struct perf_pmu_events_ht_attr *pmu_attr =
1658 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1659
1660 /*
1661 * Report conditional events depending on Hyper-Threading.
1662 *
1663 * This is overly conservative as usually the HT special
1664 * handling is not needed if the other CPU thread is idle.
1665 *
1666 * Note this does not (and cannot) handle the case when thread
1667 * siblings are invisible, for example with virtualization
1668 * if they are owned by some other guest. The user tool
1669 * has to re-read when a thread sibling gets onlined later.
1670 */
1671 return sprintf(page, "%s",
1672 topology_max_smt_threads() > 1 ?
1673 pmu_attr->event_str_ht :
1674 pmu_attr->event_str_noht);
1675 }
1676
1677 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1678 EVENT_ATTR(instructions, INSTRUCTIONS );
1679 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1680 EVENT_ATTR(cache-misses, CACHE_MISSES );
1681 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1682 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1683 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1684 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1685 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1686 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1687
1688 static struct attribute *empty_attrs;
1689
1690 static struct attribute *events_attr[] = {
1691 EVENT_PTR(CPU_CYCLES),
1692 EVENT_PTR(INSTRUCTIONS),
1693 EVENT_PTR(CACHE_REFERENCES),
1694 EVENT_PTR(CACHE_MISSES),
1695 EVENT_PTR(BRANCH_INSTRUCTIONS),
1696 EVENT_PTR(BRANCH_MISSES),
1697 EVENT_PTR(BUS_CYCLES),
1698 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1699 EVENT_PTR(STALLED_CYCLES_BACKEND),
1700 EVENT_PTR(REF_CPU_CYCLES),
1701 NULL,
1702 };
1703
1704 static struct attribute_group x86_pmu_events_group = {
1705 .name = "events",
1706 .attrs = events_attr,
1707 };
1708
1709 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1710 {
1711 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1712 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1713 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1714 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1715 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1716 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1717 ssize_t ret;
1718
1719 /*
1720 * We have whole page size to spend and just little data
1721 * to write, so we can safely use sprintf.
1722 */
1723 ret = sprintf(page, "event=0x%02llx", event);
1724
1725 if (umask)
1726 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1727
1728 if (edge)
1729 ret += sprintf(page + ret, ",edge");
1730
1731 if (pc)
1732 ret += sprintf(page + ret, ",pc");
1733
1734 if (any)
1735 ret += sprintf(page + ret, ",any");
1736
1737 if (inv)
1738 ret += sprintf(page + ret, ",inv");
1739
1740 if (cmask)
1741 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1742
1743 ret += sprintf(page + ret, "\n");
1744
1745 return ret;
1746 }
1747
1748 static int __init init_hw_perf_events(void)
1749 {
1750 struct x86_pmu_quirk *quirk;
1751 int err;
1752
1753 pr_info("Performance Events: ");
1754
1755 switch (boot_cpu_data.x86_vendor) {
1756 case X86_VENDOR_INTEL:
1757 err = intel_pmu_init();
1758 break;
1759 case X86_VENDOR_AMD:
1760 err = amd_pmu_init();
1761 break;
1762 default:
1763 err = -ENOTSUPP;
1764 }
1765 if (err != 0) {
1766 pr_cont("no PMU driver, software events only.\n");
1767 return 0;
1768 }
1769
1770 pmu_check_apic();
1771
1772 /* sanity check that the hardware exists or is emulated */
1773 if (!check_hw_exists())
1774 return 0;
1775
1776 pr_cont("%s PMU driver.\n", x86_pmu.name);
1777
1778 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1779
1780 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1781 quirk->func();
1782
1783 if (!x86_pmu.intel_ctrl)
1784 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1785
1786 perf_events_lapic_init();
1787 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1788
1789 unconstrained = (struct event_constraint)
1790 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1791 0, x86_pmu.num_counters, 0, 0);
1792
1793 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1794
1795 if (x86_pmu.event_attrs)
1796 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1797
1798 if (!x86_pmu.events_sysfs_show)
1799 x86_pmu_events_group.attrs = &empty_attrs;
1800 else
1801 filter_events(x86_pmu_events_group.attrs);
1802
1803 if (x86_pmu.cpu_events) {
1804 struct attribute **tmp;
1805
1806 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1807 if (!WARN_ON(!tmp))
1808 x86_pmu_events_group.attrs = tmp;
1809 }
1810
1811 pr_info("... version: %d\n", x86_pmu.version);
1812 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1813 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1814 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1815 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1816 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1817 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1818
1819 /*
1820 * Install callbacks. Core will call them for each online
1821 * cpu.
