]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/events/core.c
Merge tag 'mmc-v4.8' of git://git.linaro.org/people/ulf.hansson/mmc
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / events / core.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145 int i;
146
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
150 }
151
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
155 }
156
157 return true;
158
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163 i = x86_pmu.num_counters;
164
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169 return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
179 }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
194 int reg_safe = -1;
195
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
201 reg = x86_pmu_config_addr(i);
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
209 } else {
210 reg_safe = i;
211 }
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
225 }
226 }
227
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
239 /*
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 */
244 reg = x86_pmu_event_addr(reg_safe);
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
250 if (ret || val != val_new)
251 goto msr_fail;
252
253 /*
254 * We still allow the PMU driver to operate:
255 */
256 if (bios_fail) {
257 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 reg_fail, val_fail);
260 }
261
262 return true;
263
264 msr_fail:
265 pr_cont("Broken PMU hardware detected, using software events only.\n");
266 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 reg, val_new);
269
270 return false;
271 }
272
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 x86_release_hardware();
276 atomic_dec(&active_events);
277 }
278
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 hw_perf_event_destroy(event);
282
283 /* undo the lbr/bts event accounting */
284 x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286
287 static inline int x86_pmu_initialized(void)
288 {
289 return x86_pmu.handle_irq != NULL;
290 }
291
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 struct perf_event_attr *attr = &event->attr;
296 unsigned int cache_type, cache_op, cache_result;
297 u64 config, val;
298
299 config = attr->config;
300
301 cache_type = (config >> 0) & 0xff;
302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 return -EINVAL;
304
305 cache_op = (config >> 8) & 0xff;
306 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 return -EINVAL;
308
309 cache_result = (config >> 16) & 0xff;
310 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 return -EINVAL;
312
313 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315 if (val == 0)
316 return -ENOENT;
317
318 if (val == -1)
319 return -EINVAL;
320
321 hwc->config |= val;
322 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 return x86_pmu_extra_regs(val, event);
324 }
325
326 int x86_reserve_hardware(void)
327 {
328 int err = 0;
329
330 if (!atomic_inc_not_zero(&pmc_refcount)) {
331 mutex_lock(&pmc_reserve_mutex);
332 if (atomic_read(&pmc_refcount) == 0) {
333 if (!reserve_pmc_hardware())
334 err = -EBUSY;
335 else
336 reserve_ds_buffers();
337 }
338 if (!err)
339 atomic_inc(&pmc_refcount);
340 mutex_unlock(&pmc_reserve_mutex);
341 }
342
343 return err;
344 }
345
346 void x86_release_hardware(void)
347 {
348 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349 release_pmc_hardware();
350 release_ds_buffers();
351 mutex_unlock(&pmc_reserve_mutex);
352 }
353 }
354
355 /*
356 * Check if we can create event of a certain type (that no conflicting events
357 * are present).
358 */
359 int x86_add_exclusive(unsigned int what)
360 {
361 int i;
362
363 if (x86_pmu.lbr_pt_coexist)
364 return 0;
365
366 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 mutex_lock(&pmc_reserve_mutex);
368 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 goto fail_unlock;
371 }
372 atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 mutex_unlock(&pmc_reserve_mutex);
374 }
375
376 atomic_inc(&active_events);
377 return 0;
378
379 fail_unlock:
380 mutex_unlock(&pmc_reserve_mutex);
381 return -EBUSY;
382 }
383
384 void x86_del_exclusive(unsigned int what)
385 {
386 if (x86_pmu.lbr_pt_coexist)
387 return;
388
389 atomic_dec(&x86_pmu.lbr_exclusive[what]);
390 atomic_dec(&active_events);
391 }
392
393 int x86_setup_perfctr(struct perf_event *event)
394 {
395 struct perf_event_attr *attr = &event->attr;
396 struct hw_perf_event *hwc = &event->hw;
397 u64 config;
398
399 if (!is_sampling_event(event)) {
400 hwc->sample_period = x86_pmu.max_period;
401 hwc->last_period = hwc->sample_period;
402 local64_set(&hwc->period_left, hwc->sample_period);
403 }
404
405 if (attr->type == PERF_TYPE_RAW)
406 return x86_pmu_extra_regs(event->attr.config, event);
407
408 if (attr->type == PERF_TYPE_HW_CACHE)
409 return set_ext_hw_attr(hwc, event);
410
411 if (attr->config >= x86_pmu.max_events)
412 return -EINVAL;
413
414 /*
415 * The generic map:
416 */
417 config = x86_pmu.event_map(attr->config);
418
419 if (config == 0)
420 return -ENOENT;
421
422 if (config == -1LL)
423 return -EINVAL;
424
425 /*
426 * Branch tracing:
427 */
428 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
429 !attr->freq && hwc->sample_period == 1) {
430 /* BTS is not supported by this architecture. */
431 if (!x86_pmu.bts_active)
432 return -EOPNOTSUPP;
433
434 /* BTS is currently only allowed for user-mode. */
435 if (!attr->exclude_kernel)
436 return -EOPNOTSUPP;
437
438 /* disallow bts if conflicting events are present */
439 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
440 return -EBUSY;
441
442 event->destroy = hw_perf_lbr_event_destroy;
443 }
444
445 hwc->config |= config;
446
447 return 0;
448 }
449
450 /*
451 * check that branch_sample_type is compatible with
452 * settings needed for precise_ip > 1 which implies
453 * using the LBR to capture ALL taken branches at the
454 * priv levels of the measurement
455 */
456 static inline int precise_br_compat(struct perf_event *event)
457 {
458 u64 m = event->attr.branch_sample_type;
459 u64 b = 0;
460
461 /* must capture all branches */
462 if (!(m & PERF_SAMPLE_BRANCH_ANY))
463 return 0;
464
465 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
466
467 if (!event->attr.exclude_user)
468 b |= PERF_SAMPLE_BRANCH_USER;
469
470 if (!event->attr.exclude_kernel)
471 b |= PERF_SAMPLE_BRANCH_KERNEL;
472
473 /*
474 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
475 */
476
477 return m == b;
478 }
479
480 int x86_pmu_hw_config(struct perf_event *event)
481 {
482 if (event->attr.precise_ip) {
483 int precise = 0;
484
485 /* Support for constant skid */
486 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 precise++;
488
489 /* Support for IP fixup */
490 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 precise++;
492
493 if (x86_pmu.pebs_prec_dist)
494 precise++;
495 }
496
497 if (event->attr.precise_ip > precise)
498 return -EOPNOTSUPP;
499 }
500 /*
501 * check that PEBS LBR correction does not conflict with
502 * whatever the user is asking with attr->branch_sample_type
503 */
504 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
505 u64 *br_type = &event->attr.branch_sample_type;
506
507 if (has_branch_stack(event)) {
508 if (!precise_br_compat(event))
509 return -EOPNOTSUPP;
510
511 /* branch_sample_type is compatible */
512
513 } else {
514 /*
515 * user did not specify branch_sample_type
516 *
517 * For PEBS fixups, we capture all
518 * the branches at the priv level of the
519 * event.
