]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/events/intel/core.c
Documentation/l1tf: Fix small spelling typo
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / intel / core.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25 * Intel PerfMon, used on Core and later.
26 */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119 /*
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
122 */
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128 EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147 /*
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
150 */
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156 EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
194
195 /*
196 * when HT is off, these can only run on the bottom 4 counters
197 */
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
203
204 EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 /*
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
236 */
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246 EVENT_PTR(mem_ld_nhm),
247 NULL,
248 };
249
250 /*
251 * topdown events for Intel Core CPUs.
252 *
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
256 *
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
259 *
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262 */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281 EVENT_PTR(mem_ld_snb),
282 EVENT_PTR(mem_st_snb),
283 EVENT_PTR(td_slots_issued),
284 EVENT_PTR(td_slots_retired),
285 EVENT_PTR(td_fetch_bubbles),
286 EVENT_PTR(td_total_slots),
287 EVENT_PTR(td_total_slots_scale),
288 EVENT_PTR(td_recovery_bubbles),
289 EVENT_PTR(td_recovery_bubbles_scale),
290 NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307 /*
308 * When HT is off these events can only run on the bottom 4 counters
309 * When HT is on, they are impacted by the HT bug and require EXCL access
310 */
311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316 EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 /*
326 * when HT is off, these can only run on the bottom 4 counters
327 */
328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
332 EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341 * Notes on the events:
342 * - data reads do not include code reads (comparable to earlier tables)
343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
344 * - remote node access includes remote memory, remote cache, remote mmio.
345 * - prefetches are not included in the counts.
346 * - icache miss does not include decoded icache
347 */
348
349 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
350 #define SKL_DEMAND_RFO BIT_ULL(1)
351 #define SKL_ANY_RESPONSE BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT BIT_ULL(30)
362 #define SKL_SNOOP_NONE BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
364 #define SKL_SNOOP_MISS BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
367 #define SKL_SNOOP_HITM BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385 [PERF_COUNT_HW_CACHE_MAX]
386 [PERF_COUNT_HW_CACHE_OP_MAX]
387 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389 [ C(L1D ) ] = {
390 [ C(OP_READ) ] = {
391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
393 },
394 [ C(OP_WRITE) ] = {
395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
396 [ C(RESULT_MISS) ] = 0x0,
397 },
398 [ C(OP_PREFETCH) ] = {
399 [ C(RESULT_ACCESS) ] = 0x0,
400 [ C(RESULT_MISS) ] = 0x0,
401 },
402 },
403 [ C(L1I ) ] = {
404 [ C(OP_READ) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
407 },
408 [ C(OP_WRITE) ] = {
409 [ C(RESULT_ACCESS) ] = -1,
410 [ C(RESULT_MISS) ] = -1,
411 },
412 [ C(OP_PREFETCH) ] = {
413 [ C(RESULT_ACCESS) ] = 0x0,
414 [ C(RESULT_MISS) ] = 0x0,
415 },
416 },
417 [ C(LL ) ] = {
418 [ C(OP_READ) ] = {
419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
421 },
422 [ C(OP_WRITE) ] = {
423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
425 },
426 [ C(OP_PREFETCH) ] = {
427 [ C(RESULT_ACCESS) ] = 0x0,
428 [ C(RESULT_MISS) ] = 0x0,
429 },
430 },
431 [ C(DTLB) ] = {
432 [ C(OP_READ) ] = {
433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
434 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 },
436 [ C(OP_WRITE) ] = {
437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
438 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
439 },
440 [ C(OP_PREFETCH) ] = {
441 [ C(RESULT_ACCESS) ] = 0x0,
442 [ C(RESULT_MISS) ] = 0x0,
443 },
444 },
445 [ C(ITLB) ] = {
446 [ C(OP_READ) ] = {
447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
449 },
450 [ C(OP_WRITE) ] = {
451 [ C(RESULT_ACCESS) ] = -1,
452 [ C(RESULT_MISS) ] = -1,
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = -1,
456 [ C(RESULT_MISS) ] = -1,
457 },
458 },
459 [ C(BPU ) ] = {
460 [ C(OP_READ) ] = {
461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
463 },
464 [ C(OP_WRITE) ] = {
465 [ C(RESULT_ACCESS) ] = -1,
466 [ C(RESULT_MISS) ] = -1,
467 },
468 [ C(OP_PREFETCH) ] = {
469 [ C(RESULT_ACCESS) ] = -1,
470 [ C(RESULT_MISS) ] = -1,
471 },
472 },
473 [ C(NODE) ] = {
474 [ C(OP_READ) ] = {
475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
477 },
478 [ C(OP_WRITE) ] = {
479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
481 },
482 [ C(OP_PREFETCH) ] = {
483 [ C(RESULT_ACCESS) ] = 0x0,
484 [ C(RESULT_MISS) ] = 0x0,
485 },
486 },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490 [PERF_COUNT_HW_CACHE_MAX]
491 [PERF_COUNT_HW_CACHE_OP_MAX]
492 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494 [ C(LL ) ] = {
495 [ C(OP_READ) ] = {
496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
499 SKL_L3_MISS|SKL_ANY_SNOOP|
500 SKL_SUPPLIER_NONE,
501 },
502 [ C(OP_WRITE) ] = {
503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
506 SKL_L3_MISS|SKL_ANY_SNOOP|
507 SKL_SUPPLIER_NONE,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(NODE) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 },
521 [ C(OP_WRITE) ] = {
522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = 0x0,
529 [ C(RESULT_MISS) ] = 0x0,
530 },
531 },
532 };
533
534 #define SNB_DMND_DATA_RD (1ULL << 0)
535 #define SNB_DMND_RFO (1ULL << 1)
536 #define SNB_DMND_IFETCH (1ULL << 2)
537 #define SNB_DMND_WB (1ULL << 3)
538 #define SNB_PF_DATA_RD (1ULL << 4)
539 #define SNB_PF_RFO (1ULL << 5)
540 #define SNB_PF_IFETCH (1ULL << 6)
541 #define SNB_LLC_DATA_RD (1ULL << 7)
542 #define SNB_LLC_RFO (1ULL << 8)
543 #define SNB_LLC_IFETCH (1ULL << 9)
544 #define SNB_BUS_LOCKS (1ULL << 10)
545 #define SNB_STRM_ST (1ULL << 11)
546 #define SNB_OTHER (1ULL << 15)
547 #define SNB_RESP_ANY (1ULL << 16)
548 #define SNB_NO_SUPP (1ULL << 17)
549 #define SNB_LLC_HITM (1ULL << 18)
550 #define SNB_LLC_HITE (1ULL << 19)
551 #define SNB_LLC_HITS (1ULL << 20)
552 #define SNB_LLC_HITF (1ULL << 21)
553 #define SNB_LOCAL (1ULL << 22)
554 #define SNB_REMOTE (0xffULL << 23)
555 #define SNB_SNP_NONE (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
557 #define SNB_SNP_MISS (1ULL << 33)
558 #define SNB_NO_FWD (1ULL << 34)
559 #define SNB_SNP_FWD (1ULL << 35)
560 #define SNB_HITM (1ULL << 36)
561 #define SNB_NON_DRAM (1ULL << 37)
562
563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 SNB_HITM)
570
571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS SNB_RESP_ANY
575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578 [PERF_COUNT_HW_CACHE_MAX]
579 [PERF_COUNT_HW_CACHE_OP_MAX]
580 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582 [ C(LL ) ] = {
583 [ C(OP_READ) ] = {
584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
586 },
587 [ C(OP_WRITE) ] = {
588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 },
591 [ C(OP_PREFETCH) ] = {
592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 },
595 },
596 [ C(NODE) ] = {
597 [ C(OP_READ) ] = {
598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 },
601 [ C(OP_WRITE) ] = {
602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 },
605 [ C(OP_PREFETCH) ] = {
606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 },
609 },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613 [PERF_COUNT_HW_CACHE_MAX]
614 [PERF_COUNT_HW_CACHE_OP_MAX]
615 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617 [ C(L1D) ] = {
618 [ C(OP_READ) ] = {
619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
621 },
622 [ C(OP_WRITE) ] = {
623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
629 },
630 },
631 [ C(L1I ) ] = {
632 [ C(OP_READ) ] = {
633 [ C(RESULT_ACCESS) ] = 0x0,
634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
635 },
636 [ C(OP_WRITE) ] = {
637 [ C(RESULT_ACCESS) ] = -1,
638 [ C(RESULT_MISS) ] = -1,
639 },
640 [ C(OP_PREFETCH) ] = {
641 [ C(RESULT_ACCESS) ] = 0x0,
642 [ C(RESULT_MISS) ] = 0x0,
643 },
644 },
645 [ C(LL ) ] = {
646 [ C(OP_READ) ] = {
647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 [ C(RESULT_ACCESS) ] = 0x01b7,
649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 [ C(RESULT_MISS) ] = 0x01b7,
651 },
652 [ C(OP_WRITE) ] = {
653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 [ C(RESULT_ACCESS) ] = 0x01b7,
655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 [ C(RESULT_MISS) ] = 0x01b7,
657 },
658 [ C(OP_PREFETCH) ] = {
659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 [ C(RESULT_ACCESS) ] = 0x01b7,
661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 [ C(RESULT_MISS) ] = 0x01b7,
663 },
664 },
665 [ C(DTLB) ] = {
666 [ C(OP_READ) ] = {
667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 },
670 [ C(OP_WRITE) ] = {
671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 },
674 [ C(OP_PREFETCH) ] = {
675 [ C(RESULT_ACCESS) ] = 0x0,
676 [ C(RESULT_MISS) ] = 0x0,
677 },
678 },
679 [ C(ITLB) ] = {
680 [ C(OP_READ) ] = {
681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
683 },
684 [ C(OP_WRITE) ] = {
685 [ C(RESULT_ACCESS) ] = -1,
686 [ C(RESULT_MISS) ] = -1,
687 },
688 [ C(OP_PREFETCH) ] = {
689 [ C(RESULT_ACCESS) ] = -1,
690 [ C(RESULT_MISS) ] = -1,
691 },
692 },
693 [ C(BPU ) ] = {
694 [ C(OP_READ) ] = {
695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 },
698 [ C(OP_WRITE) ] = {
699 [ C(RESULT_ACCESS) ] = -1,
700 [ C(RESULT_MISS) ] = -1,
701 },
702 [ C(OP_PREFETCH) ] = {
703 [ C(RESULT_ACCESS) ] = -1,
704 [ C(RESULT_MISS) ] = -1,
705 },
706 },
707 [ C(NODE) ] = {
708 [ C(OP_READ) ] = {
709 [ C(RESULT_ACCESS) ] = 0x01b7,
710 [ C(RESULT_MISS) ] = 0x01b7,
711 },
712 [ C(OP_WRITE) ] = {
713 [ C(RESULT_ACCESS) ] = 0x01b7,
714 [ C(RESULT_MISS) ] = 0x01b7,
715 },
716 [ C(OP_PREFETCH) ] = {
717 [ C(RESULT_ACCESS) ] = 0x01b7,
718 [ C(RESULT_MISS) ] = 0x01b7,
719 },
720 },
721
722 };
723
724 /*
725 * Notes on the events:
726 * - data reads do not include code reads (comparable to earlier tables)
727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
728 * - remote node access includes remote memory, remote cache, remote mmio.
729 * - prefetches are not included in the counts because they are not
730 * reliably counted.
731 */
732
733 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
734 #define HSW_DEMAND_RFO BIT_ULL(1)
735 #define HSW_ANY_RESPONSE BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
746 #define HSW_SNOOP_MISS BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
749 #define HSW_SNOOP_HITM BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL BIT(26)
763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769 [PERF_COUNT_HW_CACHE_MAX]
770 [PERF_COUNT_HW_CACHE_OP_MAX]
771 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773 [ C(L1D ) ] = {
774 [ C(OP_READ) ] = {
775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
777 },
778 [ C(OP_WRITE) ] = {
779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
780 [ C(RESULT_MISS) ] = 0x0,
781 },
782 [ C(OP_PREFETCH) ] = {
783 [ C(RESULT_ACCESS) ] = 0x0,
784 [ C(RESULT_MISS) ] = 0x0,
785 },
786 },
787 [ C(L1I ) ] = {
788 [ C(OP_READ) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
791 },
792 [ C(OP_WRITE) ] = {
793 [ C(RESULT_ACCESS) ] = -1,
794 [ C(RESULT_MISS) ] = -1,
795 },
796 [ C(OP_PREFETCH) ] = {
797 [ C(RESULT_ACCESS) ] = 0x0,
798 [ C(RESULT_MISS) ] = 0x0,
799 },
800 },
801 [ C(LL ) ] = {
802 [ C(OP_READ) ] = {
803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
805 },
806 [ C(OP_WRITE) ] = {
807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
809 },
810 [ C(OP_PREFETCH) ] = {
811 [ C(RESULT_ACCESS) ] = 0x0,
812 [ C(RESULT_MISS) ] = 0x0,
813 },
814 },
815 [ C(DTLB) ] = {
816 [ C(OP_READ) ] = {
817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 },
820 [ C(OP_WRITE) ] = {
821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 },
824 [ C(OP_PREFETCH) ] = {
825 [ C(RESULT_ACCESS) ] = 0x0,
826 [ C(RESULT_MISS) ] = 0x0,
827 },
828 },
829 [ C(ITLB) ] = {
830 [ C(OP_READ) ] = {
831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = -1,
836 [ C(RESULT_MISS) ] = -1,
837 },
838 [ C(OP_PREFETCH) ] = {
839 [ C(RESULT_ACCESS) ] = -1,
840 [ C(RESULT_MISS) ] = -1,
841 },
842 },
843 [ C(BPU ) ] = {
844 [ C(OP_READ) ] = {
845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
847 },
848 [ C(OP_WRITE) ] = {
849 [ C(RESULT_ACCESS) ] = -1,
850 [ C(RESULT_MISS) ] = -1,
851 },
852 [ C(OP_PREFETCH) ] = {
853 [ C(RESULT_ACCESS) ] = -1,
854 [ C(RESULT_MISS) ] = -1,
855 },
856 },
857 [ C(NODE) ] = {
858 [ C(OP_READ) ] = {
859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
861 },
862 [ C(OP_WRITE) ] = {
863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
865 },
866 [ C(OP_PREFETCH) ] = {
867 [ C(RESULT_ACCESS) ] = 0x0,
868 [ C(RESULT_MISS) ] = 0x0,
869 },
870 },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 [PERF_COUNT_HW_CACHE_MAX]
875 [PERF_COUNT_HW_CACHE_OP_MAX]
876 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878 [ C(LL ) ] = {
879 [ C(OP_READ) ] = {
880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 HSW_LLC_ACCESS,
882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
883 HSW_L3_MISS|HSW_ANY_SNOOP,
884 },
885 [ C(OP_WRITE) ] = {
886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 HSW_LLC_ACCESS,
888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
889 HSW_L3_MISS|HSW_ANY_SNOOP,
890 },
891 [ C(OP_PREFETCH) ] = {
892 [ C(RESULT_ACCESS) ] = 0x0,
893 [ C(RESULT_MISS) ] = 0x0,
894 },
895 },
896 [ C(NODE) ] = {
897 [ C(OP_READ) ] = {
898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 HSW_L3_MISS_LOCAL_DRAM|
900 HSW_SNOOP_DRAM,
901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
902 HSW_L3_MISS_REMOTE|
903 HSW_SNOOP_DRAM,
904 },
905 [ C(OP_WRITE) ] = {
906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 HSW_L3_MISS_LOCAL_DRAM|
908 HSW_SNOOP_DRAM,
909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
910 HSW_L3_MISS_REMOTE|
911 HSW_SNOOP_DRAM,
912 },
913 [ C(OP_PREFETCH) ] = {
914 [ C(RESULT_ACCESS) ] = 0x0,
915 [ C(RESULT_MISS) ] = 0x0,
916 },
917 },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921 [PERF_COUNT_HW_CACHE_MAX]
922 [PERF_COUNT_HW_CACHE_OP_MAX]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925 [ C(L1D) ] = {
926 [ C(OP_READ) ] = {
927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
929 },
930 [ C(OP_WRITE) ] = {
931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
933 },
934 [ C(OP_PREFETCH) ] = {
935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
937 },
938 },
939 [ C(L1I ) ] = {
940 [ C(OP_READ) ] = {
941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
943 },
944 [ C(OP_WRITE) ] = {
945 [ C(RESULT_ACCESS) ] = -1,
946 [ C(RESULT_MISS) ] = -1,
947 },
948 [ C(OP_PREFETCH) ] = {
949 [ C(RESULT_ACCESS) ] = 0x0,
950 [ C(RESULT_MISS) ] = 0x0,
951 },
952 },
953 [ C(LL ) ] = {
954 [ C(OP_READ) ] = {
955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 [ C(RESULT_ACCESS) ] = 0x01b7,
957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 [ C(RESULT_MISS) ] = 0x01b7,
959 },
960 /*
961 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 * on RFO.