1822 */
1823 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1824 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1825 if (err)
1826 return err;
1827
1828 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1829 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1830 x86_pmu_dying_cpu);
1831 if (err)
1832 goto out;
1833
1834 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1835 x86_pmu_online_cpu, NULL);
1836 if (err)
1837 goto out1;
1838
1839 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1840 if (err)
1841 goto out2;
1842
1843 return 0;
1844
1845 out2:
1846 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1847 out1:
1848 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1849 out:
1850 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1851 return err;
1852 }
1853 early_initcall(init_hw_perf_events);
1854
1855 static inline void x86_pmu_read(struct perf_event *event)
1856 {
1857 x86_perf_event_update(event);
1858 }
1859
1860 /*
1861 * Start group events scheduling transaction
1862 * Set the flag to make pmu::enable() not perform the
1863 * schedulability test, it will be performed at commit time
1864 *
1865 * We only support PERF_PMU_TXN_ADD transactions. Save the
1866 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1867 * transactions.
1868 */
1869 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1870 {
1871 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1872
1873 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1874
1875 cpuc->txn_flags = txn_flags;
1876 if (txn_flags & ~PERF_PMU_TXN_ADD)
1877 return;
1878
1879 perf_pmu_disable(pmu);
1880 __this_cpu_write(cpu_hw_events.n_txn, 0);
1881 }
1882
1883 /*
1884 * Stop group events scheduling transaction
1885 * Clear the flag and pmu::enable() will perform the
1886 * schedulability test.
1887 */
1888 static void x86_pmu_cancel_txn(struct pmu *pmu)
1889 {
1890 unsigned int txn_flags;
1891 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1892
1893 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1894
1895 txn_flags = cpuc->txn_flags;
1896 cpuc->txn_flags = 0;
1897 if (txn_flags & ~PERF_PMU_TXN_ADD)
1898 return;
1899
1900 /*
1901 * Truncate collected array by the number of events added in this
1902 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1903 */
1904 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1905 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1906 perf_pmu_enable(pmu);
1907 }
1908
1909 /*
1910 * Commit group events scheduling transaction
1911 * Perform the group schedulability test as a whole
1912 * Return 0 if success
1913 *
1914 * Does not cancel the transaction on failure; expects the caller to do this.
1915 */
1916 static int x86_pmu_commit_txn(struct pmu *pmu)
1917 {
1918 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1919 int assign[X86_PMC_IDX_MAX];
1920 int n, ret;
1921
1922 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1923
1924 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1925 cpuc->txn_flags = 0;
1926 return 0;
1927 }
1928
1929 n = cpuc->n_events;
1930
1931 if (!x86_pmu_initialized())
1932 return -EAGAIN;
1933
1934 ret = x86_pmu.schedule_events(cpuc, n, assign);
1935 if (ret)
1936 return ret;
1937
1938 /*
1939 * copy new assignment, now we know it is possible
1940 * will be used by hw_perf_enable()
1941 */
1942 memcpy(cpuc->assign, assign, n*sizeof(int));
1943
1944 cpuc->txn_flags = 0;
1945 perf_pmu_enable(pmu);
1946 return 0;
1947 }
1948 /*
1949 * a fake_cpuc is used to validate event groups. Due to
1950 * the extra reg logic, we need to also allocate a fake
1951 * per_core and per_cpu structure. Otherwise, group events
1952 * using extra reg may conflict without the kernel being
1953 * able to catch this when the last event gets added to
1954 * the group.