520 */
521 *br_type = PERF_SAMPLE_BRANCH_ANY;
522
523 if (!event->attr.exclude_user)
524 *br_type |= PERF_SAMPLE_BRANCH_USER;
525
526 if (!event->attr.exclude_kernel)
527 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
528 }
529 }
530
531 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
532 event->attach_state |= PERF_ATTACH_TASK_DATA;
533
534 /*
535 * Generate PMC IRQs:
536 * (keep 'enabled' bit clear for now)
537 */
538 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
539
540 /*
541 * Count user and OS events unless requested not to
542 */
543 if (!event->attr.exclude_user)
544 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
545 if (!event->attr.exclude_kernel)
546 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
547
548 if (event->attr.type == PERF_TYPE_RAW)
549 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
550
551 if (event->attr.sample_period && x86_pmu.limit_period) {
552 if (x86_pmu.limit_period(event, event->attr.sample_period) >
553 event->attr.sample_period)
554 return -EINVAL;
555 }
556
557 return x86_setup_perfctr(event);
558 }
559
560 /*
561 * Setup the hardware configuration for a given attr_type
562 */
563 static int __x86_pmu_event_init(struct perf_event *event)
564 {
565 int err;
566
567 if (!x86_pmu_initialized())
568 return -ENODEV;
569
570 err = x86_reserve_hardware();
571 if (err)
572 return err;
573
574 atomic_inc(&active_events);
575 event->destroy = hw_perf_event_destroy;
576
577 event->hw.idx = -1;
578 event->hw.last_cpu = -1;
579 event->hw.last_tag = ~0ULL;
580
581 /* mark unused */
582 event->hw.extra_reg.idx = EXTRA_REG_NONE;
583 event->hw.branch_reg.idx = EXTRA_REG_NONE;
584
585 return x86_pmu.hw_config(event);
586 }
587
588 void x86_pmu_disable_all(void)
589 {
590 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
591 int idx;
592
593 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
594 u64 val;
595
596 if (!test_bit(idx, cpuc->active_mask))
597 continue;
598 rdmsrl(x86_pmu_config_addr(idx), val);
599 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
600 continue;
601 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
602 wrmsrl(x86_pmu_config_addr(idx), val);
603 }
604 }
605
606 /*
607 * There may be PMI landing after enabled=0. The PMI hitting could be before or
608 * after disable_all.
609 *
610 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
611 * It will not be re-enabled in the NMI handler again, because enabled=0. After
612 * handling the NMI, disable_all will be called, which will not change the
613 * state either. If PMI hits after disable_all, the PMU is already disabled
614 * before entering NMI handler. The NMI handler will not change the state
615 * either.
616 *
617 * So either situation is harmless.
618 */
619 static void x86_pmu_disable(struct pmu *pmu)
620 {
621 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
622
623 if (!x86_pmu_initialized())
624 return;
625
626 if (!cpuc->enabled)
627 return;
628
629 cpuc->n_added = 0;
630 cpuc->enabled = 0;
631 barrier();
632
633 x86_pmu.disable_all();
634 }
635
636 void x86_pmu_enable_all(int added)
637 {
638 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
639 int idx;
640
641 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
642 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
643
644 if (!test_bit(idx, cpuc->active_mask))
645 continue;
646
647 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
648 }
649 }
650
651 static struct pmu pmu;
652
653 static inline int is_x86_event(struct perf_event *event)
654 {
655 return event->pmu == &pmu;
656 }
657
658 /*
659 * Event scheduler state:
660 *
661 * Assign events iterating over all events and counters, beginning
662 * with events with least weights first. Keep the current iterator
663 * state in struct sched_state.
664 */
665 struct sched_state {
666 int weight;
667 int event; /* event index */
668 int counter; /* counter index */
669 int unassigned; /* number of events to be assigned left */
670 int nr_gp; /* number of GP counters used */
671 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
672 };
673
674 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
675 #define SCHED_STATES_MAX 2
676
677 struct perf_sched {
678 int max_weight;
679 int max_events;
680 int max_gp;
681 int saved_states;
682 struct event_constraint **constraints;
683 struct sched_state state;
684 struct sched_state saved[SCHED_STATES_MAX];
685 };
686
687 /*
688 * Initialize interator that runs through all events and counters.
689 */
690 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
691 int num, int wmin, int wmax, int gpmax)
692 {
693 int idx;
694
695 memset(sched, 0, sizeof(*sched));
696 sched->max_events = num;
697 sched->max_weight = wmax;
698 sched->max_gp = gpmax;
699 sched->constraints = constraints;
700
701 for (idx = 0; idx < num; idx++) {
702 if (constraints[idx]->weight == wmin)
703 break;
704 }
705
706 sched->state.event = idx; /* start with min weight */
707 sched->state.weight = wmin;
708 sched->state.unassigned = num;
709 }
710
711 static void perf_sched_save_state(struct perf_sched *sched)
712 {
713 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
714 return;
715
716 sched->saved[sched->saved_states] = sched->state;
717 sched->saved_states++;
718 }
719
720 static bool perf_sched_restore_state(struct perf_sched *sched)
721 {
722 if (!sched->saved_states)
723 return false;
724
725 sched->saved_states--;
726 sched->state = sched->saved[sched->saved_states];
727
728 /* continue with next counter: */
729 clear_bit(sched->state.counter++, sched->state.used);
730
731 return true;
732 }
733
734 /*
735 * Select a counter for the current event to schedule. Return true on
736 * success.
737 */
738 static bool __perf_sched_find_counter(struct perf_sched *sched)
739 {
740 struct event_constraint *c;
741 int idx;
742
743 if (!sched->state.unassigned)
744 return false;
745
746 if (sched->state.event >= sched->max_events)
747 return false;
748
749 c = sched->constraints[sched->state.event];
750 /* Prefer fixed purpose counters */
751 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
752 idx = INTEL_PMC_IDX_FIXED;
753 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
754 if (!__test_and_set_bit(idx, sched->state.used))
755 goto done;
756 }
757 }
758
759 /* Grab the first unused counter starting with idx */
760 idx = sched->state.counter;
761 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
762 if (!__test_and_set_bit(idx, sched->state.used)) {
763 if (sched->state.nr_gp++ >= sched->max_gp)
764 return false;
765
766 goto done;
767 }
768 }
769
770 return false;
771
772 done:
773 sched->state.counter = idx;
774
775 if (c->overlap)
776 perf_sched_save_state(sched);
777
778 return true;
779 }
780
781 static bool perf_sched_find_counter(struct perf_sched *sched)
782 {
783 while (!__perf_sched_find_counter(sched)) {
784 if (!perf_sched_restore_state(sched))
785 return false;
786 }
787
788 return true;
789 }
790
791 /*
792 * Go through all unassigned events and find the next one to schedule.
793 * Take events with the least weight first. Return true on success.
794 */
795 static bool perf_sched_next_event(struct perf_sched *sched)
796 {
797 struct event_constraint *c;
798
799 if (!sched->state.unassigned || !--sched->state.unassigned)
800 return false;
801
802 do {
803 /* next event */
804 sched->state.event++;
805 if (sched->state.event >= sched->max_events) {
806 /* next weight */
807 sched->state.event = 0;
808 sched->state.weight++;
809 if (sched->state.weight > sched->max_weight)
810 return false;
811 }
812 c = sched->constraints[sched->state.event];
813 } while (c->weight != sched->state.weight);
814
815 sched->state.counter = 0; /* start with first counter */
816
817 return true;
818 }
819
820 /*
821 * Assign a counter for each event.