963 */
964 [ C(OP_WRITE) ] = {
965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 [ C(RESULT_ACCESS) ] = 0x01b7,
967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 [ C(RESULT_MISS) ] = 0x01b7,
969 },
970 [ C(OP_PREFETCH) ] = {
971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 [ C(RESULT_ACCESS) ] = 0x01b7,
973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 [ C(RESULT_MISS) ] = 0x01b7,
975 },
976 },
977 [ C(DTLB) ] = {
978 [ C(OP_READ) ] = {
979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
981 },
982 [ C(OP_WRITE) ] = {
983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
985 },
986 [ C(OP_PREFETCH) ] = {
987 [ C(RESULT_ACCESS) ] = 0x0,
988 [ C(RESULT_MISS) ] = 0x0,
989 },
990 },
991 [ C(ITLB) ] = {
992 [ C(OP_READ) ] = {
993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
995 },
996 [ C(OP_WRITE) ] = {
997 [ C(RESULT_ACCESS) ] = -1,
998 [ C(RESULT_MISS) ] = -1,
999 },
1000 [ C(OP_PREFETCH) ] = {
1001 [ C(RESULT_ACCESS) ] = -1,
1002 [ C(RESULT_MISS) ] = -1,
1003 },
1004 },
1005 [ C(BPU ) ] = {
1006 [ C(OP_READ) ] = {
1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1009 },
1010 [ C(OP_WRITE) ] = {
1011 [ C(RESULT_ACCESS) ] = -1,
1012 [ C(RESULT_MISS) ] = -1,
1013 },
1014 [ C(OP_PREFETCH) ] = {
1015 [ C(RESULT_ACCESS) ] = -1,
1016 [ C(RESULT_MISS) ] = -1,
1017 },
1018 },
1019 [ C(NODE) ] = {
1020 [ C(OP_READ) ] = {
1021 [ C(RESULT_ACCESS) ] = 0x01b7,
1022 [ C(RESULT_MISS) ] = 0x01b7,
1023 },
1024 [ C(OP_WRITE) ] = {
1025 [ C(RESULT_ACCESS) ] = 0x01b7,
1026 [ C(RESULT_MISS) ] = 0x01b7,
1027 },
1028 [ C(OP_PREFETCH) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x01b7,
1030 [ C(RESULT_MISS) ] = 0x01b7,
1031 },
1032 },
1033 };
1034
1035 /*
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
1038 */
1039
1040 #define NHM_DMND_DATA_RD (1 << 0)
1041 #define NHM_DMND_RFO (1 << 1)
1042 #define NHM_DMND_IFETCH (1 << 2)
1043 #define NHM_DMND_WB (1 << 3)
1044 #define NHM_PF_DATA_RD (1 << 4)
1045 #define NHM_PF_DATA_RFO (1 << 5)
1046 #define NHM_PF_IFETCH (1 << 6)
1047 #define NHM_OFFCORE_OTHER (1 << 7)
1048 #define NHM_UNCORE_HIT (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1050 #define NHM_OTHER_CORE_HITM (1 << 10)
1051 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1053 #define NHM_REMOTE_DRAM (1 << 13)
1054 #define NHM_LOCAL_DRAM (1 << 14)
1055 #define NHM_NON_DRAM (1 << 15)
1056
1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 [PERF_COUNT_HW_CACHE_MAX]
1070 [PERF_COUNT_HW_CACHE_OP_MAX]
1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073 [ C(LL ) ] = {
1074 [ C(OP_READ) ] = {
1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1077 },
1078 [ C(OP_WRITE) ] = {
1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 },
1082 [ C(OP_PREFETCH) ] = {
1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 },
1086 },
1087 [ C(NODE) ] = {
1088 [ C(OP_READ) ] = {
1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1091 },
1092 [ C(OP_WRITE) ] = {
1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 },
1096 [ C(OP_PREFETCH) ] = {
1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 },
1100 },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 [PERF_COUNT_HW_CACHE_MAX]
1105 [PERF_COUNT_HW_CACHE_OP_MAX]
1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108 [ C(L1D) ] = {
1109 [ C(OP_READ) ] = {
1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1112 },
1113 [ C(OP_WRITE) ] = {
1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1116 },
1117 [ C(OP_PREFETCH) ] = {
1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1120 },
1121 },
1122 [ C(L1I ) ] = {
1123 [ C(OP_READ) ] = {
1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1126 },
1127 [ C(OP_WRITE) ] = {
1128 [ C(RESULT_ACCESS) ] = -1,
1129 [ C(RESULT_MISS) ] = -1,
1130 },
1131 [ C(OP_PREFETCH) ] = {
1132 [ C(RESULT_ACCESS) ] = 0x0,
1133 [ C(RESULT_MISS) ] = 0x0,
1134 },
1135 },
1136 [ C(LL ) ] = {
1137 [ C(OP_READ) ] = {
1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 [ C(RESULT_ACCESS) ] = 0x01b7,
1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 [ C(RESULT_MISS) ] = 0x01b7,
1142 },
1143 /*
1144 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 * on RFO.
1146 */
1147 [ C(OP_WRITE) ] = {
1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 [ C(RESULT_ACCESS) ] = 0x01b7,
1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 [ C(RESULT_MISS) ] = 0x01b7,
1152 },
1153 [ C(OP_PREFETCH) ] = {
1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 [ C(RESULT_ACCESS) ] = 0x01b7,
1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 [ C(RESULT_MISS) ] = 0x01b7,
1158 },
1159 },
1160 [ C(DTLB) ] = {
1161 [ C(OP_READ) ] = {
1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1164 },
1165 [ C(OP_WRITE) ] = {
1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1168 },
1169 [ C(OP_PREFETCH) ] = {
1170 [ C(RESULT_ACCESS) ] = 0x0,
1171 [ C(RESULT_MISS) ] = 0x0,
1172 },
1173 },
1174 [ C(ITLB) ] = {
1175 [ C(OP_READ) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1178 },
1179 [ C(OP_WRITE) ] = {
1180 [ C(RESULT_ACCESS) ] = -1,
1181 [ C(RESULT_MISS) ] = -1,
1182 },
1183 [ C(OP_PREFETCH) ] = {
1184 [ C(RESULT_ACCESS) ] = -1,
1185 [ C(RESULT_MISS) ] = -1,
1186 },
1187 },
1188 [ C(BPU ) ] = {
1189 [ C(OP_READ) ] = {
1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1192 },
1193 [ C(OP_WRITE) ] = {
1194 [ C(RESULT_ACCESS) ] = -1,
1195 [ C(RESULT_MISS) ] = -1,
1196 },
1197 [ C(OP_PREFETCH) ] = {
1198 [ C(RESULT_ACCESS) ] = -1,
1199 [ C(RESULT_MISS) ] = -1,
1200 },
1201 },
1202 [ C(NODE) ] = {
1203 [ C(OP_READ) ] = {
1204 [ C(RESULT_ACCESS) ] = 0x01b7,
1205 [ C(RESULT_MISS) ] = 0x01b7,
1206 },
1207 [ C(OP_WRITE) ] = {
1208 [ C(RESULT_ACCESS) ] = 0x01b7,
1209 [ C(RESULT_MISS) ] = 0x01b7,
1210 },
1211 [ C(OP_PREFETCH) ] = {
1212 [ C(RESULT_ACCESS) ] = 0x01b7,
1213 [ C(RESULT_MISS) ] = 0x01b7,
1214 },
1215 },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 [PERF_COUNT_HW_CACHE_MAX]
1220 [PERF_COUNT_HW_CACHE_OP_MAX]
1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223 [ C(L1D) ] = {
1224 [ C(OP_READ) ] = {
1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1227 },
1228 [ C(OP_WRITE) ] = {
1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1231 },
1232 [ C(OP_PREFETCH) ] = {
1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1234 [ C(RESULT_MISS) ] = 0,
1235 },
1236 },
1237 [ C(L1I ) ] = {
1238 [ C(OP_READ) ] = {
1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1241 },
1242 [ C(OP_WRITE) ] = {
1243 [ C(RESULT_ACCESS) ] = -1,
1244 [ C(RESULT_MISS) ] = -1,
1245 },
1246 [ C(OP_PREFETCH) ] = {
1247 [ C(RESULT_ACCESS) ] = 0,
1248 [ C(RESULT_MISS) ] = 0,
1249 },
1250 },
1251 [ C(LL ) ] = {
1252 [ C(OP_READ) ] = {
1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1255 },
1256 [ C(OP_WRITE) ] = {
1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1259 },
1260 [ C(OP_PREFETCH) ] = {
1261 [ C(RESULT_ACCESS) ] = 0,
1262 [ C(RESULT_MISS) ] = 0,
1263 },
1264 },
1265 [ C(DTLB) ] = {
1266 [ C(OP_READ) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1269 },
1270 [ C(OP_WRITE) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1273 },
1274 [ C(OP_PREFETCH) ] = {
1275 [ C(RESULT_ACCESS) ] = 0,
1276 [ C(RESULT_MISS) ] = 0,
1277 },
1278 },
1279 [ C(ITLB) ] = {
1280 [ C(OP_READ) ] = {
1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1283 },
1284 [ C(OP_WRITE) ] = {
1285 [ C(RESULT_ACCESS) ] = -1,
1286 [ C(RESULT_MISS) ] = -1,
1287 },
1288 [ C(OP_PREFETCH) ] = {
1289 [ C(RESULT_ACCESS) ] = -1,
1290 [ C(RESULT_MISS) ] = -1,
1291 },
1292 },
1293 [ C(BPU ) ] = {
1294 [ C(OP_READ) ] = {
1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1297 },
1298 [ C(OP_WRITE) ] = {
1299 [ C(RESULT_ACCESS) ] = -1,
1300 [ C(RESULT_MISS) ] = -1,
1301 },
1302 [ C(OP_PREFETCH) ] = {
1303 [ C(RESULT_ACCESS) ] = -1,
1304 [ C(RESULT_MISS) ] = -1,
1305 },
1306 },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 [PERF_COUNT_HW_CACHE_MAX]
1311 [PERF_COUNT_HW_CACHE_OP_MAX]
1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314 [ C(L1D) ] = {
1315 [ C(OP_READ) ] = {
1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1317 [ C(RESULT_MISS) ] = 0,
1318 },
1319 [ C(OP_WRITE) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1321 [ C(RESULT_MISS) ] = 0,
1322 },
1323 [ C(OP_PREFETCH) ] = {
1324 [ C(RESULT_ACCESS) ] = 0x0,
1325 [ C(RESULT_MISS) ] = 0,
1326 },
1327 },
1328 [ C(L1I ) ] = {
1329 [ C(OP_READ) ] = {
1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1332 },
1333 [ C(OP_WRITE) ] = {
1334 [ C(RESULT_ACCESS) ] = -1,
1335 [ C(RESULT_MISS) ] = -1,
1336 },
1337 [ C(OP_PREFETCH) ] = {
1338 [ C(RESULT_ACCESS) ] = 0,
1339 [ C(RESULT_MISS) ] = 0,
1340 },
1341 },
1342 [ C(LL ) ] = {
1343 [ C(OP_READ) ] = {
1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1346 },
1347 [ C(OP_WRITE) ] = {
1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1350 },
1351 [ C(OP_PREFETCH) ] = {
1352 [ C(RESULT_ACCESS) ] = 0,
1353 [ C(RESULT_MISS) ] = 0,
1354 },
1355 },
1356 [ C(DTLB) ] = {
1357 [ C(OP_READ) ] = {
1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1360 },
1361 [ C(OP_WRITE) ] = {
1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1364 },
1365 [ C(OP_PREFETCH) ] = {
1366 [ C(RESULT_ACCESS) ] = 0,
1367 [ C(RESULT_MISS) ] = 0,
1368 },
1369 },
1370 [ C(ITLB) ] = {
1371 [ C(OP_READ) ] = {
1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1374 },
1375 [ C(OP_WRITE) ] = {
1376 [ C(RESULT_ACCESS) ] = -1,
1377 [ C(RESULT_MISS) ] = -1,
1378 },
1379 [ C(OP_PREFETCH) ] = {
1380 [ C(RESULT_ACCESS) ] = -1,
1381 [ C(RESULT_MISS) ] = -1,
1382 },
1383 },
1384 [ C(BPU ) ] = {
1385 [ C(OP_READ) ] = {
1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1388 },
1389 [ C(OP_WRITE) ] = {
1390 [ C(RESULT_ACCESS) ] = -1,
1391 [ C(RESULT_MISS) ] = -1,
1392 },
1393 [ C(OP_PREFETCH) ] = {
1394 [ C(RESULT_ACCESS) ] = -1,
1395 [ C(RESULT_MISS) ] = -1,
1396 },
1397 },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414 EVENT_PTR(td_total_slots_slm),
1415 EVENT_PTR(td_total_slots_scale_slm),
1416 EVENT_PTR(td_fetch_bubbles_slm),
1417 EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 EVENT_PTR(td_slots_issued_slm),
1419 EVENT_PTR(td_slots_retired_slm),
1420 NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS SNB_RESP_ANY
1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 [PERF_COUNT_HW_CACHE_MAX]
1441 [PERF_COUNT_HW_CACHE_OP_MAX]
1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444 [ C(LL ) ] = {
1445 [ C(OP_READ) ] = {
1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 [ C(RESULT_MISS) ] = 0,
1448 },
1449 [ C(OP_WRITE) ] = {
1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 },
1453 [ C(OP_PREFETCH) ] = {
1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 },
1457 },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 [PERF_COUNT_HW_CACHE_MAX]
1462 [PERF_COUNT_HW_CACHE_OP_MAX]
1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465 [ C(L1D) ] = {
1466 [ C(OP_READ) ] = {
1467 [ C(RESULT_ACCESS) ] = 0,
1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1469 },
1470 [ C(OP_WRITE) ] = {
1471 [ C(RESULT_ACCESS) ] = 0,
1472 [ C(RESULT_MISS) ] = 0,
1473 },
1474 [ C(OP_PREFETCH) ] = {
1475 [ C(RESULT_ACCESS) ] = 0,
1476 [ C(RESULT_MISS) ] = 0,
1477 },
1478 },
1479 [ C(L1I ) ] = {
1480 [ C(OP_READ) ] = {
1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1483 },
1484 [ C(OP_WRITE) ] = {
1485 [ C(RESULT_ACCESS) ] = -1,
1486 [ C(RESULT_MISS) ] = -1,
1487 },
1488 [ C(OP_PREFETCH) ] = {
1489 [ C(RESULT_ACCESS) ] = 0,
1490 [ C(RESULT_MISS) ] = 0,
1491 },
1492 },
1493 [ C(LL ) ] = {
1494 [ C(OP_READ) ] = {