1955 */
1956 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1957 {
1958 kfree(cpuc->shared_regs);
1959 kfree(cpuc);
1960 }
1961
1962 static struct cpu_hw_events *allocate_fake_cpuc(void)
1963 {
1964 struct cpu_hw_events *cpuc;
1965 int cpu = raw_smp_processor_id();
1966
1967 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1968 if (!cpuc)
1969 return ERR_PTR(-ENOMEM);
1970
1971 /* only needed, if we have extra_regs */
1972 if (x86_pmu.extra_regs) {
1973 cpuc->shared_regs = allocate_shared_regs(cpu);
1974 if (!cpuc->shared_regs)
1975 goto error;
1976 }
1977 cpuc->is_fake = 1;
1978 return cpuc;
1979 error:
1980 free_fake_cpuc(cpuc);
1981 return ERR_PTR(-ENOMEM);
1982 }
1983
1984 /*
1985 * validate that we can schedule this event
1986 */
1987 static int validate_event(struct perf_event *event)
1988 {
1989 struct cpu_hw_events *fake_cpuc;
1990 struct event_constraint *c;
1991 int ret = 0;
1992
1993 fake_cpuc = allocate_fake_cpuc();
1994 if (IS_ERR(fake_cpuc))
1995 return PTR_ERR(fake_cpuc);
1996
1997 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1998
1999 if (!c || !c->weight)
2000 ret = -EINVAL;
2001
2002 if (x86_pmu.put_event_constraints)
2003 x86_pmu.put_event_constraints(fake_cpuc, event);
2004
2005 free_fake_cpuc(fake_cpuc);
2006
2007 return ret;
2008 }
2009
2010 /*
2011 * validate a single event group
2012 *
2013 * validation include:
2014 * - check events are compatible which each other
2015 * - events do not compete for the same counter
2016 * - number of events <= number of counters
2017 *
2018 * validation ensures the group can be loaded onto the
2019 * PMU if it was the only group available.
2020 */
2021 static int validate_group(struct perf_event *event)
2022 {
2023 struct perf_event *leader = event->group_leader;
2024 struct cpu_hw_events *fake_cpuc;
2025 int ret = -EINVAL, n;
2026
2027 fake_cpuc = allocate_fake_cpuc();
2028 if (IS_ERR(fake_cpuc))
2029 return PTR_ERR(fake_cpuc);
2030 /*
2031 * the event is not yet connected with its
2032 * siblings therefore we must first collect
2033 * existing siblings, then add the new event
2034 * before we can simulate the scheduling
2035 */
2036 n = collect_events(fake_cpuc, leader, true);
2037 if (n < 0)
2038 goto out;
2039
2040 fake_cpuc->n_events = n;
2041 n = collect_events(fake_cpuc, event, false);
2042 if (n < 0)
2043 goto out;
2044
2045 fake_cpuc->n_events = n;
2046
2047 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2048
2049 out:
2050 free_fake_cpuc(fake_cpuc);
2051 return ret;
2052 }
2053
2054 static int x86_pmu_event_init(struct perf_event *event)
2055 {
2056 struct pmu *tmp;
2057 int err;
2058
2059 switch (event->attr.type) {
2060 case PERF_TYPE_RAW:
2061 case PERF_TYPE_HARDWARE:
2062 case PERF_TYPE_HW_CACHE:
2063 break;
2064
2065 default:
2066 return -ENOENT;
2067 }
2068
2069 err = __x86_pmu_event_init(event);
2070 if (!err) {
2071 /*
2072 * we temporarily connect event to its pmu
2073 * such that validate_group() can classify
2074 * it as an x86 event using is_x86_event()
2075 */
2076 tmp = event->pmu;
2077 event->pmu = &pmu;
2078
2079 if (event->group_leader != event)
2080 err = validate_group(event);
2081 else
2082 err = validate_event(event);
2083
2084 event->pmu = tmp;
2085 }
2086 if (err) {
2087 if (event->destroy)
2088 event->destroy(event);
2089 }
2090
2091 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2092 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2093
2094 return err;
2095 }
2096
2097 static void refresh_pce(void *ignored)
2098 {
2099 if (current->mm)
2100 load_mm_cr4(current->mm);
2101 }
2102
2103 static void x86_pmu_event_mapped(struct perf_event *event)
2104 {
2105 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2106 return;
2107