822 */
823 int perf_assign_events(struct event_constraint **constraints, int n,
824 int wmin, int wmax, int gpmax, int *assign)
825 {
826 struct perf_sched sched;
827
828 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
829
830 do {
831 if (!perf_sched_find_counter(&sched))
832 break; /* failed */
833 if (assign)
834 assign[sched.state.event] = sched.state.counter;
835 } while (perf_sched_next_event(&sched));
836
837 return sched.state.unassigned;
838 }
839 EXPORT_SYMBOL_GPL(perf_assign_events);
840
841 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
842 {
843 struct event_constraint *c;
844 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
845 struct perf_event *e;
846 int i, wmin, wmax, unsched = 0;
847 struct hw_perf_event *hwc;
848
849 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
850
851 if (x86_pmu.start_scheduling)
852 x86_pmu.start_scheduling(cpuc);
853
854 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
855 cpuc->event_constraint[i] = NULL;
856 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
857 cpuc->event_constraint[i] = c;
858
859 wmin = min(wmin, c->weight);
860 wmax = max(wmax, c->weight);
861 }
862
863 /*
864 * fastpath, try to reuse previous register
865 */
866 for (i = 0; i < n; i++) {
867 hwc = &cpuc->event_list[i]->hw;
868 c = cpuc->event_constraint[i];
869
870 /* never assigned */
871 if (hwc->idx == -1)
872 break;
873
874 /* constraint still honored */
875 if (!test_bit(hwc->idx, c->idxmsk))
876 break;
877
878 /* not already used */
879 if (test_bit(hwc->idx, used_mask))
880 break;
881
882 __set_bit(hwc->idx, used_mask);
883 if (assign)
884 assign[i] = hwc->idx;
885 }
886
887 /* slow path */
888 if (i != n) {
889 int gpmax = x86_pmu.num_counters;
890
891 /*
892 * Do not allow scheduling of more than half the available
893 * generic counters.
894 *
895 * This helps avoid counter starvation of sibling thread by
896 * ensuring at most half the counters cannot be in exclusive
897 * mode. There is no designated counters for the limits. Any
898 * N/2 counters can be used. This helps with events with
899 * specific counter constraints.
900 */
901 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
902 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
903 gpmax /= 2;
904
905 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
906 wmax, gpmax, assign);
907 }
908
909 /*
910 * In case of success (unsched = 0), mark events as committed,
911 * so we do not put_constraint() in case new events are added
912 * and fail to be scheduled
913 *
914 * We invoke the lower level commit callback to lock the resource
915 *
916 * We do not need to do all of this in case we are called to
917 * validate an event group (assign == NULL)
918 */
919 if (!unsched && assign) {
920 for (i = 0; i < n; i++) {
921 e = cpuc->event_list[i];
922 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
923 if (x86_pmu.commit_scheduling)
924 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
925 }
926 } else {
927 for (i = 0; i < n; i++) {
928 e = cpuc->event_list[i];
929 /*
930 * do not put_constraint() on comitted events,
931 * because they are good to go
932 */
933 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
934 continue;
935
936 /*
937 * release events that failed scheduling
938 */
939 if (x86_pmu.put_event_constraints)
940 x86_pmu.put_event_constraints(cpuc, e);
941 }
942 }
943
944 if (x86_pmu.stop_scheduling)
945 x86_pmu.stop_scheduling(cpuc);
946
947 return unsched ? -EINVAL : 0;
948 }
949
950 /*
951 * dogrp: true if must collect siblings events (group)
952 * returns total number of events and error code
953 */
954 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
955 {
956 struct perf_event *event;
957 int n, max_count;
958
959 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
960
961 /* current number of events already accepted */
962 n = cpuc->n_events;
963
964 if (is_x86_event(leader)) {
965 if (n >= max_count)
966 return -EINVAL;
967 cpuc->event_list[n] = leader;
968 n++;
969 }
970 if (!dogrp)
971 return n;
972
973 list_for_each_entry(event, &leader->sibling_list, group_entry) {
974 if (!is_x86_event(event) ||
975 event->state <= PERF_EVENT_STATE_OFF)
976 continue;
977
978 if (n >= max_count)
979 return -EINVAL;
980
981 cpuc->event_list[n] = event;
982 n++;
983 }
984 return n;
985 }
986
987 static inline void x86_assign_hw_event(struct perf_event *event,
988 struct cpu_hw_events *cpuc, int i)
989 {
990 struct hw_perf_event *hwc = &event->hw;
991
992 hwc->idx = cpuc->assign[i];
993 hwc->last_cpu = smp_processor_id();
994 hwc->last_tag = ++cpuc->tags[i];
995
996 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
997 hwc->config_base = 0;
998 hwc->event_base = 0;
999 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1000 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1001 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1002 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1003 } else {
1004 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1005 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1006 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1007 }
1008 }
1009
1010 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1011 struct cpu_hw_events *cpuc,
1012 int i)
1013 {
1014 return hwc->idx == cpuc->assign[i] &&
1015 hwc->last_cpu == smp_processor_id() &&
1016 hwc->last_tag == cpuc->tags[i];
1017 }
1018
1019 static void x86_pmu_start(struct perf_event *event, int flags);
1020
1021 static void x86_pmu_enable(struct pmu *pmu)
1022 {
1023 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1024 struct perf_event *event;
1025 struct hw_perf_event *hwc;
1026 int i, added = cpuc->n_added;
1027
1028 if (!x86_pmu_initialized())
1029 return;
1030
1031 if (cpuc->enabled)
1032 return;
1033
1034 if (cpuc->n_added) {
1035 int n_running = cpuc->n_events - cpuc->n_added;
1036 /*
1037 * apply assignment obtained either from
1038 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 *
1040 * step1: save events moving to new counters
1041 */
1042 for (i = 0; i < n_running; i++) {
1043 event = cpuc->event_list[i];
1044 hwc = &event->hw;
1045
1046 /*
1047 * we can avoid reprogramming counter if:
1048 * - assigned same counter as last time
1049 * - running on same CPU as last time
1050 * - no other event has used the counter since
1051 */
1052 if (hwc->idx == -1 ||
1053 match_prev_assignment(hwc, cpuc, i))
1054 continue;
1055
1056 /*
1057 * Ensure we don't accidentally enable a stopped
1058 * counter simply because we rescheduled.
1059 */
1060 if (hwc->state & PERF_HES_STOPPED)
1061 hwc->state |= PERF_HES_ARCH;
1062
1063 x86_pmu_stop(event, PERF_EF_UPDATE);
1064 }
1065
1066 /*
1067 * step2: reprogram moved events into new counters
1068 */
1069 for (i = 0; i < cpuc->n_events; i++) {
1070 event = cpuc->event_list[i];
1071 hwc = &event->hw;
1072
1073 if (!match_prev_assignment(hwc, cpuc, i))
1074 x86_assign_hw_event(event, cpuc, i);
1075 else if (i < n_running)
1076 continue;
1077
1078 if (hwc->state & PERF_HES_ARCH)
1079 continue;
1080
1081 x86_pmu_start(event, PERF_EF_RELOAD);
1082 }
1083 cpuc->n_added = 0;
1084 perf_events_lapic_init();
1085 }
1086
1087 cpuc->enabled = 1;
1088 barrier();
1089
1090 x86_pmu.enable_all(added);
1091 }
1092
1093 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1094
1095 /*
1096 * Set the next IRQ period, based on the hwc->period_left value.