1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 [ C(RESULT_ACCESS) ] = 0x01b7,
1497 [ C(RESULT_MISS) ] = 0,
1498 },
1499 [ C(OP_WRITE) ] = {
1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 [ C(RESULT_ACCESS) ] = 0x01b7,
1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 [ C(RESULT_MISS) ] = 0x01b7,
1504 },
1505 [ C(OP_PREFETCH) ] = {
1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 [ C(RESULT_ACCESS) ] = 0x01b7,
1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 [ C(RESULT_MISS) ] = 0x01b7,
1510 },
1511 },
1512 [ C(DTLB) ] = {
1513 [ C(OP_READ) ] = {
1514 [ C(RESULT_ACCESS) ] = 0,
1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1516 },
1517 [ C(OP_WRITE) ] = {
1518 [ C(RESULT_ACCESS) ] = 0,
1519 [ C(RESULT_MISS) ] = 0,
1520 },
1521 [ C(OP_PREFETCH) ] = {
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1524 },
1525 },
1526 [ C(ITLB) ] = {
1527 [ C(OP_READ) ] = {
1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 },
1531 [ C(OP_WRITE) ] = {
1532 [ C(RESULT_ACCESS) ] = -1,
1533 [ C(RESULT_MISS) ] = -1,
1534 },
1535 [ C(OP_PREFETCH) ] = {
1536 [ C(RESULT_ACCESS) ] = -1,
1537 [ C(RESULT_MISS) ] = -1,
1538 },
1539 },
1540 [ C(BPU ) ] = {
1541 [ C(OP_READ) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 },
1545 [ C(OP_WRITE) ] = {
1546 [ C(RESULT_ACCESS) ] = -1,
1547 [ C(RESULT_MISS) ] = -1,
1548 },
1549 [ C(OP_PREFETCH) ] = {
1550 [ C(RESULT_ACCESS) ] = -1,
1551 [ C(RESULT_MISS) ] = -1,
1552 },
1553 },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568 EVENT_PTR(td_total_slots_glm),
1569 EVENT_PTR(td_total_slots_scale_glm),
1570 EVENT_PTR(td_fetch_bubbles_glm),
1571 EVENT_PTR(td_recovery_bubbles_glm),
1572 EVENT_PTR(td_slots_issued_glm),
1573 EVENT_PTR(td_slots_retired_glm),
1574 NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581 EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1585 #define GLM_DEMAND_RFO BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1588 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596 [PERF_COUNT_HW_CACHE_MAX]
1597 [PERF_COUNT_HW_CACHE_OP_MAX]
1598 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599 [C(L1D)] = {
1600 [C(OP_READ)] = {
1601 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1602 [C(RESULT_MISS)] = 0x0,
1603 },
1604 [C(OP_WRITE)] = {
1605 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1606 [C(RESULT_MISS)] = 0x0,
1607 },
1608 [C(OP_PREFETCH)] = {
1609 [C(RESULT_ACCESS)] = 0x0,
1610 [C(RESULT_MISS)] = 0x0,
1611 },
1612 },
1613 [C(L1I)] = {
1614 [C(OP_READ)] = {
1615 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1616 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1617 },
1618 [C(OP_WRITE)] = {
1619 [C(RESULT_ACCESS)] = -1,
1620 [C(RESULT_MISS)] = -1,
1621 },
1622 [C(OP_PREFETCH)] = {
1623 [C(RESULT_ACCESS)] = 0x0,
1624 [C(RESULT_MISS)] = 0x0,
1625 },
1626 },
1627 [C(LL)] = {
1628 [C(OP_READ)] = {
1629 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1630 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1631 },
1632 [C(OP_WRITE)] = {
1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1635 },
1636 [C(OP_PREFETCH)] = {
1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1639 },
1640 },
1641 [C(DTLB)] = {
1642 [C(OP_READ)] = {
1643 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1644 [C(RESULT_MISS)] = 0x0,
1645 },
1646 [C(OP_WRITE)] = {
1647 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1648 [C(RESULT_MISS)] = 0x0,
1649 },
1650 [C(OP_PREFETCH)] = {
1651 [C(RESULT_ACCESS)] = 0x0,
1652 [C(RESULT_MISS)] = 0x0,
1653 },
1654 },
1655 [C(ITLB)] = {
1656 [C(OP_READ)] = {
1657 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1658 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1659 },
1660 [C(OP_WRITE)] = {
1661 [C(RESULT_ACCESS)] = -1,
1662 [C(RESULT_MISS)] = -1,
1663 },
1664 [C(OP_PREFETCH)] = {
1665 [C(RESULT_ACCESS)] = -1,
1666 [C(RESULT_MISS)] = -1,
1667 },
1668 },
1669 [C(BPU)] = {
1670 [C(OP_READ)] = {
1671 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1672 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1673 },
1674 [C(OP_WRITE)] = {
1675 [C(RESULT_ACCESS)] = -1,
1676 [C(RESULT_MISS)] = -1,
1677 },
1678 [C(OP_PREFETCH)] = {
1679 [C(RESULT_ACCESS)] = -1,
1680 [C(RESULT_MISS)] = -1,
1681 },
1682 },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686 [PERF_COUNT_HW_CACHE_MAX]
1687 [PERF_COUNT_HW_CACHE_OP_MAX]
1688 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689 [C(LL)] = {
1690 [C(OP_READ)] = {
1691 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1692 GLM_LLC_ACCESS,
1693 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1694 GLM_LLC_MISS,
1695 },
1696 [C(OP_WRITE)] = {
1697 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1698 GLM_LLC_ACCESS,
1699 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1700 GLM_LLC_MISS,
1701 },
1702 [C(OP_PREFETCH)] = {
1703 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1704 GLM_LLC_ACCESS,
1705 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1706 GLM_LLC_MISS,
1707 },
1708 },
1709 };
1710
1711 static __initconst const u64 glp_hw_cache_event_ids
1712 [PERF_COUNT_HW_CACHE_MAX]
1713 [PERF_COUNT_HW_CACHE_OP_MAX]
1714 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715 [C(L1D)] = {
1716 [C(OP_READ)] = {
1717 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1718 [C(RESULT_MISS)] = 0x0,
1719 },
1720 [C(OP_WRITE)] = {
1721 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1722 [C(RESULT_MISS)] = 0x0,
1723 },
1724 [C(OP_PREFETCH)] = {
1725 [C(RESULT_ACCESS)] = 0x0,
1726 [C(RESULT_MISS)] = 0x0,
1727 },
1728 },
1729 [C(L1I)] = {
1730 [C(OP_READ)] = {
1731 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1732 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1733 },
1734 [C(OP_WRITE)] = {
1735 [C(RESULT_ACCESS)] = -1,
1736 [C(RESULT_MISS)] = -1,
1737 },
1738 [C(OP_PREFETCH)] = {
1739 [C(RESULT_ACCESS)] = 0x0,
1740 [C(RESULT_MISS)] = 0x0,
1741 },
1742 },
1743 [C(LL)] = {
1744 [C(OP_READ)] = {
1745 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1746 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1747 },
1748 [C(OP_WRITE)] = {
1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1751 },
1752 [C(OP_PREFETCH)] = {
1753 [C(RESULT_ACCESS)] = 0x0,
1754 [C(RESULT_MISS)] = 0x0,
1755 },
1756 },
1757 [C(DTLB)] = {
1758 [C(OP_READ)] = {
1759 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1760 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761 },
1762 [C(OP_WRITE)] = {
1763 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1764 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765 },
1766 [C(OP_PREFETCH)] = {
1767 [C(RESULT_ACCESS)] = 0x0,
1768 [C(RESULT_MISS)] = 0x0,
1769 },
1770 },
1771 [C(ITLB)] = {
1772 [C(OP_READ)] = {
1773 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1774 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1775 },
1776 [C(OP_WRITE)] = {
1777 [C(RESULT_ACCESS)] = -1,
1778 [C(RESULT_MISS)] = -1,
1779 },
1780 [C(OP_PREFETCH)] = {
1781 [C(RESULT_ACCESS)] = -1,
1782 [C(RESULT_MISS)] = -1,
1783 },
1784 },
1785 [C(BPU)] = {
1786 [C(OP_READ)] = {
1787 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1788 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1789 },
1790 [C(OP_WRITE)] = {
1791 [C(RESULT_ACCESS)] = -1,
1792 [C(RESULT_MISS)] = -1,
1793 },
1794 [C(OP_PREFETCH)] = {
1795 [C(RESULT_ACCESS)] = -1,
1796 [C(RESULT_MISS)] = -1,
1797 },
1798 },
1799 };
1800
1801 static __initconst const u64 glp_hw_cache_extra_regs
1802 [PERF_COUNT_HW_CACHE_MAX]
1803 [PERF_COUNT_HW_CACHE_OP_MAX]
1804 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 [C(LL)] = {
1806 [C(OP_READ)] = {
1807 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1808 GLM_LLC_ACCESS,
1809 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1810 GLM_LLC_MISS,
1811 },
1812 [C(OP_WRITE)] = {
1813 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1814 GLM_LLC_ACCESS,
1815 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1816 GLM_LLC_MISS,
1817 },
1818 [C(OP_PREFETCH)] = {
1819 [C(RESULT_ACCESS)] = 0x0,
1820 [C(RESULT_MISS)] = 0x0,
1821 },
1822 },
1823 };
1824
1825 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR BIT_ULL(22)
1829 #define KNL_DDR_LOCAL BIT_ULL(23)
1830 #define KNL_DDR_FAR BIT_ULL(24)
1831 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832 KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ SLM_DMND_READ
1834 #define KNL_L2_WRITE SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1837 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838 KNL_DRAM_ANY | SNB_SNP_ANY | \
1839 SNB_NON_DRAM)
1840
1841 static __initconst const u64 knl_hw_cache_extra_regs
1842 [PERF_COUNT_HW_CACHE_MAX]
1843 [PERF_COUNT_HW_CACHE_OP_MAX]
1844 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845 [C(LL)] = {
1846 [C(OP_READ)] = {
1847 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848 [C(RESULT_MISS)] = 0,
1849 },
1850 [C(OP_WRITE)] = {
1851 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1853 },
1854 [C(OP_PREFETCH)] = {
1855 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1857 },
1858 },
1859 };
1860
1861 /*
1862 * Used from PMIs where the LBRs are already disabled.
1863 *
1864 * This function could be called consecutively. It is required to remain in
1865 * disabled state if called consecutively.
1866 *
1867 * During consecutive calls, the same disable value will be written to related
1868 * registers, so the PMU state remains unchanged.
1869 *
1870 * intel_bts events don't coexist with intel PMU's BTS events because of
1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873 */
1874 static void __intel_pmu_disable_all(void)
1875 {
1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
1880 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881 intel_pmu_disable_bts();
1882
1883 intel_pmu_pebs_disable_all();
1884 }
1885
1886 static void intel_pmu_disable_all(void)
1887 {
1888 __intel_pmu_disable_all();
1889 intel_pmu_lbr_disable_all();
1890 }
1891
1892 static void __intel_pmu_enable_all(int added, bool pmi)
1893 {
1894 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895
1896 intel_pmu_pebs_enable_all();
1897 intel_pmu_lbr_enable_all(pmi);
1898 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900
1901 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902 struct perf_event *event =
1903 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904
1905 if (WARN_ON_ONCE(!event))
1906 return;
1907
1908 intel_pmu_enable_bts(event->hw.config);
1909 }
1910 }
1911
1912 static void intel_pmu_enable_all(int added)
1913 {
1914 __intel_pmu_enable_all(added, false);
1915 }
1916
1917 /*
1918 * Workaround for:
1919 * Intel Errata AAK100 (model 26)
1920 * Intel Errata AAP53 (model 30)
1921 * Intel Errata BD53 (model 44)
1922 *
1923 * The official story:
1924 * These chips need to be 'reset' when adding counters by programming the
1925 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926 * in sequence on the same PMC or on different PMCs.
1927 *
1928 * In practise it appears some of these events do in fact count, and
1929 * we need to programm all 4 events.
1930 */
1931 static void intel_pmu_nhm_workaround(void)
1932 {
1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934 static const unsigned long nhm_magic[4] = {
1935 0x4300B5,
1936 0x4300D2,
1937 0x4300B1,
1938 0x4300B1
1939 };
1940 struct perf_event *event;
1941 int i;
1942
1943 /*
1944 * The Errata requires below steps:
1945 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947 * the corresponding PMCx;
1948 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951 */
1952
1953 /*
1954 * The real steps we choose are a little different from above.