2108 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2109 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2110 }
2111
2112 static void x86_pmu_event_unmapped(struct perf_event *event)
2113 {
2114 if (!current->mm)
2115 return;
2116
2117 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2118 return;
2119
2120 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2121 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2122 }
2123
2124 static int x86_pmu_event_idx(struct perf_event *event)
2125 {
2126 int idx = event->hw.idx;
2127
2128 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129 return 0;
2130
2131 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2132 idx -= INTEL_PMC_IDX_FIXED;
2133 idx |= 1 << 30;
2134 }
2135
2136 return idx + 1;
2137 }
2138
2139 static ssize_t get_attr_rdpmc(struct device *cdev,
2140 struct device_attribute *attr,
2141 char *buf)
2142 {
2143 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2144 }
2145
2146 static ssize_t set_attr_rdpmc(struct device *cdev,
2147 struct device_attribute *attr,
2148 const char *buf, size_t count)
2149 {
2150 unsigned long val;
2151 ssize_t ret;
2152
2153 ret = kstrtoul(buf, 0, &val);
2154 if (ret)
2155 return ret;
2156
2157 if (val > 2)
2158 return -EINVAL;
2159
2160 if (x86_pmu.attr_rdpmc_broken)
2161 return -ENOTSUPP;
2162
2163 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2164 /*
2165 * Changing into or out of always available, aka
2166 * perf-event-bypassing mode. This path is extremely slow,
2167 * but only root can trigger it, so it's okay.
2168 */
2169 if (val == 2)
2170 static_key_slow_inc(&rdpmc_always_available);
2171 else
2172 static_key_slow_dec(&rdpmc_always_available);
2173 on_each_cpu(refresh_pce, NULL, 1);
2174 }
2175
2176 x86_pmu.attr_rdpmc = val;
2177
2178 return count;
2179 }
2180
2181 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2182
2183 static struct attribute *x86_pmu_attrs[] = {
2184 &dev_attr_rdpmc.attr,
2185 NULL,
2186 };
2187
2188 static struct attribute_group x86_pmu_attr_group = {
2189 .attrs = x86_pmu_attrs,
2190 };
2191
2192 static const struct attribute_group *x86_pmu_attr_groups[] = {
2193 &x86_pmu_attr_group,
2194 &x86_pmu_format_group,
2195 &x86_pmu_events_group,
2196 NULL,
2197 };
2198
2199 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2200 {
2201 if (x86_pmu.sched_task)
2202 x86_pmu.sched_task(ctx, sched_in);
2203 }
2204
2205 void perf_check_microcode(void)
2206 {
2207 if (x86_pmu.check_microcode)
2208 x86_pmu.check_microcode();
2209 }
2210 EXPORT_SYMBOL_GPL(perf_check_microcode);
2211
2212 static struct pmu pmu = {
2213 .pmu_enable = x86_pmu_enable,
2214 .pmu_disable = x86_pmu_disable,
2215
2216 .attr_groups = x86_pmu_attr_groups,
2217
2218 .event_init = x86_pmu_event_init,
2219
2220 .event_mapped = x86_pmu_event_mapped,
2221 .event_unmapped = x86_pmu_event_unmapped,
2222
2223 .add = x86_pmu_add,
2224 .del = x86_pmu_del,
2225 .start = x86_pmu_start,
2226 .stop = x86_pmu_stop,
2227 .read = x86_pmu_read,
2228
2229 .start_txn = x86_pmu_start_txn,
2230 .cancel_txn = x86_pmu_cancel_txn,
2231 .commit_txn = x86_pmu_commit_txn,
2232
2233 .event_idx = x86_pmu_event_idx,
2234 .sched_task = x86_pmu_sched_task,
2235 .task_ctx_size = sizeof(struct x86_perf_task_context),
2236 };
2237
2238 void arch_perf_update_userpage(struct perf_event *event,
2239 struct perf_event_mmap_page *userpg, u64 now)
2240 {
2241 struct cyc2ns_data *data;
2242
2243 userpg->cap_user_time = 0;
2244 userpg->cap_user_time_zero = 0;
2245 userpg->cap_user_rdpmc =
2246 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2247 userpg->pmc_width = x86_pmu.cntval_bits;
2248
2249 if (!sched_clock_stable())
2250 return;
2251
2252 data = cyc2ns_read_begin();
2253
2254 /*
2255 * Internal timekeeping for enabled/running/stopped times
2256 * is always in the local_clock domain.