1097 * To be called with the event disabled in hw:
1098 */
1099 int x86_perf_event_set_period(struct perf_event *event)
1100 {
1101 struct hw_perf_event *hwc = &event->hw;
1102 s64 left = local64_read(&hwc->period_left);
1103 s64 period = hwc->sample_period;
1104 int ret = 0, idx = hwc->idx;
1105
1106 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1107 return 0;
1108
1109 /*
1110 * If we are way outside a reasonable range then just skip forward:
1111 */
1112 if (unlikely(left <= -period)) {
1113 left = period;
1114 local64_set(&hwc->period_left, left);
1115 hwc->last_period = period;
1116 ret = 1;
1117 }
1118
1119 if (unlikely(left <= 0)) {
1120 left += period;
1121 local64_set(&hwc->period_left, left);
1122 hwc->last_period = period;
1123 ret = 1;
1124 }
1125 /*
1126 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1127 */
1128 if (unlikely(left < 2))
1129 left = 2;
1130
1131 if (left > x86_pmu.max_period)
1132 left = x86_pmu.max_period;
1133
1134 if (x86_pmu.limit_period)
1135 left = x86_pmu.limit_period(event, left);
1136
1137 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1138
1139 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1140 local64_read(&hwc->prev_count) != (u64)-left) {
1141 /*
1142 * The hw event starts counting from this event offset,
1143 * mark it to be able to extra future deltas:
1144 */
1145 local64_set(&hwc->prev_count, (u64)-left);
1146
1147 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1148 }
1149
1150 /*
1151 * Due to erratum on certan cpu we need
1152 * a second write to be sure the register
1153 * is updated properly
1154 */
1155 if (x86_pmu.perfctr_second_write) {
1156 wrmsrl(hwc->event_base,
1157 (u64)(-left) & x86_pmu.cntval_mask);
1158 }
1159
1160 perf_event_update_userpage(event);
1161
1162 return ret;
1163 }
1164
1165 void x86_pmu_enable_event(struct perf_event *event)
1166 {
1167 if (__this_cpu_read(cpu_hw_events.enabled))
1168 __x86_pmu_enable_event(&event->hw,
1169 ARCH_PERFMON_EVENTSEL_ENABLE);
1170 }
1171
1172 /*
1173 * Add a single event to the PMU.
1174 *
1175 * The event is added to the group of enabled events
1176 * but only if it can be scehduled with existing events.
1177 */
1178 static int x86_pmu_add(struct perf_event *event, int flags)
1179 {
1180 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1181 struct hw_perf_event *hwc;
1182 int assign[X86_PMC_IDX_MAX];
1183 int n, n0, ret;
1184
1185 hwc = &event->hw;
1186
1187 n0 = cpuc->n_events;
1188 ret = n = collect_events(cpuc, event, false);
1189 if (ret < 0)
1190 goto out;
1191
1192 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1193 if (!(flags & PERF_EF_START))
1194 hwc->state |= PERF_HES_ARCH;
1195
1196 /*
1197 * If group events scheduling transaction was started,
1198 * skip the schedulability test here, it will be performed
1199 * at commit time (->commit_txn) as a whole.
1200 */
1201 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1202 goto done_collect;
1203
1204 ret = x86_pmu.schedule_events(cpuc, n, assign);
1205 if (ret)
1206 goto out;
1207 /*
1208 * copy new assignment, now we know it is possible
1209 * will be used by hw_perf_enable()
1210 */
1211 memcpy(cpuc->assign, assign, n*sizeof(int));
1212
1213 done_collect:
1214 /*
1215 * Commit the collect_events() state. See x86_pmu_del() and
1216 * x86_pmu_*_txn().
1217 */
1218 cpuc->n_events = n;
1219 cpuc->n_added += n - n0;
1220 cpuc->n_txn += n - n0;
1221
1222 ret = 0;
1223 out:
1224 return ret;
1225 }
1226
1227 static void x86_pmu_start(struct perf_event *event, int flags)
1228 {
1229 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1230 int idx = event->hw.idx;
1231
1232 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1233 return;
1234
1235 if (WARN_ON_ONCE(idx == -1))
1236 return;
1237
1238 if (flags & PERF_EF_RELOAD) {
1239 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1240 x86_perf_event_set_period(event);
1241 }
1242
1243 event->hw.state = 0;
1244
1245 cpuc->events[idx] = event;
1246 __set_bit(idx, cpuc->active_mask);
1247 __set_bit(idx, cpuc->running);
1248 x86_pmu.enable(event);
1249 perf_event_update_userpage(event);
1250 }
1251
1252 void perf_event_print_debug(void)
1253 {
1254 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1255 u64 pebs, debugctl;
1256 struct cpu_hw_events *cpuc;
1257 unsigned long flags;
1258 int cpu, idx;
1259
1260 if (!x86_pmu.num_counters)
1261 return;
1262
1263 local_irq_save(flags);
1264
1265 cpu = smp_processor_id();
1266 cpuc = &per_cpu(cpu_hw_events, cpu);
1267
1268 if (x86_pmu.version >= 2) {
1269 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1270 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1271 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1272 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1273
1274 pr_info("\n");
1275 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1276 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1277 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1278 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1279 if (x86_pmu.pebs_constraints) {
1280 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1281 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1282 }
1283 if (x86_pmu.lbr_nr) {
1284 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1285 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1286 }
1287 }
1288 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1289
1290 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1291 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1292 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1293
1294 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1295
1296 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1297 cpu, idx, pmc_ctrl);
1298 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1299 cpu, idx, pmc_count);
1300 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1301 cpu, idx, prev_left);
1302 }
1303 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1304 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1305
1306 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1307 cpu, idx, pmc_count);
1308 }
1309 local_irq_restore(flags);
1310 }
1311
1312 void x86_pmu_stop(struct perf_event *event, int flags)
1313 {
1314 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1315 struct hw_perf_event *hwc = &event->hw;
1316
1317 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1318 x86_pmu.disable(event);
1319 cpuc->events[hwc->idx] = NULL;
1320 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1321 hwc->state |= PERF_HES_STOPPED;
1322 }
1323
1324 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1325 /*
1326 * Drain the remaining delta count out of a event
1327 * that we are disabling:
1328 */
1329 x86_perf_event_update(event);
1330 hwc->state |= PERF_HES_UPTODATE;
1331 }
1332 }
1333
1334 static void x86_pmu_del(struct perf_event *event, int flags)
1335 {
1336 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1337 int i;
1338
1339 /*
1340 * event is descheduled
1341 */
1342 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1343
1344 /*
1345 * If we're called during a txn, we don't need to do anything.
1346 * The events never got scheduled and ->cancel_txn will truncate
1347 * the event_list.
1348 *
1349 * XXX assumes any ->del() called during a TXN will only be on
1350 * an event added during that same TXN.
1351 */
1352 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1353 return;
1354
1355 /*
1356 * Not a TXN, therefore cleanup properly.
1357 */
1358 x86_pmu_stop(event, PERF_EF_UPDATE);
1359
1360 for (i = 0; i < cpuc->n_events; i++) {
1361 if (event == cpuc->event_list[i])
1362 break;
1363 }
1364
1365 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1366 return;
1367
1368 /* If we have a newly added event; make sure to decrease n_added. */
1369 if (i >= cpuc->n_events - cpuc->n_added)
1370 --cpuc->n_added;
1371
1372 if (x86_pmu.put_event_constraints)
1373 x86_pmu.put_event_constraints(cpuc, event);
1374
1375 /* Delete the array entry. */
1376 while (++i < cpuc->n_events) {
1377 cpuc->event_list[i-1] = cpuc->event_list[i];
1378 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1379 }
1380 --cpuc->n_events;
1381
1382 perf_event_update_userpage(event);
1383 }
1384
1385 int x86_pmu_handle_irq(struct pt_regs *regs)
1386 {
1387 struct perf_sample_data data;
1388 struct cpu_hw_events *cpuc;
1389 struct perf_event *event;
1390 int idx, handled = 0;
1391 u64 val;
1392
1393 cpuc = this_cpu_ptr(&cpu_hw_events);
1394
1395 /*
1396 * Some chipsets need to unmask the LVTPC in a particular spot
1397 * inside the nmi handler. As a result, the unmasking was pushed
1398 * into all the nmi handlers.
1399 *
1400 * This generic handler doesn't seem to have any issues where the
1401 * unmasking occurs so it was left at the top.