1955 * A) To reduce MSR operations, we don't run step 1) as they
1956 * are already cleared before this function is called;
1957 * B) Call x86_perf_event_update to save PMCx before configuring
1958 * PERFEVTSELx with magic number;
1959 * C) With step 5), we do clear only when the PERFEVTSELx is
1960 * not used currently.
1961 * D) Call x86_perf_event_set_period to restore PMCx;
1962 */
1963
1964 /* We always operate 4 pairs of PERF Counters */
1965 for (i = 0; i < 4; i++) {
1966 event = cpuc->events[i];
1967 if (event)
1968 x86_perf_event_update(event);
1969 }
1970
1971 for (i = 0; i < 4; i++) {
1972 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974 }
1975
1976 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978
1979 for (i = 0; i < 4; i++) {
1980 event = cpuc->events[i];
1981
1982 if (event) {
1983 x86_perf_event_set_period(event);
1984 __x86_pmu_enable_event(&event->hw,
1985 ARCH_PERFMON_EVENTSEL_ENABLE);
1986 } else
1987 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988 }
1989 }
1990
1991 static void intel_pmu_nhm_enable_all(int added)
1992 {
1993 if (added)
1994 intel_pmu_nhm_workaround();
1995 intel_pmu_enable_all(added);
1996 }
1997
1998 static inline u64 intel_pmu_get_status(void)
1999 {
2000 u64 status;
2001
2002 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004 return status;
2005 }
2006
2007 static inline void intel_pmu_ack_status(u64 ack)
2008 {
2009 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010 }
2011
2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013 {
2014 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015 u64 ctrl_val, mask;
2016
2017 mask = 0xfULL << (idx * 4);
2018
2019 rdmsrl(hwc->config_base, ctrl_val);
2020 ctrl_val &= ~mask;
2021 wrmsrl(hwc->config_base, ctrl_val);
2022 }
2023
2024 static inline bool event_is_checkpointed(struct perf_event *event)
2025 {
2026 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027 }
2028
2029 static void intel_pmu_disable_event(struct perf_event *event)
2030 {
2031 struct hw_perf_event *hwc = &event->hw;
2032 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033
2034 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035 intel_pmu_disable_bts();
2036 intel_pmu_drain_bts_buffer();
2037 return;
2038 }
2039
2040 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043
2044 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2045 intel_pmu_disable_fixed(hwc);
2046 return;
2047 }
2048
2049 x86_pmu_disable_event(event);
2050
2051 if (unlikely(event->attr.precise_ip))
2052 intel_pmu_pebs_disable(event);
2053 }
2054
2055 static void intel_pmu_del_event(struct perf_event *event)
2056 {
2057 if (needs_branch_stack(event))
2058 intel_pmu_lbr_del(event);
2059 if (event->attr.precise_ip)
2060 intel_pmu_pebs_del(event);
2061 }
2062
2063 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
2064 {
2065 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2066 u64 ctrl_val, bits, mask;
2067
2068 /*
2069 * Enable IRQ generation (0x8),
2070 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2071 * if requested:
2072 */
2073 bits = 0x8ULL;
2074 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2075 bits |= 0x2;
2076 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2077 bits |= 0x1;
2078
2079 /*
2080 * ANY bit is supported in v3 and up
2081 */
2082 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2083 bits |= 0x4;
2084
2085 bits <<= (idx * 4);
2086 mask = 0xfULL << (idx * 4);
2087
2088 rdmsrl(hwc->config_base, ctrl_val);
2089 ctrl_val &= ~mask;
2090 ctrl_val |= bits;
2091 wrmsrl(hwc->config_base, ctrl_val);
2092 }
2093
2094 static void intel_pmu_enable_event(struct perf_event *event)
2095 {
2096 struct hw_perf_event *hwc = &event->hw;
2097 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2098
2099 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2100 if (!__this_cpu_read(cpu_hw_events.enabled))
2101 return;
2102
2103 intel_pmu_enable_bts(hwc->config);
2104 return;
2105 }
2106
2107 if (event->attr.exclude_host)
2108 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2109 if (event->attr.exclude_guest)
2110 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2111
2112 if (unlikely(event_is_checkpointed(event)))
2113 cpuc->intel_cp_status |= (1ull << hwc->idx);
2114
2115 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2116 intel_pmu_enable_fixed(hwc);
2117 return;
2118 }
2119
2120 if (unlikely(event->attr.precise_ip))
2121 intel_pmu_pebs_enable(event);
2122
2123 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2124 }
2125
2126 static void intel_pmu_add_event(struct perf_event *event)
2127 {
2128 if (event->attr.precise_ip)
2129 intel_pmu_pebs_add(event);
2130 if (needs_branch_stack(event))
2131 intel_pmu_lbr_add(event);
2132 }
2133
2134 /*
2135 * Save and restart an expired event. Called by NMI contexts,
2136 * so it has to be careful about preempting normal event ops:
2137 */
2138 int intel_pmu_save_and_restart(struct perf_event *event)
2139 {
2140 x86_perf_event_update(event);
2141 /*
2142 * For a checkpointed counter always reset back to 0. This
2143 * avoids a situation where the counter overflows, aborts the
2144 * transaction and is then set back to shortly before the
2145 * overflow, and overflows and aborts again.
2146 */
2147 if (unlikely(event_is_checkpointed(event))) {
2148 /* No race with NMIs because the counter should not be armed */
2149 wrmsrl(event->hw.event_base, 0);
2150 local64_set(&event->hw.prev_count, 0);
2151 }
2152 return x86_perf_event_set_period(event);
2153 }
2154
2155 static void intel_pmu_reset(void)
2156 {
2157 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2158 unsigned long flags;
2159 int idx;
2160
2161 if (!x86_pmu.num_counters)
2162 return;
2163
2164 local_irq_save(flags);
2165
2166 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2167
2168 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2169 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2170 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2171 }
2172 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2173 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2174
2175 if (ds)
2176 ds->bts_index = ds->bts_buffer_base;
2177
2178 /* Ack all overflows and disable fixed counters */
2179 if (x86_pmu.version >= 2) {
2180 intel_pmu_ack_status(intel_pmu_get_status());
2181 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2182 }
2183
2184 /* Reset LBRs and LBR freezing */
2185 if (x86_pmu.lbr_nr) {
2186 update_debugctlmsr(get_debugctlmsr() &
2187 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2188 }
2189
2190 local_irq_restore(flags);
2191 }
2192
2193 /*
2194 * This handler is triggered by the local APIC, so the APIC IRQ handling
2195 * rules apply:
2196 */
2197 static int intel_pmu_handle_irq(struct pt_regs *regs)
2198 {
2199 struct perf_sample_data data;
2200 struct cpu_hw_events *cpuc;
2201 int bit, loops;
2202 u64 status;
2203 int handled;
2204 int pmu_enabled;
2205
2206 cpuc = this_cpu_ptr(&cpu_hw_events);
2207
2208 /*
2209 * Save the PMU state.
2210 * It needs to be restored when leaving the handler.
2211 */
2212 pmu_enabled = cpuc->enabled;
2213 /*
2214 * No known reason to not always do late ACK,
2215 * but just in case do it opt-in.
2216 */
2217 if (!x86_pmu.late_ack)
2218 apic_write(APIC_LVTPC, APIC_DM_NMI);
2219 intel_bts_disable_local();
2220 cpuc->enabled = 0;
2221 __intel_pmu_disable_all();
2222 handled = intel_pmu_drain_bts_buffer();
2223 handled += intel_bts_interrupt();
2224 status = intel_pmu_get_status();
2225 if (!status)
2226 goto done;
2227
2228 loops = 0;
2229 again:
2230 intel_pmu_lbr_read();
2231 intel_pmu_ack_status(status);
2232 if (++loops > 100) {
2233 static bool warned = false;
2234 if (!warned) {
2235 WARN(1, "perfevents: irq loop stuck!\n");
2236 perf_event_print_debug();
2237 warned = true;
2238 }
2239 intel_pmu_reset();
2240 goto done;
2241 }
2242
2243 inc_irq_stat(apic_perf_irqs);
2244
2245
2246 /*
2247 * Ignore a range of extra bits in status that do not indicate
2248 * overflow by themselves.
2249 */
2250 status &= ~(GLOBAL_STATUS_COND_CHG |
2251 GLOBAL_STATUS_ASIF |
2252 GLOBAL_STATUS_LBRS_FROZEN);
2253 if (!status)
2254 goto done;
2255 /*
2256 * In case multiple PEBS events are sampled at the same time,
2257 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2258 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2259 * having their bits set in the status register. This is a sign
2260 * that there was at least one PEBS record pending at the time
2261 * of the PMU interrupt. PEBS counters must only be processed
2262 * via the drain_pebs() calls and not via the regular sample
2263 * processing loop coming after that the function, otherwise
2264 * phony regular samples may be generated in the sampling buffer
2265 * not marked with the EXACT tag. Another possibility is to have
2266 * one PEBS event and at least one non-PEBS event whic hoverflows
2267 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2268 * not be set, yet the overflow status bit for the PEBS counter will
2269 * be on Skylake.
2270 *
2271 * To avoid this problem, we systematically ignore the PEBS-enabled
2272 * counters from the GLOBAL_STATUS mask and we always process PEBS
2273 * events via drain_pebs().
2274 */
2275 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2276
2277 /*
2278 * PEBS overflow sets bit 62 in the global status register
2279 */
2280 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2281 handled++;
2282 x86_pmu.drain_pebs(regs);
2283 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2284 }
2285
2286 /*
2287 * Intel PT
2288 */
2289 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2290 handled++;
2291 intel_pt_interrupt();
2292 }
2293
2294 /*
2295 * Checkpointed counters can lead to 'spurious' PMIs because the
2296 * rollback caused by the PMI will have cleared the overflow status
2297 * bit. Therefore always force probe these counters.
2298 */
2299 status |= cpuc->intel_cp_status;
2300
2301 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2302 struct perf_event *event = cpuc->events[bit];
2303
2304 handled++;
2305
2306 if (!test_bit(bit, cpuc->active_mask))
2307 continue;
2308
2309 if (!intel_pmu_save_and_restart(event))
2310 continue;
2311
2312 perf_sample_data_init(&data, 0, event->hw.last_period);
2313
2314 if (has_branch_stack(event))
2315 data.br_stack = &cpuc->lbr_stack;
2316
2317 if (perf_event_overflow(event, &data, regs))
2318 x86_pmu_stop(event, 0);
2319 }
2320
2321 /*
2322 * Repeat if there is more work to be done:
2323 */
2324 status = intel_pmu_get_status();
2325 if (status)
2326 goto again;
2327
2328 done:
2329 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2330 cpuc->enabled = pmu_enabled;
2331 if (pmu_enabled)
2332 __intel_pmu_enable_all(0, true);
2333 intel_bts_enable_local();
2334
2335 /*
2336 * Only unmask the NMI after the overflow counters
2337 * have been reset. This avoids spurious NMIs on
2338 * Haswell CPUs.
2339 */
2340 if (x86_pmu.late_ack)
2341 apic_write(APIC_LVTPC, APIC_DM_NMI);
2342 return handled;
2343 }
2344
2345 static struct event_constraint *
2346 intel_bts_constraints(struct perf_event *event)
2347 {
2348 struct hw_perf_event *hwc = &event->hw;
2349 unsigned int hw_event, bts_event;
2350
2351 if (event->attr.freq)
2352 return NULL;
2353
2354 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2355 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2356
2357 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2358 return &bts_constraint;
2359
2360 return NULL;
2361 }
2362
2363 static int intel_alt_er(int idx, u64 config)
2364 {
2365 int alt_idx = idx;
2366
2367 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2368 return idx;
2369
2370 if (idx == EXTRA_REG_RSP_0)
2371 alt_idx = EXTRA_REG_RSP_1;
2372
2373 if (idx == EXTRA_REG_RSP_1)
2374 alt_idx = EXTRA_REG_RSP_0;
2375
2376 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2377 return idx;
2378
2379 return alt_idx;
2380 }
2381
2382 static void intel_fixup_er(struct perf_event *event, int idx)
2383 {
2384 event->hw.extra_reg.idx = idx;
2385
2386 if (idx == EXTRA_REG_RSP_0) {
2387 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2388 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2389 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2390 } else if (idx == EXTRA_REG_RSP_1) {
2391 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2392 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2393 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2394 }
2395 }
2396
2397 /*
2398 * manage allocation of shared extra msr for certain events
2399 *
2400 * sharing can be:
2401 * per-cpu: to be shared between the various events on a single PMU
2402 * per-core: per-cpu + shared by HT threads
2403 */
2404 static struct event_constraint *
2405 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2406 struct perf_event *event,
2407 struct hw_perf_event_extra *reg)
2408 {
2409 struct event_constraint *c = &emptyconstraint;
2410 struct er_account *era;
2411 unsigned long flags;
2412 int idx = reg->idx;
2413
2414 /*
2415 * reg->alloc can be set due to existing state, so for fake cpuc we
2416 * need to ignore this, otherwise we might fail to allocate proper fake
2417 * state for this extra reg constraint. Also see the comment below.
2418 */
2419 if (reg->alloc && !cpuc->is_fake)
2420 return NULL; /* call x86_get_event_constraint() */
2421
2422 again:
2423 era = &cpuc->shared_regs->regs[idx];
2424 /*
2425 * we use spin_lock_irqsave() to avoid lockdep issues when
2426 * passing a fake cpuc
2427 */
2428 raw_spin_lock_irqsave(&era->lock, flags);
2429
2430 if (!atomic_read(&era->ref) || era->config == reg->config) {
2431
2432 /*
2433 * If its a fake cpuc -- as per validate_{group,event}() we
2434 * shouldn't touch event state and we can avoid doing so
2435 * since both will only call get_event_constraints() once
2436 * on each event, this avoids the need for reg->alloc.
2437 *
2438 * Not doing the ER fixup will only result in era->reg being
2439 * wrong, but since we won't actually try and program hardware
2440 * this isn't a problem either.
2441 */
2442 if (!cpuc->is_fake) {
2443 if (idx != reg->idx)
2444 intel_fixup_er(event, idx);
2445
2446 /*
2447 * x86_schedule_events() can call get_event_constraints()
2448 * multiple times on events in the case of incremental
2449 * scheduling(). reg->alloc ensures we only do the ER
2450 * allocation once.