2257 */
2258 userpg->cap_user_time = 1;
2259 userpg->time_mult = data->cyc2ns_mul;
2260 userpg->time_shift = data->cyc2ns_shift;
2261 userpg->time_offset = data->cyc2ns_offset - now;
2262
2263 /*
2264 * cap_user_time_zero doesn't make sense when we're using a different
2265 * time base for the records.
2266 */
2267 if (!event->attr.use_clockid) {
2268 userpg->cap_user_time_zero = 1;
2269 userpg->time_zero = data->cyc2ns_offset;
2270 }
2271
2272 cyc2ns_read_end(data);
2273 }
2274
2275 void
2276 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2277 {
2278 struct unwind_state state;
2279 unsigned long addr;
2280
2281 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2282 /* TODO: We don't support guest os callchain now */
2283 return;
2284 }
2285
2286 if (perf_callchain_store(entry, regs->ip))
2287 return;
2288
2289 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2290 unwind_next_frame(&state)) {
2291 addr = unwind_get_return_address(&state);
2292 if (!addr || perf_callchain_store(entry, addr))
2293 return;
2294 }
2295 }
2296
2297 static inline int
2298 valid_user_frame(const void __user *fp, unsigned long size)
2299 {
2300 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2301 }
2302
2303 static unsigned long get_segment_base(unsigned int segment)
2304 {
2305 struct desc_struct *desc;
2306 unsigned int idx = segment >> 3;
2307
2308 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2309 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2310 struct ldt_struct *ldt;
2311
2312 if (idx > LDT_ENTRIES)
2313 return 0;
2314
2315 /* IRQs are off, so this synchronizes with smp_store_release */
2316 ldt = lockless_dereference(current->active_mm->context.ldt);
2317 if (!ldt || idx > ldt->size)
2318 return 0;
2319
2320 desc = &ldt->entries[idx];
2321 #else
2322 return 0;
2323 #endif
2324 } else {
2325 if (idx > GDT_ENTRIES)
2326 return 0;
2327
2328 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2329 }
2330
2331 return get_desc_base(desc);
2332 }
2333
2334 #ifdef CONFIG_IA32_EMULATION
2335
2336 #include <asm/compat.h>
2337
2338 static inline int
2339 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2340 {
2341 /* 32-bit process in 64-bit kernel. */
2342 unsigned long ss_base, cs_base;
2343 struct stack_frame_ia32 frame;
2344 const void __user *fp;
2345
2346 if (!test_thread_flag(TIF_IA32))
2347 return 0;
2348
2349 cs_base = get_segment_base(regs->cs);
2350 ss_base = get_segment_base(regs->ss);
2351
2352 fp = compat_ptr(ss_base + regs->bp);
2353 pagefault_disable();
2354 while (entry->nr < entry->max_stack) {
2355 unsigned long bytes;
2356 frame.next_frame = 0;
2357 frame.return_address = 0;
2358
2359 if (!valid_user_frame(fp, sizeof(frame)))
2360 break;
2361
2362 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2363 if (bytes != 0)
2364 break;
2365 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2366 if (bytes != 0)
2367 break;
2368
2369 perf_callchain_store(entry, cs_base + frame.return_address);
2370 fp = compat_ptr(ss_base + frame.next_frame);
2371 }
2372 pagefault_enable();
2373 return 1;
2374 }
2375 #else
2376 static inline int
2377 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2378 {
2379 return 0;
2380 }
2381 #endif
2382
2383 void
2384 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2385 {
2386 struct stack_frame frame;
2387 const unsigned long __user *fp;
2388
2389 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2390 /* TODO: We don't support guest os callchain now */
2391 return;
2392 }
2393
2394 /*
2395 * We don't know what to do with VM86 stacks.. ignore them for now.