1402 */
1403 apic_write(APIC_LVTPC, APIC_DM_NMI);
1404
1405 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1406 if (!test_bit(idx, cpuc->active_mask)) {
1407 /*
1408 * Though we deactivated the counter some cpus
1409 * might still deliver spurious interrupts still
1410 * in flight. Catch them:
1411 */
1412 if (__test_and_clear_bit(idx, cpuc->running))
1413 handled++;
1414 continue;
1415 }
1416
1417 event = cpuc->events[idx];
1418
1419 val = x86_perf_event_update(event);
1420 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1421 continue;
1422
1423 /*
1424 * event overflow
1425 */
1426 handled++;
1427 perf_sample_data_init(&data, 0, event->hw.last_period);
1428
1429 if (!x86_perf_event_set_period(event))
1430 continue;
1431
1432 if (perf_event_overflow(event, &data, regs))
1433 x86_pmu_stop(event, 0);
1434 }
1435
1436 if (handled)
1437 inc_irq_stat(apic_perf_irqs);
1438
1439 return handled;
1440 }
1441
1442 void perf_events_lapic_init(void)
1443 {
1444 if (!x86_pmu.apic || !x86_pmu_initialized())
1445 return;
1446
1447 /*
1448 * Always use NMI for PMU
1449 */
1450 apic_write(APIC_LVTPC, APIC_DM_NMI);
1451 }
1452
1453 static int
1454 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1455 {
1456 u64 start_clock;
1457 u64 finish_clock;
1458 int ret;
1459
1460 /*
1461 * All PMUs/events that share this PMI handler should make sure to
1462 * increment active_events for their events.
1463 */
1464 if (!atomic_read(&active_events))
1465 return NMI_DONE;
1466
1467 start_clock = sched_clock();
1468 ret = x86_pmu.handle_irq(regs);
1469 finish_clock = sched_clock();
1470
1471 perf_sample_event_took(finish_clock - start_clock);
1472
1473 return ret;
1474 }
1475 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1476
1477 struct event_constraint emptyconstraint;
1478 struct event_constraint unconstrained;
1479
1480 static int x86_pmu_prepare_cpu(unsigned int cpu)
1481 {
1482 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1483 int i;
1484
1485 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1486 cpuc->kfree_on_online[i] = NULL;
1487 if (x86_pmu.cpu_prepare)
1488 return x86_pmu.cpu_prepare(cpu);
1489 return 0;
1490 }
1491
1492 static int x86_pmu_dead_cpu(unsigned int cpu)
1493 {
1494 if (x86_pmu.cpu_dead)
1495 x86_pmu.cpu_dead(cpu);
1496 return 0;
1497 }
1498
1499 static int x86_pmu_online_cpu(unsigned int cpu)
1500 {
1501 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1502 int i;
1503
1504 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1505 kfree(cpuc->kfree_on_online[i]);
1506 cpuc->kfree_on_online[i] = NULL;
1507 }
1508 return 0;
1509 }
1510
1511 static int x86_pmu_starting_cpu(unsigned int cpu)
1512 {
1513 if (x86_pmu.cpu_starting)
1514 x86_pmu.cpu_starting(cpu);
1515 return 0;
1516 }
1517
1518 static int x86_pmu_dying_cpu(unsigned int cpu)
1519 {
1520 if (x86_pmu.cpu_dying)
1521 x86_pmu.cpu_dying(cpu);
1522 return 0;
1523 }
1524
1525 static void __init pmu_check_apic(void)
1526 {
1527 if (boot_cpu_has(X86_FEATURE_APIC))
1528 return;
1529
1530 x86_pmu.apic = 0;
1531 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1532 pr_info("no hardware sampling interrupt available.\n");
1533
1534 /*
1535 * If we have a PMU initialized but no APIC
1536 * interrupts, we cannot sample hardware
1537 * events (user-space has to fall back and
1538 * sample via a hrtimer based software event):
1539 */
1540 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1541
1542 }
1543
1544 static struct attribute_group x86_pmu_format_group = {
1545 .name = "format",
1546 .attrs = NULL,
1547 };
1548
1549 /*
1550 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1551 * out of events_attr attributes.
1552 */
1553 static void __init filter_events(struct attribute **attrs)
1554 {
1555 struct device_attribute *d;
1556 struct perf_pmu_events_attr *pmu_attr;
1557 int offset = 0;
1558 int i, j;
1559
1560 for (i = 0; attrs[i]; i++) {
1561 d = (struct device_attribute *)attrs[i];
1562 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1563 /* str trumps id */
1564 if (pmu_attr->event_str)
1565 continue;
1566 if (x86_pmu.event_map(i + offset))
1567 continue;
1568
1569 for (j = i; attrs[j]; j++)
1570 attrs[j] = attrs[j + 1];
1571
1572 /* Check the shifted attr. */
1573 i--;
1574
1575 /*
1576 * event_map() is index based, the attrs array is organized
1577 * by increasing event index. If we shift the events, then
1578 * we need to compensate for the event_map(), otherwise
1579 * we are looking up the wrong event in the map
1580 */
1581 offset++;
1582 }
1583 }
1584
1585 /* Merge two pointer arrays */
1586 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1587 {
1588 struct attribute **new;
1589 int j, i;
1590
1591 for (j = 0; a[j]; j++)
1592 ;
1593 for (i = 0; b[i]; i++)
1594 j++;
1595 j++;
1596
1597 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1598 if (!new)
1599 return NULL;
1600
1601 j = 0;
1602 for (i = 0; a[i]; i++)
1603 new[j++] = a[i];
1604 for (i = 0; b[i]; i++)
1605 new[j++] = b[i];
1606 new[j] = NULL;
1607
1608 return new;
1609 }
1610
1611 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1612 {
1613 struct perf_pmu_events_attr *pmu_attr = \
1614 container_of(attr, struct perf_pmu_events_attr, attr);
1615 u64 config = x86_pmu.event_map(pmu_attr->id);
1616
1617 /* string trumps id */
1618 if (pmu_attr->event_str)
1619 return sprintf(page, "%s", pmu_attr->event_str);
1620
1621 return x86_pmu.events_sysfs_show(page, config);
1622 }
1623 EXPORT_SYMBOL_GPL(events_sysfs_show);
1624
1625 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1626 char *page)
1627 {
1628 struct perf_pmu_events_ht_attr *pmu_attr =
1629 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1630
1631 /*
1632 * Report conditional events depending on Hyper-Threading.
1633 *
1634 * This is overly conservative as usually the HT special
1635 * handling is not needed if the other CPU thread is idle.
1636 *
1637 * Note this does not (and cannot) handle the case when thread
1638 * siblings are invisible, for example with virtualization
1639 * if they are owned by some other guest. The user tool
1640 * has to re-read when a thread sibling gets onlined later.
1641 */
1642 return sprintf(page, "%s",
1643 topology_max_smt_threads() > 1 ?
1644 pmu_attr->event_str_ht :
1645 pmu_attr->event_str_noht);
1646 }
1647
1648 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1649 EVENT_ATTR(instructions, INSTRUCTIONS );
1650 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1651 EVENT_ATTR(cache-misses, CACHE_MISSES );
1652 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1653 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1654 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1655 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1656 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1657 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1658
1659 static struct attribute *empty_attrs;
1660
1661 static struct attribute *events_attr[] = {
1662 EVENT_PTR(CPU_CYCLES),
1663 EVENT_PTR(INSTRUCTIONS),
1664 EVENT_PTR(CACHE_REFERENCES),
1665 EVENT_PTR(CACHE_MISSES),
1666 EVENT_PTR(BRANCH_INSTRUCTIONS),
1667 EVENT_PTR(BRANCH_MISSES),
1668 EVENT_PTR(BUS_CYCLES),
1669 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1670 EVENT_PTR(STALLED_CYCLES_BACKEND),
1671 EVENT_PTR(REF_CPU_CYCLES),
1672 NULL,
1673 };
1674
1675 static struct attribute_group x86_pmu_events_group = {
1676 .name = "events",
1677 .attrs = events_attr,
1678 };
1679
1680 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1681 {
1682 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1683 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1684 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1685 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1686 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1687 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1688 ssize_t ret;
1689
1690 /*
1691 * We have whole page size to spend and just little data
1692 * to write, so we can safely use sprintf.