2451 */
2452 reg->alloc = 1;
2453 }
2454
2455 /* lock in msr value */
2456 era->config = reg->config;
2457 era->reg = reg->reg;
2458
2459 /* one more user */
2460 atomic_inc(&era->ref);
2461
2462 /*
2463 * need to call x86_get_event_constraint()
2464 * to check if associated event has constraints
2465 */
2466 c = NULL;
2467 } else {
2468 idx = intel_alt_er(idx, reg->config);
2469 if (idx != reg->idx) {
2470 raw_spin_unlock_irqrestore(&era->lock, flags);
2471 goto again;
2472 }
2473 }
2474 raw_spin_unlock_irqrestore(&era->lock, flags);
2475
2476 return c;
2477 }
2478
2479 static void
2480 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2481 struct hw_perf_event_extra *reg)
2482 {
2483 struct er_account *era;
2484
2485 /*
2486 * Only put constraint if extra reg was actually allocated. Also takes
2487 * care of event which do not use an extra shared reg.
2488 *
2489 * Also, if this is a fake cpuc we shouldn't touch any event state
2490 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2491 * either since it'll be thrown out.
2492 */
2493 if (!reg->alloc || cpuc->is_fake)
2494 return;
2495
2496 era = &cpuc->shared_regs->regs[reg->idx];
2497
2498 /* one fewer user */
2499 atomic_dec(&era->ref);
2500
2501 /* allocate again next time */
2502 reg->alloc = 0;
2503 }
2504
2505 static struct event_constraint *
2506 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2507 struct perf_event *event)
2508 {
2509 struct event_constraint *c = NULL, *d;
2510 struct hw_perf_event_extra *xreg, *breg;
2511
2512 xreg = &event->hw.extra_reg;
2513 if (xreg->idx != EXTRA_REG_NONE) {
2514 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2515 if (c == &emptyconstraint)
2516 return c;
2517 }
2518 breg = &event->hw.branch_reg;
2519 if (breg->idx != EXTRA_REG_NONE) {
2520 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2521 if (d == &emptyconstraint) {
2522 __intel_shared_reg_put_constraints(cpuc, xreg);
2523 c = d;
2524 }
2525 }
2526 return c;
2527 }
2528
2529 struct event_constraint *
2530 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2531 struct perf_event *event)
2532 {
2533 struct event_constraint *c;
2534
2535 if (x86_pmu.event_constraints) {
2536 for_each_event_constraint(c, x86_pmu.event_constraints) {
2537 if ((event->hw.config & c->cmask) == c->code) {
2538 event->hw.flags |= c->flags;
2539 return c;
2540 }
2541 }
2542 }
2543
2544 return &unconstrained;
2545 }
2546
2547 static struct event_constraint *
2548 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2549 struct perf_event *event)
2550 {
2551 struct event_constraint *c;
2552
2553 c = intel_bts_constraints(event);
2554 if (c)
2555 return c;
2556
2557 c = intel_shared_regs_constraints(cpuc, event);
2558 if (c)
2559 return c;
2560
2561 c = intel_pebs_constraints(event);
2562 if (c)
2563 return c;
2564
2565 return x86_get_event_constraints(cpuc, idx, event);
2566 }
2567
2568 static void
2569 intel_start_scheduling(struct cpu_hw_events *cpuc)
2570 {
2571 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2572 struct intel_excl_states *xl;
2573 int tid = cpuc->excl_thread_id;
2574
2575 /*
2576 * nothing needed if in group validation mode
2577 */
2578 if (cpuc->is_fake || !is_ht_workaround_enabled())
2579 return;
2580
2581 /*
2582 * no exclusion needed
2583 */
2584 if (WARN_ON_ONCE(!excl_cntrs))
2585 return;
2586
2587 xl = &excl_cntrs->states[tid];
2588
2589 xl->sched_started = true;
2590 /*
2591 * lock shared state until we are done scheduling
2592 * in stop_event_scheduling()
2593 * makes scheduling appear as a transaction
2594 */
2595 raw_spin_lock(&excl_cntrs->lock);
2596 }
2597
2598 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2599 {
2600 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2601 struct event_constraint *c = cpuc->event_constraint[idx];
2602 struct intel_excl_states *xl;
2603 int tid = cpuc->excl_thread_id;
2604
2605 if (cpuc->is_fake || !is_ht_workaround_enabled())
2606 return;
2607
2608 if (WARN_ON_ONCE(!excl_cntrs))
2609 return;
2610
2611 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2612 return;
2613
2614 xl = &excl_cntrs->states[tid];
2615
2616 lockdep_assert_held(&excl_cntrs->lock);
2617
2618 if (c->flags & PERF_X86_EVENT_EXCL)
2619 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2620 else
2621 xl->state[cntr] = INTEL_EXCL_SHARED;
2622 }
2623
2624 static void
2625 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2626 {
2627 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2628 struct intel_excl_states *xl;
2629 int tid = cpuc->excl_thread_id;
2630
2631 /*
2632 * nothing needed if in group validation mode
2633 */
2634 if (cpuc->is_fake || !is_ht_workaround_enabled())
2635 return;
2636 /*
2637 * no exclusion needed
2638 */
2639 if (WARN_ON_ONCE(!excl_cntrs))
2640 return;
2641
2642 xl = &excl_cntrs->states[tid];
2643
2644 xl->sched_started = false;
2645 /*
2646 * release shared state lock (acquired in intel_start_scheduling())
2647 */
2648 raw_spin_unlock(&excl_cntrs->lock);
2649 }
2650
2651 static struct event_constraint *
2652 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2653 int idx, struct event_constraint *c)
2654 {
2655 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2656 struct intel_excl_states *xlo;
2657 int tid = cpuc->excl_thread_id;
2658 int is_excl, i;
2659
2660 /*
2661 * validating a group does not require
2662 * enforcing cross-thread exclusion
2663 */
2664 if (cpuc->is_fake || !is_ht_workaround_enabled())
2665 return c;
2666
2667 /*
2668 * no exclusion needed
2669 */
2670 if (WARN_ON_ONCE(!excl_cntrs))
2671 return c;
2672
2673 /*
2674 * because we modify the constraint, we need
2675 * to make a copy. Static constraints come
2676 * from static const tables.
2677 *
2678 * only needed when constraint has not yet
2679 * been cloned (marked dynamic)
2680 */
2681 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2682 struct event_constraint *cx;
2683
2684 /*
2685 * grab pre-allocated constraint entry
2686 */
2687 cx = &cpuc->constraint_list[idx];
2688
2689 /*
2690 * initialize dynamic constraint
2691 * with static constraint
2692 */
2693 *cx = *c;
2694
2695 /*
2696 * mark constraint as dynamic, so we
2697 * can free it later on
2698 */
2699 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2700 c = cx;
2701 }
2702
2703 /*
2704 * From here on, the constraint is dynamic.
2705 * Either it was just allocated above, or it
2706 * was allocated during a earlier invocation
2707 * of this function
2708 */
2709
2710 /*
2711 * state of sibling HT
2712 */
2713 xlo = &excl_cntrs->states[tid ^ 1];
2714
2715 /*
2716 * event requires exclusive counter access
2717 * across HT threads
2718 */
2719 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2720 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2721 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2722 if (!cpuc->n_excl++)
2723 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2724 }
2725
2726 /*
2727 * Modify static constraint with current dynamic
2728 * state of thread
2729 *
2730 * EXCLUSIVE: sibling counter measuring exclusive event
2731 * SHARED : sibling counter measuring non-exclusive event
2732 * UNUSED : sibling counter unused
2733 */
2734 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2735 /*
2736 * exclusive event in sibling counter
2737 * our corresponding counter cannot be used
2738 * regardless of our event
2739 */
2740 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2741 __clear_bit(i, c->idxmsk);
2742 /*
2743 * if measuring an exclusive event, sibling
2744 * measuring non-exclusive, then counter cannot
2745 * be used
2746 */
2747 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2748 __clear_bit(i, c->idxmsk);
2749 }
2750
2751 /*
2752 * recompute actual bit weight for scheduling algorithm
2753 */
2754 c->weight = hweight64(c->idxmsk64);
2755
2756 /*
2757 * if we return an empty mask, then switch
2758 * back to static empty constraint to avoid
2759 * the cost of freeing later on
2760 */
2761 if (c->weight == 0)
2762 c = &emptyconstraint;
2763
2764 return c;
2765 }
2766
2767 static struct event_constraint *
2768 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2769 struct perf_event *event)
2770 {
2771 struct event_constraint *c1 = NULL;
2772 struct event_constraint *c2;
2773
2774 if (idx >= 0) /* fake does < 0 */
2775 c1 = cpuc->event_constraint[idx];
2776
2777 /*
2778 * first time only
2779 * - static constraint: no change across incremental scheduling calls
2780 * - dynamic constraint: handled by intel_get_excl_constraints()
2781 */
2782 c2 = __intel_get_event_constraints(cpuc, idx, event);
2783 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2784 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2785 c1->weight = c2->weight;
2786 c2 = c1;
2787 }
2788
2789 if (cpuc->excl_cntrs)
2790 return intel_get_excl_constraints(cpuc, event, idx, c2);
2791
2792 return c2;
2793 }
2794
2795 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2796 struct perf_event *event)
2797 {
2798 struct hw_perf_event *hwc = &event->hw;
2799 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2800 int tid = cpuc->excl_thread_id;
2801 struct intel_excl_states *xl;
2802
2803 /*
2804 * nothing needed if in group validation mode
2805 */
2806 if (cpuc->is_fake)
2807 return;
2808
2809 if (WARN_ON_ONCE(!excl_cntrs))
2810 return;
2811
2812 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2813 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2814 if (!--cpuc->n_excl)
2815 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2816 }
2817
2818 /*
2819 * If event was actually assigned, then mark the counter state as
2820 * unused now.
2821 */
2822 if (hwc->idx >= 0) {
2823 xl = &excl_cntrs->states[tid];
2824
2825 /*
2826 * put_constraint may be called from x86_schedule_events()
2827 * which already has the lock held so here make locking
2828 * conditional.
2829 */
2830 if (!xl->sched_started)
2831 raw_spin_lock(&excl_cntrs->lock);
2832
2833 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2834
2835 if (!xl->sched_started)
2836 raw_spin_unlock(&excl_cntrs->lock);
2837 }
2838 }
2839
2840 static void
2841 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2842 struct perf_event *event)
2843 {
2844 struct hw_perf_event_extra *reg;
2845
2846 reg = &event->hw.extra_reg;
2847 if (reg->idx != EXTRA_REG_NONE)
2848 __intel_shared_reg_put_constraints(cpuc, reg);
2849
2850 reg = &event->hw.branch_reg;
2851 if (reg->idx != EXTRA_REG_NONE)
2852 __intel_shared_reg_put_constraints(cpuc, reg);
2853 }
2854
2855 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2856 struct perf_event *event)
2857 {
2858 intel_put_shared_regs_event_constraints(cpuc, event);
2859
2860 /*
2861 * is PMU has exclusive counter restrictions, then
2862 * all events are subject to and must call the
2863 * put_excl_constraints() routine
2864 */
2865 if (cpuc->excl_cntrs)
2866 intel_put_excl_constraints(cpuc, event);
2867 }
2868
2869 static void intel_pebs_aliases_core2(struct perf_event *event)
2870 {
2871 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2872 /*
2873 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2874 * (0x003c) so that we can use it with PEBS.
2875 *
2876 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2877 * PEBS capable. However we can use INST_RETIRED.ANY_P
2878 * (0x00c0), which is a PEBS capable event, to get the same
2879 * count.
2880 *
2881 * INST_RETIRED.ANY_P counts the number of cycles that retires
2882 * CNTMASK instructions. By setting CNTMASK to a value (16)
2883 * larger than the maximum number of instructions that can be
2884 * retired per cycle (4) and then inverting the condition, we
2885 * count all cycles that retire 16 or less instructions, which
2886 * is every cycle.
2887 *
2888 * Thereby we gain a PEBS capable cycle counter.
2889 */
2890 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2891
2892 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2893 event->hw.config = alt_config;
2894 }
2895 }
2896
2897 static void intel_pebs_aliases_snb(struct perf_event *event)
2898 {
2899 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2900 /*
2901 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2902 * (0x003c) so that we can use it with PEBS.
2903 *
2904 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2905 * PEBS capable. However we can use UOPS_RETIRED.ALL
2906 * (0x01c2), which is a PEBS capable event, to get the same
2907 * count.
2908 *
2909 * UOPS_RETIRED.ALL counts the number of cycles that retires
2910 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2911 * larger than the maximum number of micro-ops that can be
2912 * retired per cycle (4) and then inverting the condition, we
2913 * count all cycles that retire 16 or less micro-ops, which
2914 * is every cycle.
2915 *
2916 * Thereby we gain a PEBS capable cycle counter.
2917 */
2918 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2919
2920 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2921 event->hw.config = alt_config;
2922 }
2923 }
2924
2925 static void intel_pebs_aliases_precdist(struct perf_event *event)
2926 {
2927 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2928 /*
2929 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2930 * (0x003c) so that we can use it with PEBS.
2931 *
2932 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2933 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2934 * (0x01c0), which is a PEBS capable event, to get the same
2935 * count.
2936 *
2937 * The PREC_DIST event has special support to minimize sample
2938 * shadowing effects. One drawback is that it can be
2939 * only programmed on counter 1, but that seems like an
2940 * acceptable trade off.
2941 */
2942 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2943
2944 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2945 event->hw.config = alt_config;
2946 }
2947 }
2948
2949 static void intel_pebs_aliases_ivb(struct perf_event *event)
2950 {
2951 if (event->attr.precise_ip < 3)
2952 return intel_pebs_aliases_snb(event);
2953 return intel_pebs_aliases_precdist(event);
2954 }
2955
2956 static void intel_pebs_aliases_skl(struct perf_event *event)
2957 {
2958 if (event->attr.precise_ip < 3)
2959 return intel_pebs_aliases_core2(event);
2960 return intel_pebs_aliases_precdist(event);
2961 }
2962
2963 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2964 {
2965 unsigned long flags = x86_pmu.free_running_flags;
2966
2967 if (event->attr.use_clockid)
2968 flags &= ~PERF_SAMPLE_TIME;
2969 if (!event->attr.exclude_kernel)
2970 flags &= ~PERF_SAMPLE_REGS_USER;
2971 if (event->attr.sample_regs_user & ~PEBS_REGS)
2972 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
2973 return flags;
2974 }
2975
2976 static int intel_pmu_hw_config(struct perf_event *event)
2977 {
2978 int ret = x86_pmu_hw_config(event);
2979
2980 if (ret)
2981 return ret;
2982
2983 if (event->attr.precise_ip) {
2984 if (!event->attr.freq) {
2985 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2986 if (!(event->attr.sample_type &
2987 ~intel_pmu_free_running_flags(event)))
2988 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2989 }
2990 if (x86_pmu.pebs_aliases)
2991 x86_pmu.pebs_aliases(event);
2992 }
2993
2994 if (needs_branch_stack(event)) {
2995 ret = intel_pmu_setup_lbr_filter(event);
2996 if (ret)
2997 return ret;
2998
2999 /*
3000 * BTS is set up earlier in this path, so don't account twice
3001 */
3002 if (!intel_pmu_has_bts(event)) {
3003 /* disallow lbr if conflicting events are present */
3004 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3005 return -EBUSY;
3006
3007 event->destroy = hw_perf_lbr_event_destroy;
3008 }
3009 }
3010
3011 if (event->attr.type != PERF_TYPE_RAW)
3012 return 0;
3013
3014 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3015 return 0;
3016
3017 if (x86_pmu.version < 3)
3018 return -EINVAL;
3019
3020 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3021 return -EACCES;
3022
3023 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3024
3025 return 0;
3026 }
3027
3028 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3029 {
3030 if (x86_pmu.guest_get_msrs)
3031 return x86_pmu.guest_get_msrs(nr);
3032 *nr = 0;
3033 return NULL;
3034 }
3035 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3036
3037 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3038 {
3039 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3040 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3041
3042 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3043 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3044 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3045 /*
3046 * If PMU counter has PEBS enabled it is not enough to disable counter
3047 * on a guest entry since PEBS memory write can overshoot guest entry
3048 * and corrupt guest memory. Disabling PEBS solves the problem.