2396 */
2397 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2398 return;
2399
2400 fp = (unsigned long __user *)regs->bp;
2401
2402 perf_callchain_store(entry, regs->ip);
2403
2404 if (!current->mm)
2405 return;
2406
2407 if (perf_callchain_user32(regs, entry))
2408 return;
2409
2410 pagefault_disable();
2411 while (entry->nr < entry->max_stack) {
2412 unsigned long bytes;
2413
2414 frame.next_frame = NULL;
2415 frame.return_address = 0;
2416
2417 if (!valid_user_frame(fp, sizeof(frame)))
2418 break;
2419
2420 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2421 if (bytes != 0)
2422 break;
2423 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2424 if (bytes != 0)
2425 break;
2426
2427 perf_callchain_store(entry, frame.return_address);
2428 fp = (void __user *)frame.next_frame;
2429 }
2430 pagefault_enable();
2431 }
2432
2433 /*
2434 * Deal with code segment offsets for the various execution modes:
2435 *
2436 * VM86 - the good olde 16 bit days, where the linear address is
2437 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2438 *
2439 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2440 * to figure out what the 32bit base address is.
2441 *
2442 * X32 - has TIF_X32 set, but is running in x86_64
2443 *
2444 * X86_64 - CS,DS,SS,ES are all zero based.
2445 */
2446 static unsigned long code_segment_base(struct pt_regs *regs)
2447 {
2448 /*
2449 * For IA32 we look at the GDT/LDT segment base to convert the
2450 * effective IP to a linear address.
2451 */
2452
2453 #ifdef CONFIG_X86_32
2454 /*
2455 * If we are in VM86 mode, add the segment offset to convert to a
2456 * linear address.
2457 */
2458 if (regs->flags & X86_VM_MASK)
2459 return 0x10 * regs->cs;
2460
2461 if (user_mode(regs) && regs->cs != __USER_CS)
2462 return get_segment_base(regs->cs);
2463 #else
2464 if (user_mode(regs) && !user_64bit_mode(regs) &&
2465 regs->cs != __USER32_CS)
2466 return get_segment_base(regs->cs);
2467 #endif
2468 return 0;
2469 }
2470
2471 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2472 {
2473 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2474 return perf_guest_cbs->get_guest_ip();
2475
2476 return regs->ip + code_segment_base(regs);
2477 }
2478
2479 unsigned long perf_misc_flags(struct pt_regs *regs)
2480 {
2481 int misc = 0;
2482
2483 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2484 if (perf_guest_cbs->is_user_mode())
2485 misc |= PERF_RECORD_MISC_GUEST_USER;
2486 else
2487 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2488 } else {
2489 if (user_mode(regs))
2490 misc |= PERF_RECORD_MISC_USER;
2491 else
2492 misc |= PERF_RECORD_MISC_KERNEL;
2493 }
2494
2495 if (regs->flags & PERF_EFLAGS_EXACT)
2496 misc |= PERF_RECORD_MISC_EXACT_IP;
2497
2498 return misc;
2499 }
2500
2501 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2502 {
2503 cap->version = x86_pmu.version;
2504 cap->num_counters_gp = x86_pmu.num_counters;
2505 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2506 cap->bit_width_gp = x86_pmu.cntval_bits;
2507 cap->bit_width_fixed = x86_pmu.cntval_bits;
2508 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2509 cap->events_mask_len = x86_pmu.events_mask_len;
2510 }
2511 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);