1693 */
1694 ret = sprintf(page, "event=0x%02llx", event);
1695
1696 if (umask)
1697 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1698
1699 if (edge)
1700 ret += sprintf(page + ret, ",edge");
1701
1702 if (pc)
1703 ret += sprintf(page + ret, ",pc");
1704
1705 if (any)
1706 ret += sprintf(page + ret, ",any");
1707
1708 if (inv)
1709 ret += sprintf(page + ret, ",inv");
1710
1711 if (cmask)
1712 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1713
1714 ret += sprintf(page + ret, "\n");
1715
1716 return ret;
1717 }
1718
1719 static int __init init_hw_perf_events(void)
1720 {
1721 struct x86_pmu_quirk *quirk;
1722 int err;
1723
1724 pr_info("Performance Events: ");
1725
1726 switch (boot_cpu_data.x86_vendor) {
1727 case X86_VENDOR_INTEL:
1728 err = intel_pmu_init();
1729 break;
1730 case X86_VENDOR_AMD:
1731 err = amd_pmu_init();
1732 break;
1733 default:
1734 err = -ENOTSUPP;
1735 }
1736 if (err != 0) {
1737 pr_cont("no PMU driver, software events only.\n");
1738 return 0;
1739 }
1740
1741 pmu_check_apic();
1742
1743 /* sanity check that the hardware exists or is emulated */
1744 if (!check_hw_exists())
1745 return 0;
1746
1747 pr_cont("%s PMU driver.\n", x86_pmu.name);
1748
1749 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1750
1751 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1752 quirk->func();
1753
1754 if (!x86_pmu.intel_ctrl)
1755 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1756
1757 perf_events_lapic_init();
1758 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1759
1760 unconstrained = (struct event_constraint)
1761 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1762 0, x86_pmu.num_counters, 0, 0);
1763
1764 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1765
1766 if (x86_pmu.event_attrs)
1767 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1768
1769 if (!x86_pmu.events_sysfs_show)
1770 x86_pmu_events_group.attrs = &empty_attrs;
1771 else
1772 filter_events(x86_pmu_events_group.attrs);
1773
1774 if (x86_pmu.cpu_events) {
1775 struct attribute **tmp;
1776
1777 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1778 if (!WARN_ON(!tmp))
1779 x86_pmu_events_group.attrs = tmp;
1780 }
1781
1782 pr_info("... version: %d\n", x86_pmu.version);
1783 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1784 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1785 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1786 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1787 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1788 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1789
1790 /*
1791 * Install callbacks. Core will call them for each online
1792 * cpu.
1793 */
1794 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1795 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1796 if (err)
1797 return err;
1798
1799 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1800 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1801 x86_pmu_dying_cpu);
1802 if (err)
1803 goto out;
1804
1805 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1806 x86_pmu_online_cpu, NULL);
1807 if (err)
1808 goto out1;
1809
1810 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1811 if (err)
1812 goto out2;
1813
1814 return 0;
1815
1816 out2:
1817 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1818 out1:
1819 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1820 out:
1821 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1822 return err;
1823 }
1824 early_initcall(init_hw_perf_events);
1825
1826 static inline void x86_pmu_read(struct perf_event *event)
1827 {
1828 x86_perf_event_update(event);
1829 }
1830
1831 /*
1832 * Start group events scheduling transaction
1833 * Set the flag to make pmu::enable() not perform the
1834 * schedulability test, it will be performed at commit time
1835 *
1836 * We only support PERF_PMU_TXN_ADD transactions. Save the
1837 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1838 * transactions.
1839 */
1840 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1841 {
1842 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1843
1844 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1845
1846 cpuc->txn_flags = txn_flags;
1847 if (txn_flags & ~PERF_PMU_TXN_ADD)
1848 return;
1849
1850 perf_pmu_disable(pmu);
1851 __this_cpu_write(cpu_hw_events.n_txn, 0);
1852 }
1853
1854 /*
1855 * Stop group events scheduling transaction
1856 * Clear the flag and pmu::enable() will perform the
1857 * schedulability test.
1858 */
1859 static void x86_pmu_cancel_txn(struct pmu *pmu)
1860 {
1861 unsigned int txn_flags;
1862 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1863
1864 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1865
1866 txn_flags = cpuc->txn_flags;
1867 cpuc->txn_flags = 0;
1868 if (txn_flags & ~PERF_PMU_TXN_ADD)
1869 return;
1870
1871 /*
1872 * Truncate collected array by the number of events added in this
1873 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1874 */
1875 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1876 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1877 perf_pmu_enable(pmu);
1878 }
1879
1880 /*
1881 * Commit group events scheduling transaction
1882 * Perform the group schedulability test as a whole
1883 * Return 0 if success
1884 *
1885 * Does not cancel the transaction on failure; expects the caller to do this.
1886 */
1887 static int x86_pmu_commit_txn(struct pmu *pmu)
1888 {
1889 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1890 int assign[X86_PMC_IDX_MAX];
1891 int n, ret;
1892
1893 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1894
1895 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1896 cpuc->txn_flags = 0;
1897 return 0;
1898 }
1899
1900 n = cpuc->n_events;
1901
1902 if (!x86_pmu_initialized())
1903 return -EAGAIN;
1904
1905 ret = x86_pmu.schedule_events(cpuc, n, assign);
1906 if (ret)
1907 return ret;
1908
1909 /*
1910 * copy new assignment, now we know it is possible
1911 * will be used by hw_perf_enable()
1912 */
1913 memcpy(cpuc->assign, assign, n*sizeof(int));
1914
1915 cpuc->txn_flags = 0;
1916 perf_pmu_enable(pmu);
1917 return 0;
1918 }
1919 /*
1920 * a fake_cpuc is used to validate event groups. Due to
1921 * the extra reg logic, we need to also allocate a fake
1922 * per_core and per_cpu structure. Otherwise, group events
1923 * using extra reg may conflict without the kernel being
1924 * able to catch this when the last event gets added to
1925 * the group.
1926 */
1927 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1928 {
1929 kfree(cpuc->shared_regs);
1930 kfree(cpuc);
1931 }
1932
1933 static struct cpu_hw_events *allocate_fake_cpuc(void)
1934 {
1935 struct cpu_hw_events *cpuc;
1936 int cpu = raw_smp_processor_id();
1937
1938 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1939 if (!cpuc)
1940 return ERR_PTR(-ENOMEM);
1941
1942 /* only needed, if we have extra_regs */
1943 if (x86_pmu.extra_regs) {
1944 cpuc->shared_regs = allocate_shared_regs(cpu);
1945 if (!cpuc->shared_regs)
1946 goto error;
1947 }
1948 cpuc->is_fake = 1;
1949 return cpuc;
1950 error:
1951 free_fake_cpuc(cpuc);
1952 return ERR_PTR(-ENOMEM);
1953 }
1954
1955 /*
1956 * validate that we can schedule this event
1957 */
1958 static int validate_event(struct perf_event *event)
1959 {
1960 struct cpu_hw_events *fake_cpuc;
1961 struct event_constraint *c;
1962 int ret = 0;
1963
1964 fake_cpuc = allocate_fake_cpuc();
1965 if (IS_ERR(fake_cpuc))
1966 return PTR_ERR(fake_cpuc);
1967
1968 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1969
1970 if (!c || !c->weight)
1971 ret = -EINVAL;
1972
1973 if (x86_pmu.put_event_constraints)
1974 x86_pmu.put_event_constraints(fake_cpuc, event);
1975
1976 free_fake_cpuc(fake_cpuc);
1977
1978 return ret;
1979 }
1980
1981 /*
1982 * validate a single event group
1983 *
1984 * validation include:
1985 * - check events are compatible which each other
1986 * - events do not compete for the same counter
1987 * - number of events <= number of counters
1988 *
1989 * validation ensures the group can be loaded onto the
1990 * PMU if it was the only group available.