3049 */
3050 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3051 arr[1].host = cpuc->pebs_enabled;
3052 arr[1].guest = 0;
3053
3054 *nr = 2;
3055 return arr;
3056 }
3057
3058 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3059 {
3060 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3061 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3062 int idx;
3063
3064 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3065 struct perf_event *event = cpuc->events[idx];
3066
3067 arr[idx].msr = x86_pmu_config_addr(idx);
3068 arr[idx].host = arr[idx].guest = 0;
3069
3070 if (!test_bit(idx, cpuc->active_mask))
3071 continue;
3072
3073 arr[idx].host = arr[idx].guest =
3074 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3075
3076 if (event->attr.exclude_host)
3077 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3078 else if (event->attr.exclude_guest)
3079 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3080 }
3081
3082 *nr = x86_pmu.num_counters;
3083 return arr;
3084 }
3085
3086 static void core_pmu_enable_event(struct perf_event *event)
3087 {
3088 if (!event->attr.exclude_host)
3089 x86_pmu_enable_event(event);
3090 }
3091
3092 static void core_pmu_enable_all(int added)
3093 {
3094 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3095 int idx;
3096
3097 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3098 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3099
3100 if (!test_bit(idx, cpuc->active_mask) ||
3101 cpuc->events[idx]->attr.exclude_host)
3102 continue;
3103
3104 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3105 }
3106 }
3107
3108 static int hsw_hw_config(struct perf_event *event)
3109 {
3110 int ret = intel_pmu_hw_config(event);
3111
3112 if (ret)
3113 return ret;
3114 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3115 return 0;
3116 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3117
3118 /*
3119 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3120 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3121 * this combination.
3122 */
3123 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3124 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3125 event->attr.precise_ip > 0))
3126 return -EOPNOTSUPP;
3127
3128 if (event_is_checkpointed(event)) {
3129 /*
3130 * Sampling of checkpointed events can cause situations where
3131 * the CPU constantly aborts because of a overflow, which is
3132 * then checkpointed back and ignored. Forbid checkpointing
3133 * for sampling.
3134 *
3135 * But still allow a long sampling period, so that perf stat
3136 * from KVM works.
3137 */
3138 if (event->attr.sample_period > 0 &&
3139 event->attr.sample_period < 0x7fffffff)
3140 return -EOPNOTSUPP;
3141 }
3142 return 0;
3143 }
3144
3145 static struct event_constraint counter0_constraint =
3146 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3147
3148 static struct event_constraint counter2_constraint =
3149 EVENT_CONSTRAINT(0, 0x4, 0);
3150
3151 static struct event_constraint *
3152 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3153 struct perf_event *event)
3154 {
3155 struct event_constraint *c;
3156
3157 c = intel_get_event_constraints(cpuc, idx, event);
3158
3159 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3160 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3161 if (c->idxmsk64 & (1U << 2))
3162 return &counter2_constraint;
3163 return &emptyconstraint;
3164 }
3165
3166 return c;
3167 }
3168
3169 static struct event_constraint *
3170 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3171 struct perf_event *event)
3172 {
3173 struct event_constraint *c;
3174
3175 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3176 if (event->attr.precise_ip == 3)
3177 return &counter0_constraint;
3178
3179 c = intel_get_event_constraints(cpuc, idx, event);
3180
3181 return c;
3182 }
3183
3184 /*
3185 * Broadwell:
3186 *
3187 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3188 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3189 * the two to enforce a minimum period of 128 (the smallest value that has bits
3190 * 0-5 cleared and >= 100).
3191 *
3192 * Because of how the code in x86_perf_event_set_period() works, the truncation
3193 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3194 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3195 *
3196 * Therefore the effective (average) period matches the requested period,
3197 * despite coarser hardware granularity.
3198 */
3199 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3200 {
3201 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3202 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3203 if (left < 128)
3204 left = 128;
3205 left &= ~0x3fULL;
3206 }
3207 return left;
3208 }
3209
3210 PMU_FORMAT_ATTR(event, "config:0-7" );
3211 PMU_FORMAT_ATTR(umask, "config:8-15" );
3212 PMU_FORMAT_ATTR(edge, "config:18" );
3213 PMU_FORMAT_ATTR(pc, "config:19" );
3214 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3215 PMU_FORMAT_ATTR(inv, "config:23" );
3216 PMU_FORMAT_ATTR(cmask, "config:24-31" );
3217 PMU_FORMAT_ATTR(in_tx, "config:32");
3218 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3219
3220 static struct attribute *intel_arch_formats_attr[] = {
3221 &format_attr_event.attr,
3222 &format_attr_umask.attr,
3223 &format_attr_edge.attr,
3224 &format_attr_pc.attr,
3225 &format_attr_inv.attr,
3226 &format_attr_cmask.attr,
3227 NULL,
3228 };
3229
3230 ssize_t intel_event_sysfs_show(char *page, u64 config)
3231 {
3232 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3233
3234 return x86_event_sysfs_show(page, config, event);
3235 }
3236
3237 struct intel_shared_regs *allocate_shared_regs(int cpu)
3238 {
3239 struct intel_shared_regs *regs;
3240 int i;
3241
3242 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3243 GFP_KERNEL, cpu_to_node(cpu));
3244 if (regs) {
3245 /*
3246 * initialize the locks to keep lockdep happy
3247 */
3248 for (i = 0; i < EXTRA_REG_MAX; i++)
3249 raw_spin_lock_init(&regs->regs[i].lock);
3250
3251 regs->core_id = -1;
3252 }
3253 return regs;
3254 }
3255
3256 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3257 {
3258 struct intel_excl_cntrs *c;
3259
3260 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3261 GFP_KERNEL, cpu_to_node(cpu));
3262 if (c) {
3263 raw_spin_lock_init(&c->lock);
3264 c->core_id = -1;
3265 }
3266 return c;
3267 }
3268
3269 static int intel_pmu_cpu_prepare(int cpu)
3270 {
3271 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3272
3273 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3274 cpuc->shared_regs = allocate_shared_regs(cpu);
3275 if (!cpuc->shared_regs)
3276 goto err;
3277 }
3278
3279 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3280 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3281
3282 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3283 if (!cpuc->constraint_list)
3284 goto err_shared_regs;
3285
3286 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3287 if (!cpuc->excl_cntrs)
3288 goto err_constraint_list;
3289
3290 cpuc->excl_thread_id = 0;
3291 }
3292
3293 return 0;
3294
3295 err_constraint_list:
3296 kfree(cpuc->constraint_list);
3297 cpuc->constraint_list = NULL;
3298
3299 err_shared_regs:
3300 kfree(cpuc->shared_regs);
3301 cpuc->shared_regs = NULL;
3302
3303 err:
3304 return -ENOMEM;
3305 }
3306
3307 static void flip_smm_bit(void *data)
3308 {
3309 unsigned long set = *(unsigned long *)data;
3310
3311 if (set > 0) {
3312 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3313 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3314 } else {
3315 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3316 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3317 }
3318 }
3319
3320 static void intel_pmu_cpu_starting(int cpu)
3321 {
3322 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3323 int core_id = topology_core_id(cpu);
3324 int i;
3325
3326 init_debug_store_on_cpu(cpu);
3327 /*
3328 * Deal with CPUs that don't clear their LBRs on power-up.
3329 */
3330 intel_pmu_lbr_reset();
3331
3332 cpuc->lbr_sel = NULL;
3333
3334 if (x86_pmu.version > 1)
3335 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3336
3337 if (!cpuc->shared_regs)
3338 return;
3339
3340 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3341 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3342 struct intel_shared_regs *pc;
3343
3344 pc = per_cpu(cpu_hw_events, i).shared_regs;
3345 if (pc && pc->core_id == core_id) {
3346 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3347 cpuc->shared_regs = pc;
3348 break;
3349 }
3350 }
3351 cpuc->shared_regs->core_id = core_id;
3352 cpuc->shared_regs->refcnt++;
3353 }
3354
3355 if (x86_pmu.lbr_sel_map)
3356 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3357
3358 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3359 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3360 struct cpu_hw_events *sibling;
3361 struct intel_excl_cntrs *c;
3362
3363 sibling = &per_cpu(cpu_hw_events, i);
3364 c = sibling->excl_cntrs;
3365 if (c && c->core_id == core_id) {
3366 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3367 cpuc->excl_cntrs = c;
3368 if (!sibling->excl_thread_id)
3369 cpuc->excl_thread_id = 1;
3370 break;
3371 }
3372 }
3373 cpuc->excl_cntrs->core_id = core_id;
3374 cpuc->excl_cntrs->refcnt++;
3375 }
3376 }
3377
3378 static void free_excl_cntrs(int cpu)
3379 {
3380 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3381 struct intel_excl_cntrs *c;
3382
3383 c = cpuc->excl_cntrs;
3384 if (c) {
3385 if (c->core_id == -1 || --c->refcnt == 0)
3386 kfree(c);
3387 cpuc->excl_cntrs = NULL;
3388 kfree(cpuc->constraint_list);
3389 cpuc->constraint_list = NULL;
3390 }
3391 }
3392
3393 static void intel_pmu_cpu_dying(int cpu)
3394 {
3395 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3396 struct intel_shared_regs *pc;
3397
3398 pc = cpuc->shared_regs;
3399 if (pc) {
3400 if (pc->core_id == -1 || --pc->refcnt == 0)
3401 kfree(pc);
3402 cpuc->shared_regs = NULL;
3403 }
3404
3405 free_excl_cntrs(cpu);
3406
3407 fini_debug_store_on_cpu(cpu);
3408 }
3409
3410 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3411 bool sched_in)
3412 {
3413 intel_pmu_pebs_sched_task(ctx, sched_in);
3414 intel_pmu_lbr_sched_task(ctx, sched_in);
3415 }
3416
3417 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3418
3419 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3420
3421 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3422
3423 static struct attribute *intel_arch3_formats_attr[] = {
3424 &format_attr_event.attr,
3425 &format_attr_umask.attr,
3426 &format_attr_edge.attr,
3427 &format_attr_pc.attr,
3428 &format_attr_any.attr,
3429 &format_attr_inv.attr,
3430 &format_attr_cmask.attr,
3431 NULL,
3432 };
3433
3434 static struct attribute *hsw_format_attr[] = {
3435 &format_attr_in_tx.attr,
3436 &format_attr_in_tx_cp.attr,
3437 &format_attr_offcore_rsp.attr,
3438 &format_attr_ldlat.attr,
3439 NULL
3440 };
3441
3442 static struct attribute *nhm_format_attr[] = {
3443 &format_attr_offcore_rsp.attr,
3444 &format_attr_ldlat.attr,
3445 NULL
3446 };
3447
3448 static struct attribute *slm_format_attr[] = {
3449 &format_attr_offcore_rsp.attr,
3450 NULL
3451 };
3452
3453 static struct attribute *skl_format_attr[] = {
3454 &format_attr_frontend.attr,
3455 NULL,
3456 };
3457
3458 static __initconst const struct x86_pmu core_pmu = {
3459 .name = "core",
3460 .handle_irq = x86_pmu_handle_irq,
3461 .disable_all = x86_pmu_disable_all,
3462 .enable_all = core_pmu_enable_all,
3463 .enable = core_pmu_enable_event,
3464 .disable = x86_pmu_disable_event,
3465 .hw_config = x86_pmu_hw_config,
3466 .schedule_events = x86_schedule_events,
3467 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3468 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3469 .event_map = intel_pmu_event_map,
3470 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3471 .apic = 1,
3472 .free_running_flags = PEBS_FREERUNNING_FLAGS,
3473
3474 /*
3475 * Intel PMCs cannot be accessed sanely above 32-bit width,
3476 * so we install an artificial 1<<31 period regardless of
3477 * the generic event period:
3478 */
3479 .max_period = (1ULL<<31) - 1,
3480 .get_event_constraints = intel_get_event_constraints,
3481 .put_event_constraints = intel_put_event_constraints,
3482 .event_constraints = intel_core_event_constraints,
3483 .guest_get_msrs = core_guest_get_msrs,
3484 .format_attrs = intel_arch_formats_attr,
3485 .events_sysfs_show = intel_event_sysfs_show,
3486
3487 /*
3488 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3489 * together with PMU version 1 and thus be using core_pmu with
3490 * shared_regs. We need following callbacks here to allocate
3491 * it properly.
