]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/events/intel/core.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / x86 / events / intel / core.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25 * Intel PerfMon, used on Core and later.
26 */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119 /*
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
122 */
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128 EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147 /*
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
150 */
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156 EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
194
195 /*
196 * when HT is off, these can only run on the bottom 4 counters
197 */
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
203
204 EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 /*
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
236 */
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246 EVENT_PTR(mem_ld_nhm),
247 NULL,
248 };
249
250 /*
251 * topdown events for Intel Core CPUs.
252 *
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
256 *
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
259 *
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262 */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281 EVENT_PTR(mem_ld_snb),
282 EVENT_PTR(mem_st_snb),
283 EVENT_PTR(td_slots_issued),
284 EVENT_PTR(td_slots_retired),
285 EVENT_PTR(td_fetch_bubbles),
286 EVENT_PTR(td_total_slots),
287 EVENT_PTR(td_total_slots_scale),
288 EVENT_PTR(td_recovery_bubbles),
289 EVENT_PTR(td_recovery_bubbles_scale),
290 NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307 /*
308 * When HT is off these events can only run on the bottom 4 counters
309 * When HT is on, they are impacted by the HT bug and require EXCL access
310 */
311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316 EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 /*
326 * when HT is off, these can only run on the bottom 4 counters
327 */
328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
332 EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341 * Notes on the events:
342 * - data reads do not include code reads (comparable to earlier tables)
343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
344 * - remote node access includes remote memory, remote cache, remote mmio.
345 * - prefetches are not included in the counts.
346 * - icache miss does not include decoded icache
347 */
348
349 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
350 #define SKL_DEMAND_RFO BIT_ULL(1)
351 #define SKL_ANY_RESPONSE BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT BIT_ULL(30)
362 #define SKL_SNOOP_NONE BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
364 #define SKL_SNOOP_MISS BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
367 #define SKL_SNOOP_HITM BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385 [PERF_COUNT_HW_CACHE_MAX]
386 [PERF_COUNT_HW_CACHE_OP_MAX]
387 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389 [ C(L1D ) ] = {
390 [ C(OP_READ) ] = {
391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
393 },
394 [ C(OP_WRITE) ] = {
395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
396 [ C(RESULT_MISS) ] = 0x0,
397 },
398 [ C(OP_PREFETCH) ] = {
399 [ C(RESULT_ACCESS) ] = 0x0,
400 [ C(RESULT_MISS) ] = 0x0,
401 },
402 },
403 [ C(L1I ) ] = {
404 [ C(OP_READ) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
407 },
408 [ C(OP_WRITE) ] = {
409 [ C(RESULT_ACCESS) ] = -1,
410 [ C(RESULT_MISS) ] = -1,
411 },
412 [ C(OP_PREFETCH) ] = {
413 [ C(RESULT_ACCESS) ] = 0x0,
414 [ C(RESULT_MISS) ] = 0x0,
415 },
416 },
417 [ C(LL ) ] = {
418 [ C(OP_READ) ] = {
419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
421 },
422 [ C(OP_WRITE) ] = {
423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
425 },
426 [ C(OP_PREFETCH) ] = {
427 [ C(RESULT_ACCESS) ] = 0x0,
428 [ C(RESULT_MISS) ] = 0x0,
429 },
430 },
431 [ C(DTLB) ] = {
432 [ C(OP_READ) ] = {
433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
434 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 },
436 [ C(OP_WRITE) ] = {
437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
438 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
439 },
440 [ C(OP_PREFETCH) ] = {
441 [ C(RESULT_ACCESS) ] = 0x0,
442 [ C(RESULT_MISS) ] = 0x0,
443 },
444 },
445 [ C(ITLB) ] = {
446 [ C(OP_READ) ] = {
447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
449 },
450 [ C(OP_WRITE) ] = {
451 [ C(RESULT_ACCESS) ] = -1,
452 [ C(RESULT_MISS) ] = -1,
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = -1,
456 [ C(RESULT_MISS) ] = -1,