1991 */
1992 static int validate_group(struct perf_event *event)
1993 {
1994 struct perf_event *leader = event->group_leader;
1995 struct cpu_hw_events *fake_cpuc;
1996 int ret = -EINVAL, n;
1997
1998 fake_cpuc = allocate_fake_cpuc();
1999 if (IS_ERR(fake_cpuc))
2000 return PTR_ERR(fake_cpuc);
2001 /*
2002 * the event is not yet connected with its
2003 * siblings therefore we must first collect
2004 * existing siblings, then add the new event
2005 * before we can simulate the scheduling
2006 */
2007 n = collect_events(fake_cpuc, leader, true);
2008 if (n < 0)
2009 goto out;
2010
2011 fake_cpuc->n_events = n;
2012 n = collect_events(fake_cpuc, event, false);
2013 if (n < 0)
2014 goto out;
2015
2016 fake_cpuc->n_events = n;
2017
2018 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2019
2020 out:
2021 free_fake_cpuc(fake_cpuc);
2022 return ret;
2023 }
2024
2025 static int x86_pmu_event_init(struct perf_event *event)
2026 {
2027 struct pmu *tmp;
2028 int err;
2029
2030 switch (event->attr.type) {
2031 case PERF_TYPE_RAW:
2032 case PERF_TYPE_HARDWARE:
2033 case PERF_TYPE_HW_CACHE:
2034 break;
2035
2036 default:
2037 return -ENOENT;
2038 }
2039
2040 err = __x86_pmu_event_init(event);
2041 if (!err) {
2042 /*
2043 * we temporarily connect event to its pmu
2044 * such that validate_group() can classify
2045 * it as an x86 event using is_x86_event()
2046 */
2047 tmp = event->pmu;
2048 event->pmu = &pmu;
2049
2050 if (event->group_leader != event)
2051 err = validate_group(event);
2052 else
2053 err = validate_event(event);
2054
2055 event->pmu = tmp;
2056 }
2057 if (err) {
2058 if (event->destroy)
2059 event->destroy(event);
2060 }
2061
2062 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2063 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2064
2065 return err;
2066 }
2067
2068 static void refresh_pce(void *ignored)
2069 {
2070 if (current->mm)
2071 load_mm_cr4(current->mm);
2072 }
2073
2074 static void x86_pmu_event_mapped(struct perf_event *event)
2075 {
2076 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2077 return;
2078
2079 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2080 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2081 }
2082
2083 static void x86_pmu_event_unmapped(struct perf_event *event)
2084 {
2085 if (!current->mm)
2086 return;
2087
2088 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2089 return;
2090
2091 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2092 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2093 }
2094
2095 static int x86_pmu_event_idx(struct perf_event *event)
2096 {
2097 int idx = event->hw.idx;
2098
2099 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2100 return 0;
2101
2102 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2103 idx -= INTEL_PMC_IDX_FIXED;
2104 idx |= 1 << 30;
2105 }
2106
2107 return idx + 1;
2108 }
2109
2110 static ssize_t get_attr_rdpmc(struct device *cdev,
2111 struct device_attribute *attr,
2112 char *buf)
2113 {
2114 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2115 }
2116
2117 static ssize_t set_attr_rdpmc(struct device *cdev,
2118 struct device_attribute *attr,
2119 const char *buf, size_t count)
2120 {
2121 unsigned long val;
2122 ssize_t ret;
2123
2124 ret = kstrtoul(buf, 0, &val);
2125 if (ret)
2126 return ret;
2127
2128 if (val > 2)
2129 return -EINVAL;
2130
2131 if (x86_pmu.attr_rdpmc_broken)
2132 return -ENOTSUPP;
2133
2134 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2135 /*
2136 * Changing into or out of always available, aka
2137 * perf-event-bypassing mode. This path is extremely slow,
2138 * but only root can trigger it, so it's okay.
2139 */
2140 if (val == 2)
2141 static_key_slow_inc(&rdpmc_always_available);
2142 else
2143 static_key_slow_dec(&rdpmc_always_available);
2144 on_each_cpu(refresh_pce, NULL, 1);
2145 }
2146
2147 x86_pmu.attr_rdpmc = val;
2148
2149 return count;
2150 }
2151
2152 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2153
2154 static struct attribute *x86_pmu_attrs[] = {
2155 &dev_attr_rdpmc.attr,
2156 NULL,
2157 };
2158
2159 static struct attribute_group x86_pmu_attr_group = {
2160 .attrs = x86_pmu_attrs,
2161 };
2162
2163 static const struct attribute_group *x86_pmu_attr_groups[] = {
2164 &x86_pmu_attr_group,
2165 &x86_pmu_format_group,
2166 &x86_pmu_events_group,
2167 NULL,
2168 };
2169
2170 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2171 {
2172 if (x86_pmu.sched_task)
2173 x86_pmu.sched_task(ctx, sched_in);
2174 }
2175
2176 void perf_check_microcode(void)
2177 {
2178 if (x86_pmu.check_microcode)
2179 x86_pmu.check_microcode();
2180 }
2181 EXPORT_SYMBOL_GPL(perf_check_microcode);
2182
2183 static struct pmu pmu = {
2184 .pmu_enable = x86_pmu_enable,
2185 .pmu_disable = x86_pmu_disable,
2186
2187 .attr_groups = x86_pmu_attr_groups,
2188
2189 .event_init = x86_pmu_event_init,
2190
2191 .event_mapped = x86_pmu_event_mapped,
2192 .event_unmapped = x86_pmu_event_unmapped,
2193
2194 .add = x86_pmu_add,
2195 .del = x86_pmu_del,
2196 .start = x86_pmu_start,
2197 .stop = x86_pmu_stop,
2198 .read = x86_pmu_read,
2199
2200 .start_txn = x86_pmu_start_txn,
2201 .cancel_txn = x86_pmu_cancel_txn,
2202 .commit_txn = x86_pmu_commit_txn,
2203
2204 .event_idx = x86_pmu_event_idx,
2205 .sched_task = x86_pmu_sched_task,
2206 .task_ctx_size = sizeof(struct x86_perf_task_context),
2207 };
2208
2209 void arch_perf_update_userpage(struct perf_event *event,
2210 struct perf_event_mmap_page *userpg, u64 now)
2211 {
2212 struct cyc2ns_data *data;
2213
2214 userpg->cap_user_time = 0;
2215 userpg->cap_user_time_zero = 0;
2216 userpg->cap_user_rdpmc =
2217 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2218 userpg->pmc_width = x86_pmu.cntval_bits;
2219
2220 if (!sched_clock_stable())
2221 return;
2222
2223 data = cyc2ns_read_begin();
2224
2225 /*
2226 * Internal timekeeping for enabled/running/stopped times
2227 * is always in the local_clock domain.