3492 */
3493 .cpu_prepare = intel_pmu_cpu_prepare,
3494 .cpu_starting = intel_pmu_cpu_starting,
3495 .cpu_dying = intel_pmu_cpu_dying,
3496 };
3497
3498 static struct attribute *intel_pmu_attrs[];
3499
3500 static __initconst const struct x86_pmu intel_pmu = {
3501 .name = "Intel",
3502 .handle_irq = intel_pmu_handle_irq,
3503 .disable_all = intel_pmu_disable_all,
3504 .enable_all = intel_pmu_enable_all,
3505 .enable = intel_pmu_enable_event,
3506 .disable = intel_pmu_disable_event,
3507 .add = intel_pmu_add_event,
3508 .del = intel_pmu_del_event,
3509 .hw_config = intel_pmu_hw_config,
3510 .schedule_events = x86_schedule_events,
3511 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3512 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3513 .event_map = intel_pmu_event_map,
3514 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3515 .apic = 1,
3516 .free_running_flags = PEBS_FREERUNNING_FLAGS,
3517 /*
3518 * Intel PMCs cannot be accessed sanely above 32 bit width,
3519 * so we install an artificial 1<<31 period regardless of
3520 * the generic event period:
3521 */
3522 .max_period = (1ULL << 31) - 1,
3523 .get_event_constraints = intel_get_event_constraints,
3524 .put_event_constraints = intel_put_event_constraints,
3525 .pebs_aliases = intel_pebs_aliases_core2,
3526
3527 .format_attrs = intel_arch3_formats_attr,
3528 .events_sysfs_show = intel_event_sysfs_show,
3529
3530 .attrs = intel_pmu_attrs,
3531
3532 .cpu_prepare = intel_pmu_cpu_prepare,
3533 .cpu_starting = intel_pmu_cpu_starting,
3534 .cpu_dying = intel_pmu_cpu_dying,
3535 .guest_get_msrs = intel_guest_get_msrs,
3536 .sched_task = intel_pmu_sched_task,
3537 };
3538
3539 static __init void intel_clovertown_quirk(void)
3540 {
3541 /*
3542 * PEBS is unreliable due to:
3543 *
3544 * AJ67 - PEBS may experience CPL leaks
3545 * AJ68 - PEBS PMI may be delayed by one event
3546 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3547 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3548 *
3549 * AJ67 could be worked around by restricting the OS/USR flags.
3550 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3551 *
3552 * AJ106 could possibly be worked around by not allowing LBR
3553 * usage from PEBS, including the fixup.
3554 * AJ68 could possibly be worked around by always programming
3555 * a pebs_event_reset[0] value and coping with the lost events.
3556 *
3557 * But taken together it might just make sense to not enable PEBS on
3558 * these chips.
3559 */
3560 pr_warn("PEBS disabled due to CPU errata\n");
3561 x86_pmu.pebs = 0;
3562 x86_pmu.pebs_constraints = NULL;
3563 }
3564
3565 static int intel_snb_pebs_broken(int cpu)
3566 {
3567 u32 rev = UINT_MAX; /* default to broken for unknown models */
3568
3569 switch (cpu_data(cpu).x86_model) {
3570 case INTEL_FAM6_SANDYBRIDGE:
3571 rev = 0x28;
3572 break;
3573
3574 case INTEL_FAM6_SANDYBRIDGE_X:
3575 switch (cpu_data(cpu).x86_stepping) {
3576 case 6: rev = 0x618; break;
3577 case 7: rev = 0x70c; break;
3578 }
3579 }
3580
3581 return (cpu_data(cpu).microcode < rev);
3582 }
3583
3584 static void intel_snb_check_microcode(void)
3585 {
3586 int pebs_broken = 0;
3587 int cpu;
3588
3589 for_each_online_cpu(cpu) {
3590 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3591 break;
3592 }
3593
3594 if (pebs_broken == x86_pmu.pebs_broken)
3595 return;
3596
3597 /*
3598 * Serialized by the microcode lock..
3599 */
3600 if (x86_pmu.pebs_broken) {
3601 pr_info("PEBS enabled due to microcode update\n");
3602 x86_pmu.pebs_broken = 0;
3603 } else {
3604 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3605 x86_pmu.pebs_broken = 1;
3606 }
3607 }
3608
3609 static bool is_lbr_from(unsigned long msr)
3610 {
3611 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3612
3613 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3614 }
3615
3616 /*
3617 * Under certain circumstances, access certain MSR may cause #GP.
3618 * The function tests if the input MSR can be safely accessed.
3619 */
3620 static bool check_msr(unsigned long msr, u64 mask)
3621 {
3622 u64 val_old, val_new, val_tmp;
3623
3624 /*
3625 * Read the current value, change it and read it back to see if it
3626 * matches, this is needed to detect certain hardware emulators
3627 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3628 */
3629 if (rdmsrl_safe(msr, &val_old))
3630 return false;
3631
3632 /*
3633 * Only change the bits which can be updated by wrmsrl.
3634 */
3635 val_tmp = val_old ^ mask;
3636
3637 if (is_lbr_from(msr))
3638 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3639
3640 if (wrmsrl_safe(msr, val_tmp) ||
3641 rdmsrl_safe(msr, &val_new))
3642 return false;
3643
3644 /*
3645 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3646 * should equal rdmsrl()'s even with the quirk.
3647 */
3648 if (val_new != val_tmp)
3649 return false;
3650
3651 if (is_lbr_from(msr))
3652 val_old = lbr_from_signext_quirk_wr(val_old);
3653
3654 /* Here it's sure that the MSR can be safely accessed.
3655 * Restore the old value and return.
3656 */
3657 wrmsrl(msr, val_old);
3658
3659 return true;
3660 }
3661
3662 static __init void intel_sandybridge_quirk(void)
3663 {
3664 x86_pmu.check_microcode = intel_snb_check_microcode;
3665 cpus_read_lock();
3666 intel_snb_check_microcode();
3667 cpus_read_unlock();
3668 }
3669
3670 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3671 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3672 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3673 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3674 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3675 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3676 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3677 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3678 };
3679
3680 static __init void intel_arch_events_quirk(void)
3681 {
3682 int bit;
3683
3684 /* disable event that reported as not presend by cpuid */
3685 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3686 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3687 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3688 intel_arch_events_map[bit].name);
3689 }
3690 }
3691
3692 static __init void intel_nehalem_quirk(void)
3693 {
3694 union cpuid10_ebx ebx;
3695
3696 ebx.full = x86_pmu.events_maskl;
3697 if (ebx.split.no_branch_misses_retired) {
3698 /*
3699 * Erratum AAJ80 detected, we work it around by using
3700 * the BR_MISP_EXEC.ANY event. This will over-count
3701 * branch-misses, but it's still much better than the
3702 * architectural event which is often completely bogus:
3703 */
3704 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3705 ebx.split.no_branch_misses_retired = 0;
3706 x86_pmu.events_maskl = ebx.full;
3707 pr_info("CPU erratum AAJ80 worked around\n");
3708 }
3709 }
3710
3711 /*
3712 * enable software workaround for errata:
3713 * SNB: BJ122
3714 * IVB: BV98
3715 * HSW: HSD29
3716 *
3717 * Only needed when HT is enabled. However detecting
3718 * if HT is enabled is difficult (model specific). So instead,
3719 * we enable the workaround in the early boot, and verify if
3720 * it is needed in a later initcall phase once we have valid
3721 * topology information to check if HT is actually enabled
3722 */
3723 static __init void intel_ht_bug(void)
3724 {
3725 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3726
3727 x86_pmu.start_scheduling = intel_start_scheduling;
3728 x86_pmu.commit_scheduling = intel_commit_scheduling;
3729 x86_pmu.stop_scheduling = intel_stop_scheduling;
3730 }
3731
3732 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3733 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
3734
3735 /* Haswell special events */
3736 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3737 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3738 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3739 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3740 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3741 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3742 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3743 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3744 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3745 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3746 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3747 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
3748
3749 static struct attribute *hsw_events_attrs[] = {
3750 EVENT_PTR(mem_ld_hsw),
3751 EVENT_PTR(mem_st_hsw),
3752 EVENT_PTR(td_slots_issued),
3753 EVENT_PTR(td_slots_retired),
3754 EVENT_PTR(td_fetch_bubbles),
3755 EVENT_PTR(td_total_slots),
3756 EVENT_PTR(td_total_slots_scale),
3757 EVENT_PTR(td_recovery_bubbles),
3758 EVENT_PTR(td_recovery_bubbles_scale),
3759 NULL
3760 };
3761
3762 static struct attribute *hsw_tsx_events_attrs[] = {
3763 EVENT_PTR(tx_start),
3764 EVENT_PTR(tx_commit),
3765 EVENT_PTR(tx_abort),
3766 EVENT_PTR(tx_capacity),
3767 EVENT_PTR(tx_conflict),
3768 EVENT_PTR(el_start),
3769 EVENT_PTR(el_commit),
3770 EVENT_PTR(el_abort),
3771 EVENT_PTR(el_capacity),
3772 EVENT_PTR(el_conflict),
3773 EVENT_PTR(cycles_t),
3774 EVENT_PTR(cycles_ct),
3775 NULL
3776 };
3777
3778 static __init struct attribute **get_hsw_events_attrs(void)
3779 {
3780 return boot_cpu_has(X86_FEATURE_RTM) ?
3781 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3782 hsw_events_attrs;
3783 }
3784
3785 static ssize_t freeze_on_smi_show(struct device *cdev,
3786 struct device_attribute *attr,
3787 char *buf)
3788 {
3789 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3790 }
3791
3792 static DEFINE_MUTEX(freeze_on_smi_mutex);
3793
3794 static ssize_t freeze_on_smi_store(struct device *cdev,
3795 struct device_attribute *attr,
3796 const char *buf, size_t count)
3797 {
3798 unsigned long val;
3799 ssize_t ret;
3800
3801 ret = kstrtoul(buf, 0, &val);
3802 if (ret)
3803 return ret;
3804
3805 if (val > 1)
3806 return -EINVAL;
3807
3808 mutex_lock(&freeze_on_smi_mutex);
3809
3810 if (x86_pmu.attr_freeze_on_smi == val)
3811 goto done;
3812
3813 x86_pmu.attr_freeze_on_smi = val;
3814
3815 get_online_cpus();
3816 on_each_cpu(flip_smm_bit, &val, 1);
3817 put_online_cpus();
3818 done:
3819 mutex_unlock(&freeze_on_smi_mutex);
3820
3821 return count;
3822 }
3823
3824 static DEVICE_ATTR_RW(freeze_on_smi);
3825
3826 static ssize_t branches_show(struct device *cdev,
3827 struct device_attribute *attr,
3828 char *buf)
3829 {
3830 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3831 }
3832
3833 static DEVICE_ATTR_RO(branches);
3834
3835 static struct attribute *lbr_attrs[] = {
3836 &dev_attr_branches.attr,
3837 NULL
3838 };
3839
3840 static char pmu_name_str[30];
3841
3842 static ssize_t pmu_name_show(struct device *cdev,
3843 struct device_attribute *attr,
3844 char *buf)
3845 {
3846 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3847 }
3848
3849 static DEVICE_ATTR_RO(pmu_name);
3850
3851 static struct attribute *intel_pmu_caps_attrs[] = {
3852 &dev_attr_pmu_name.attr,
3853 NULL
3854 };
3855
3856 static struct attribute *intel_pmu_attrs[] = {
3857 &dev_attr_freeze_on_smi.attr,
3858 NULL,
3859 };
3860
3861 __init int intel_pmu_init(void)
3862 {
3863 struct attribute **extra_attr = NULL;
3864 struct attribute **to_free = NULL;
3865 union cpuid10_edx edx;
3866 union cpuid10_eax eax;
3867 union cpuid10_ebx ebx;
3868 struct event_constraint *c;
3869 unsigned int unused;
3870 struct extra_reg *er;
3871 int version, i;
3872 char *name;
3873
3874 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3875 switch (boot_cpu_data.x86) {
3876 case 0x6:
3877 return p6_pmu_init();
3878 case 0xb:
3879 return knc_pmu_init();
3880 case 0xf:
3881 return p4_pmu_init();
3882 }
3883 return -ENODEV;
3884 }
3885
3886 /*
3887 * Check whether the Architectural PerfMon supports
3888 * Branch Misses Retired hw_event or not.
3889 */
3890 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3891 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3892 return -ENODEV;
3893
3894 version = eax.split.version_id;
3895 if (version < 2)
3896 x86_pmu = core_pmu;
3897 else
3898 x86_pmu = intel_pmu;
3899
3900 x86_pmu.version = version;
3901 x86_pmu.num_counters = eax.split.num_counters;
3902 x86_pmu.cntval_bits = eax.split.bit_width;
3903 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
3904
3905 x86_pmu.events_maskl = ebx.full;
3906 x86_pmu.events_mask_len = eax.split.mask_length;
3907
3908 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3909
3910 /*
3911 * Quirk: v2 perfmon does not report fixed-purpose events, so
3912 * assume at least 3 events, when not running in a hypervisor:
3913 */
3914 if (version > 1) {
3915 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3916
3917 x86_pmu.num_counters_fixed =
3918 max((int)edx.split.num_counters_fixed, assume);
3919 }
3920
3921 if (boot_cpu_has(X86_FEATURE_PDCM)) {
3922 u64 capabilities;
3923
3924 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3925 x86_pmu.intel_cap.capabilities = capabilities;
3926 }
3927
3928 intel_ds_init();
3929
3930 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3931
3932 /*
3933 * Install the hw-cache-events table:
3934 */
3935 switch (boot_cpu_data.x86_model) {
3936 case INTEL_FAM6_CORE_YONAH:
3937 pr_cont("Core events, ");
3938 name = "core";
3939 break;
3940
3941 case INTEL_FAM6_CORE2_MEROM:
3942 x86_add_quirk(intel_clovertown_quirk);
3943 case INTEL_FAM6_CORE2_MEROM_L:
3944 case INTEL_FAM6_CORE2_PENRYN:
3945 case INTEL_FAM6_CORE2_DUNNINGTON:
3946 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3947 sizeof(hw_cache_event_ids));
3948
3949 intel_pmu_lbr_init_core();
3950
3951 x86_pmu.event_constraints = intel_core2_event_constraints;
3952 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3953 pr_cont("Core2 events, ");
3954 name = "core2";
3955 break;
3956
3957 case INTEL_FAM6_NEHALEM:
3958 case INTEL_FAM6_NEHALEM_EP:
3959 case INTEL_FAM6_NEHALEM_EX:
3960 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3961 sizeof(hw_cache_event_ids));
3962 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3963 sizeof(hw_cache_extra_regs));
3964
3965 intel_pmu_lbr_init_nhm();
3966
3967 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3968 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3969 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3970 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3971
3972 x86_pmu.cpu_events = nhm_events_attrs;
3973
3974 /* UOPS_ISSUED.STALLED_CYCLES */
3975 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3976 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3977 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3978 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3979 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3980
3981 intel_pmu_pebs_data_source_nhm();
3982 x86_add_quirk(intel_nehalem_quirk);
3983 x86_pmu.pebs_no_tlb = 1;
3984 extra_attr = nhm_format_attr;
3985
3986 pr_cont("Nehalem events, ");
3987 name = "nehalem";
3988 break;
3989
3990 case INTEL_FAM6_ATOM_PINEVIEW:
3991 case INTEL_FAM6_ATOM_LINCROFT:
3992 case INTEL_FAM6_ATOM_PENWELL:
3993 case INTEL_FAM6_ATOM_CLOVERVIEW:
3994 case INTEL_FAM6_ATOM_CEDARVIEW:
3995 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3996 sizeof(hw_cache_event_ids));
3997
3998 intel_pmu_lbr_init_atom();
3999
4000 x86_pmu.event_constraints = intel_gen_event_constraints;
4001 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4002 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4003 pr_cont("Atom events, ");
4004 name = "bonnell";
4005 break;
4006
4007 case INTEL_FAM6_ATOM_SILVERMONT1:
4008 case INTEL_FAM6_ATOM_SILVERMONT2:
4009 case INTEL_FAM6_ATOM_AIRMONT:
4010 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4011 sizeof(hw_cache_event_ids));
4012 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4013 sizeof(hw_cache_extra_regs));
4014
4015 intel_pmu_lbr_init_slm();
4016
4017 x86_pmu.event_constraints = intel_slm_event_constraints;
4018 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4019 x86_pmu.extra_regs = intel_slm_extra_regs;
4020 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4021 x86_pmu.cpu_events = slm_events_attrs;
4022 extra_attr = slm_format_attr;
4023 pr_cont("Silvermont events, ");
4024 name = "silvermont";
4025 break;
4026
4027 case INTEL_FAM6_ATOM_GOLDMONT:
4028 case INTEL_FAM6_ATOM_DENVERTON:
4029 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4030 sizeof(hw_cache_event_ids));
4031 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4032 sizeof(hw_cache_extra_regs));
4033
4034 intel_pmu_lbr_init_skl();
4035
4036 x86_pmu.event_constraints = intel_slm_event_constraints;
4037 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4038 x86_pmu.extra_regs = intel_glm_extra_regs;
4039 /*
4040 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4041 * for precise cycles.