2228 */
2229 userpg->cap_user_time = 1;
2230 userpg->time_mult = data->cyc2ns_mul;
2231 userpg->time_shift = data->cyc2ns_shift;
2232 userpg->time_offset = data->cyc2ns_offset - now;
2233
2234 /*
2235 * cap_user_time_zero doesn't make sense when we're using a different
2236 * time base for the records.
2237 */
2238 if (!event->attr.use_clockid) {
2239 userpg->cap_user_time_zero = 1;
2240 userpg->time_zero = data->cyc2ns_offset;
2241 }
2242
2243 cyc2ns_read_end(data);
2244 }
2245
2246 /*
2247 * callchain support
2248 */
2249
2250 static int backtrace_stack(void *data, char *name)
2251 {
2252 return 0;
2253 }
2254
2255 static int backtrace_address(void *data, unsigned long addr, int reliable)
2256 {
2257 struct perf_callchain_entry_ctx *entry = data;
2258
2259 return perf_callchain_store(entry, addr);
2260 }
2261
2262 static const struct stacktrace_ops backtrace_ops = {
2263 .stack = backtrace_stack,
2264 .address = backtrace_address,
2265 .walk_stack = print_context_stack_bp,
2266 };
2267
2268 void
2269 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2270 {
2271 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2272 /* TODO: We don't support guest os callchain now */
2273 return;
2274 }
2275
2276 perf_callchain_store(entry, regs->ip);
2277
2278 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2279 }
2280
2281 static inline int
2282 valid_user_frame(const void __user *fp, unsigned long size)
2283 {
2284 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2285 }
2286
2287 static unsigned long get_segment_base(unsigned int segment)
2288 {
2289 struct desc_struct *desc;
2290 int idx = segment >> 3;
2291
2292 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2293 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2294 struct ldt_struct *ldt;
2295
2296 if (idx > LDT_ENTRIES)
2297 return 0;
2298
2299 /* IRQs are off, so this synchronizes with smp_store_release */
2300 ldt = lockless_dereference(current->active_mm->context.ldt);
2301 if (!ldt || idx > ldt->size)
2302 return 0;
2303
2304 desc = &ldt->entries[idx];
2305 #else
2306 return 0;
2307 #endif
2308 } else {
2309 if (idx > GDT_ENTRIES)
2310 return 0;
2311
2312 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2313 }
2314
2315 return get_desc_base(desc);
2316 }
2317
2318 #ifdef CONFIG_IA32_EMULATION
2319
2320 #include <asm/compat.h>
2321
2322 static inline int
2323 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2324 {
2325 /* 32-bit process in 64-bit kernel. */
2326 unsigned long ss_base, cs_base;
2327 struct stack_frame_ia32 frame;
2328 const void __user *fp;
2329
2330 if (!test_thread_flag(TIF_IA32))
2331 return 0;
2332
2333 cs_base = get_segment_base(regs->cs);
2334 ss_base = get_segment_base(regs->ss);
2335
2336 fp = compat_ptr(ss_base + regs->bp);
2337 pagefault_disable();
2338 while (entry->nr < entry->max_stack) {
2339 unsigned long bytes;
2340 frame.next_frame = 0;
2341 frame.return_address = 0;
2342
2343 if (!access_ok(VERIFY_READ, fp, 8))
2344 break;
2345
2346 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2347 if (bytes != 0)
2348 break;
2349 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2350 if (bytes != 0)
2351 break;
2352
2353 if (!valid_user_frame(fp, sizeof(frame)))
2354 break;
2355
2356 perf_callchain_store(entry, cs_base + frame.return_address);
2357 fp = compat_ptr(ss_base + frame.next_frame);
2358 }
2359 pagefault_enable();
2360 return 1;
2361 }
2362 #else
2363 static inline int
2364 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2365 {
2366 return 0;
2367 }
2368 #endif
2369
2370 void
2371 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2372 {
2373 struct stack_frame frame;
2374 const unsigned long __user *fp;
2375
2376 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2377 /* TODO: We don't support guest os callchain now */
2378 return;
2379 }
2380
2381 /*
2382 * We don't know what to do with VM86 stacks.. ignore them for now.
2383 */
2384 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2385 return;
2386
2387 fp = (unsigned long __user *)regs->bp;
2388
2389 perf_callchain_store(entry, regs->ip);
2390
2391 if (!current->mm)
2392 return;
2393
2394 if (perf_callchain_user32(regs, entry))
2395 return;
2396
2397 pagefault_disable();
2398 while (entry->nr < entry->max_stack) {
2399 unsigned long bytes;
2400
2401 frame.next_frame = NULL;
2402 frame.return_address = 0;
2403
2404 if (!access_ok(VERIFY_READ, fp, sizeof(*fp) * 2))
2405 break;
2406
2407 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2408 if (bytes != 0)
2409 break;
2410 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2411 if (bytes != 0)
2412 break;
2413
2414 if (!valid_user_frame(fp, sizeof(frame)))
2415 break;
2416
2417 perf_callchain_store(entry, frame.return_address);
2418 fp = (void __user *)frame.next_frame;
2419 }
2420 pagefault_enable();
2421 }
2422
2423 /*
2424 * Deal with code segment offsets for the various execution modes:
2425 *
2426 * VM86 - the good olde 16 bit days, where the linear address is
2427 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2428 *
2429 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2430 * to figure out what the 32bit base address is.
2431 *
2432 * X32 - has TIF_X32 set, but is running in x86_64
2433 *
2434 * X86_64 - CS,DS,SS,ES are all zero based.
2435 */
2436 static unsigned long code_segment_base(struct pt_regs *regs)
2437 {
2438 /*
2439 * For IA32 we look at the GDT/LDT segment base to convert the
2440 * effective IP to a linear address.
2441 */
2442
2443 #ifdef CONFIG_X86_32
2444 /*
2445 * If we are in VM86 mode, add the segment offset to convert to a
2446 * linear address.
2447 */
2448 if (regs->flags & X86_VM_MASK)
2449 return 0x10 * regs->cs;
2450
2451 if (user_mode(regs) && regs->cs != __USER_CS)
2452 return get_segment_base(regs->cs);
2453 #else
2454 if (user_mode(regs) && !user_64bit_mode(regs) &&
2455 regs->cs != __USER32_CS)
2456 return get_segment_base(regs->cs);
2457 #endif
2458 return 0;
2459 }
2460
2461 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2462 {
2463 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2464 return perf_guest_cbs->get_guest_ip();
2465
2466 return regs->ip + code_segment_base(regs);
2467 }
2468
2469 unsigned long perf_misc_flags(struct pt_regs *regs)
2470 {
2471 int misc = 0;
2472
2473 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2474 if (perf_guest_cbs->is_user_mode())
2475 misc |= PERF_RECORD_MISC_GUEST_USER;
2476 else
2477 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2478 } else {
2479 if (user_mode(regs))
2480 misc |= PERF_RECORD_MISC_USER;
2481 else
2482 misc |= PERF_RECORD_MISC_KERNEL;
2483 }
2484
2485 if (regs->flags & PERF_EFLAGS_EXACT)
2486 misc |= PERF_RECORD_MISC_EXACT_IP;
2487
2488 return misc;
2489 }
2490
2491 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2492 {
2493 cap->version = x86_pmu.version;
2494 cap->num_counters_gp = x86_pmu.num_counters;
2495 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2496 cap->bit_width_gp = x86_pmu.cntval_bits;
2497 cap->bit_width_fixed = x86_pmu.cntval_bits;
2498 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2499 cap->events_mask_len = x86_pmu.events_mask_len;
2500 }
2501 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);