4042 * :pp is identical to :ppp
4043 */
4044 x86_pmu.pebs_aliases = NULL;
4045 x86_pmu.pebs_prec_dist = true;
4046 x86_pmu.lbr_pt_coexist = true;
4047 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4048 x86_pmu.cpu_events = glm_events_attrs;
4049 extra_attr = slm_format_attr;
4050 pr_cont("Goldmont events, ");
4051 name = "goldmont";
4052 break;
4053
4054 case INTEL_FAM6_ATOM_GEMINI_LAKE:
4055 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4056 sizeof(hw_cache_event_ids));
4057 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4058 sizeof(hw_cache_extra_regs));
4059
4060 intel_pmu_lbr_init_skl();
4061
4062 x86_pmu.event_constraints = intel_slm_event_constraints;
4063 x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints;
4064 x86_pmu.extra_regs = intel_glm_extra_regs;
4065 /*
4066 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4067 * for precise cycles.
4068 */
4069 x86_pmu.pebs_aliases = NULL;
4070 x86_pmu.pebs_prec_dist = true;
4071 x86_pmu.lbr_pt_coexist = true;
4072 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4073 x86_pmu.get_event_constraints = glp_get_event_constraints;
4074 x86_pmu.cpu_events = glm_events_attrs;
4075 /* Goldmont Plus has 4-wide pipeline */
4076 event_attr_td_total_slots_scale_glm.event_str = "4";
4077 extra_attr = slm_format_attr;
4078 pr_cont("Goldmont plus events, ");
4079 name = "goldmont_plus";
4080 break;
4081
4082 case INTEL_FAM6_WESTMERE:
4083 case INTEL_FAM6_WESTMERE_EP:
4084 case INTEL_FAM6_WESTMERE_EX:
4085 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4086 sizeof(hw_cache_event_ids));
4087 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4088 sizeof(hw_cache_extra_regs));
4089
4090 intel_pmu_lbr_init_nhm();
4091
4092 x86_pmu.event_constraints = intel_westmere_event_constraints;
4093 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4094 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4095 x86_pmu.extra_regs = intel_westmere_extra_regs;
4096 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4097
4098 x86_pmu.cpu_events = nhm_events_attrs;
4099
4100 /* UOPS_ISSUED.STALLED_CYCLES */
4101 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4102 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4103 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4104 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4105 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4106
4107 intel_pmu_pebs_data_source_nhm();
4108 extra_attr = nhm_format_attr;
4109 pr_cont("Westmere events, ");
4110 name = "westmere";
4111 break;
4112
4113 case INTEL_FAM6_SANDYBRIDGE:
4114 case INTEL_FAM6_SANDYBRIDGE_X:
4115 x86_add_quirk(intel_sandybridge_quirk);
4116 x86_add_quirk(intel_ht_bug);
4117 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4118 sizeof(hw_cache_event_ids));
4119 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4120 sizeof(hw_cache_extra_regs));
4121
4122 intel_pmu_lbr_init_snb();
4123
4124 x86_pmu.event_constraints = intel_snb_event_constraints;
4125 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4126 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4127 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4128 x86_pmu.extra_regs = intel_snbep_extra_regs;
4129 else
4130 x86_pmu.extra_regs = intel_snb_extra_regs;
4131
4132
4133 /* all extra regs are per-cpu when HT is on */
4134 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4135 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4136
4137 x86_pmu.cpu_events = snb_events_attrs;
4138
4139 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4140 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4141 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4142 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4143 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4144 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4145
4146 extra_attr = nhm_format_attr;
4147
4148 pr_cont("SandyBridge events, ");
4149 name = "sandybridge";
4150 break;
4151
4152 case INTEL_FAM6_IVYBRIDGE:
4153 case INTEL_FAM6_IVYBRIDGE_X:
4154 x86_add_quirk(intel_ht_bug);
4155 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4156 sizeof(hw_cache_event_ids));
4157 /* dTLB-load-misses on IVB is different than SNB */
4158 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4159
4160 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4161 sizeof(hw_cache_extra_regs));
4162
4163 intel_pmu_lbr_init_snb();
4164
4165 x86_pmu.event_constraints = intel_ivb_event_constraints;
4166 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4167 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4168 x86_pmu.pebs_prec_dist = true;
4169 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4170 x86_pmu.extra_regs = intel_snbep_extra_regs;
4171 else
4172 x86_pmu.extra_regs = intel_snb_extra_regs;
4173 /* all extra regs are per-cpu when HT is on */
4174 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4175 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4176
4177 x86_pmu.cpu_events = snb_events_attrs;
4178
4179 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4180 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4181 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4182
4183 extra_attr = nhm_format_attr;
4184
4185 pr_cont("IvyBridge events, ");
4186 name = "ivybridge";
4187 break;
4188
4189
4190 case INTEL_FAM6_HASWELL_CORE:
4191 case INTEL_FAM6_HASWELL_X:
4192 case INTEL_FAM6_HASWELL_ULT:
4193 case INTEL_FAM6_HASWELL_GT3E:
4194 x86_add_quirk(intel_ht_bug);
4195 x86_pmu.late_ack = true;
4196 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4197 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4198
4199 intel_pmu_lbr_init_hsw();
4200
4201 x86_pmu.event_constraints = intel_hsw_event_constraints;
4202 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4203 x86_pmu.extra_regs = intel_snbep_extra_regs;
4204 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4205 x86_pmu.pebs_prec_dist = true;
4206 /* all extra regs are per-cpu when HT is on */
4207 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4208 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4209
4210 x86_pmu.hw_config = hsw_hw_config;
4211 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4212 x86_pmu.cpu_events = get_hsw_events_attrs();
4213 x86_pmu.lbr_double_abort = true;
4214 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4215 hsw_format_attr : nhm_format_attr;
4216 pr_cont("Haswell events, ");
4217 name = "haswell";
4218 break;
4219
4220 case INTEL_FAM6_BROADWELL_CORE:
4221 case INTEL_FAM6_BROADWELL_XEON_D:
4222 case INTEL_FAM6_BROADWELL_GT3E:
4223 case INTEL_FAM6_BROADWELL_X:
4224 x86_pmu.late_ack = true;
4225 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4226 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4227
4228 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4229 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4230 BDW_L3_MISS|HSW_SNOOP_DRAM;
4231 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4232 HSW_SNOOP_DRAM;
4233 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4234 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4235 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4236 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4237
4238 intel_pmu_lbr_init_hsw();
4239
4240 x86_pmu.event_constraints = intel_bdw_event_constraints;
4241 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4242 x86_pmu.extra_regs = intel_snbep_extra_regs;
4243 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4244 x86_pmu.pebs_prec_dist = true;
4245 /* all extra regs are per-cpu when HT is on */
4246 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4247 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4248
4249 x86_pmu.hw_config = hsw_hw_config;
4250 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4251 x86_pmu.cpu_events = get_hsw_events_attrs();
4252 x86_pmu.limit_period = bdw_limit_period;
4253 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4254 hsw_format_attr : nhm_format_attr;
4255 pr_cont("Broadwell events, ");
4256 name = "broadwell";
4257 break;
4258
4259 case INTEL_FAM6_XEON_PHI_KNL:
4260 case INTEL_FAM6_XEON_PHI_KNM:
4261 memcpy(hw_cache_event_ids,
4262 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4263 memcpy(hw_cache_extra_regs,
4264 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4265 intel_pmu_lbr_init_knl();
4266
4267 x86_pmu.event_constraints = intel_slm_event_constraints;
4268 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4269 x86_pmu.extra_regs = intel_knl_extra_regs;
4270
4271 /* all extra regs are per-cpu when HT is on */
4272 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4273 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4274 extra_attr = slm_format_attr;
4275 pr_cont("Knights Landing/Mill events, ");
4276 name = "knights-landing";
4277 break;
4278
4279 case INTEL_FAM6_SKYLAKE_MOBILE:
4280 case INTEL_FAM6_SKYLAKE_DESKTOP:
4281 case INTEL_FAM6_SKYLAKE_X:
4282 case INTEL_FAM6_KABYLAKE_MOBILE:
4283 case INTEL_FAM6_KABYLAKE_DESKTOP:
4284 x86_pmu.late_ack = true;
4285 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4286 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4287 intel_pmu_lbr_init_skl();
4288
4289 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4290 event_attr_td_recovery_bubbles.event_str_noht =
4291 "event=0xd,umask=0x1,cmask=1";
4292 event_attr_td_recovery_bubbles.event_str_ht =
4293 "event=0xd,umask=0x1,cmask=1,any=1";
4294
4295 x86_pmu.event_constraints = intel_skl_event_constraints;
4296 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4297 x86_pmu.extra_regs = intel_skl_extra_regs;
4298 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4299 x86_pmu.pebs_prec_dist = true;
4300 /* all extra regs are per-cpu when HT is on */
4301 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4302 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4303
4304 x86_pmu.hw_config = hsw_hw_config;
4305 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4306 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4307 hsw_format_attr : nhm_format_attr;
4308 extra_attr = merge_attr(extra_attr, skl_format_attr);
4309 to_free = extra_attr;
4310 x86_pmu.cpu_events = get_hsw_events_attrs();
4311 intel_pmu_pebs_data_source_skl(
4312 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4313 pr_cont("Skylake events, ");
4314 name = "skylake";
4315 break;
4316
4317 default:
4318 switch (x86_pmu.version) {
4319 case 1:
4320 x86_pmu.event_constraints = intel_v1_event_constraints;
4321 pr_cont("generic architected perfmon v1, ");
4322 name = "generic_arch_v1";
4323 break;
4324 default:
4325 /*
4326 * default constraints for v2 and up
4327 */
4328 x86_pmu.event_constraints = intel_gen_event_constraints;
4329 pr_cont("generic architected perfmon, ");
4330 name = "generic_arch_v2+";
4331 break;
4332 }
4333 }
4334
4335 snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4336
4337 if (version >= 2 && extra_attr) {
4338 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4339 extra_attr);
4340 WARN_ON(!x86_pmu.format_attrs);
4341 }
4342
4343 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4344 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4345 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4346 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4347 }
4348 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4349
4350 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4351 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4352 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4353 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4354 }
4355
4356 x86_pmu.intel_ctrl |=
4357 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4358
4359 if (x86_pmu.event_constraints) {
4360 /*
4361 * event on fixed counter2 (REF_CYCLES) only works on this
4362 * counter, so do not extend mask to generic counters
4363 */
4364 for_each_event_constraint(c, x86_pmu.event_constraints) {
4365 if (c->cmask == FIXED_EVENT_FLAGS
4366 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4367 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4368 }
4369 c->idxmsk64 &=
4370 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4371 c->weight = hweight64(c->idxmsk64);
4372 }
4373 }
4374
4375 /*
4376 * Access LBR MSR may cause #GP under certain circumstances.
4377 * E.g. KVM doesn't support LBR MSR
4378 * Check all LBT MSR here.
4379 * Disable LBR access if any LBR MSRs can not be accessed.
4380 */
4381 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4382 x86_pmu.lbr_nr = 0;
4383 for (i = 0; i < x86_pmu.lbr_nr; i++) {
4384 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4385 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4386 x86_pmu.lbr_nr = 0;
4387 }
4388
4389 x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4390
4391 if (x86_pmu.lbr_nr) {
4392 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4393 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4394 }
4395
4396 /*
4397 * Access extra MSR may cause #GP under certain circumstances.
4398 * E.g. KVM doesn't support offcore event
4399 * Check all extra_regs here.
4400 */
4401 if (x86_pmu.extra_regs) {
4402 for (er = x86_pmu.extra_regs; er->msr; er++) {
4403 er->extra_msr_access = check_msr(er->msr, 0x11UL);
4404 /* Disable LBR select mapping */
4405 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4406 x86_pmu.lbr_sel_map = NULL;
4407 }
4408 }
4409
4410 /* Support full width counters using alternative MSR range */
4411 if (x86_pmu.intel_cap.full_width_write) {
4412 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4413 x86_pmu.perfctr = MSR_IA32_PMC0;
4414 pr_cont("full-width counters, ");
4415 }
4416
4417 kfree(to_free);
4418 return 0;
4419 }
4420
4421 /*
4422 * HT bug: phase 2 init
4423 * Called once we have valid topology information to check
4424 * whether or not HT is enabled
4425 * If HT is off, then we disable the workaround
4426 */
4427 static __init int fixup_ht_bug(void)
4428 {
4429 int c;
4430 /*
4431 * problem not present on this CPU model, nothing to do
4432 */
4433 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4434 return 0;
4435
4436 if (topology_max_smt_threads() > 1) {
4437 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4438 return 0;
4439 }
4440
4441 cpus_read_lock();
4442
4443 hardlockup_detector_perf_stop();
4444
4445 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4446
4447 x86_pmu.start_scheduling = NULL;
4448 x86_pmu.commit_scheduling = NULL;
4449 x86_pmu.stop_scheduling = NULL;
4450
4451 hardlockup_detector_perf_restart();
4452
4453 for_each_online_cpu(c)
4454 free_excl_cntrs(c);
4455
4456 cpus_read_unlock();
4457 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4458 return 0;
4459 }
4460 subsys_initcall(fixup_ht_bug)