457 },
458 },
459 [ C(BPU ) ] = {
460 [ C(OP_READ) ] = {
461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
463 },
464 [ C(OP_WRITE) ] = {
465 [ C(RESULT_ACCESS) ] = -1,
466 [ C(RESULT_MISS) ] = -1,
467 },
468 [ C(OP_PREFETCH) ] = {
469 [ C(RESULT_ACCESS) ] = -1,
470 [ C(RESULT_MISS) ] = -1,
471 },
472 },
473 [ C(NODE) ] = {
474 [ C(OP_READ) ] = {
475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
477 },
478 [ C(OP_WRITE) ] = {
479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
481 },
482 [ C(OP_PREFETCH) ] = {
483 [ C(RESULT_ACCESS) ] = 0x0,
484 [ C(RESULT_MISS) ] = 0x0,
485 },
486 },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490 [PERF_COUNT_HW_CACHE_MAX]
491 [PERF_COUNT_HW_CACHE_OP_MAX]
492 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494 [ C(LL ) ] = {
495 [ C(OP_READ) ] = {
496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
499 SKL_L3_MISS|SKL_ANY_SNOOP|
500 SKL_SUPPLIER_NONE,
501 },
502 [ C(OP_WRITE) ] = {
503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
506 SKL_L3_MISS|SKL_ANY_SNOOP|
507 SKL_SUPPLIER_NONE,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(NODE) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 },
521 [ C(OP_WRITE) ] = {
522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = 0x0,
529 [ C(RESULT_MISS) ] = 0x0,
530 },
531 },
532 };
533
534 #define SNB_DMND_DATA_RD (1ULL << 0)
535 #define SNB_DMND_RFO (1ULL << 1)
536 #define SNB_DMND_IFETCH (1ULL << 2)
537 #define SNB_DMND_WB (1ULL << 3)
538 #define SNB_PF_DATA_RD (1ULL << 4)
539 #define SNB_PF_RFO (1ULL << 5)
540 #define SNB_PF_IFETCH (1ULL << 6)
541 #define SNB_LLC_DATA_RD (1ULL << 7)
542 #define SNB_LLC_RFO (1ULL << 8)
543 #define SNB_LLC_IFETCH (1ULL << 9)
544 #define SNB_BUS_LOCKS (1ULL << 10)
545 #define SNB_STRM_ST (1ULL << 11)
546 #define SNB_OTHER (1ULL << 15)
547 #define SNB_RESP_ANY (1ULL << 16)
548 #define SNB_NO_SUPP (1ULL << 17)
549 #define SNB_LLC_HITM (1ULL << 18)
550 #define SNB_LLC_HITE (1ULL << 19)
551 #define SNB_LLC_HITS (1ULL << 20)
552 #define SNB_LLC_HITF (1ULL << 21)
553 #define SNB_LOCAL (1ULL << 22)
554 #define SNB_REMOTE (0xffULL << 23)
555 #define SNB_SNP_NONE (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
557 #define SNB_SNP_MISS (1ULL << 33)
558 #define SNB_NO_FWD (1ULL << 34)
559 #define SNB_SNP_FWD (1ULL << 35)
560 #define SNB_HITM (1ULL << 36)
561 #define SNB_NON_DRAM (1ULL << 37)
562
563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 SNB_HITM)
570
571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS SNB_RESP_ANY
575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578 [PERF_COUNT_HW_CACHE_MAX]
579 [PERF_COUNT_HW_CACHE_OP_MAX]
580 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582 [ C(LL ) ] = {
583 [ C(OP_READ) ] = {
584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
586 },
587 [ C(OP_WRITE) ] = {
588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 },
591 [ C(OP_PREFETCH) ] = {
592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 },
595 },
596 [ C(NODE) ] = {
597 [ C(OP_READ) ] = {
598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 },
601 [ C(OP_WRITE) ] = {
602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 },
605 [ C(OP_PREFETCH) ] = {
606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 },
609 },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613 [PERF_COUNT_HW_CACHE_MAX]
614 [PERF_COUNT_HW_CACHE_OP_MAX]
615 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617 [ C(L1D) ] = {
618 [ C(OP_READ) ] = {
619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
621 },
622 [ C(OP_WRITE) ] = {
623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
629 },
630 },
631 [ C(L1I ) ] = {
632 [ C(OP_READ) ] = {
633 [ C(RESULT_ACCESS) ] = 0x0,
634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
635 },
636 [ C(OP_WRITE) ] = {
637 [ C(RESULT_ACCESS) ] = -1,
638 [ C(RESULT_MISS) ] = -1,
639 },
640 [ C(OP_PREFETCH) ] = {
641 [ C(RESULT_ACCESS) ] = 0x0,
642 [ C(RESULT_MISS) ] = 0x0,
643 },
644 },
645 [ C(LL ) ] = {
646 [ C(OP_READ) ] = {
647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 [ C(RESULT_ACCESS) ] = 0x01b7,
649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 [ C(RESULT_MISS) ] = 0x01b7,
651 },
652 [ C(OP_WRITE) ] = {
653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 [ C(RESULT_ACCESS) ] = 0x01b7,
655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 [ C(RESULT_MISS) ] = 0x01b7,
657 },
658 [ C(OP_PREFETCH) ] = {
659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 [ C(RESULT_ACCESS) ] = 0x01b7,
661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 [ C(RESULT_MISS) ] = 0x01b7,
663 },
664 },
665 [ C(DTLB) ] = {
666 [ C(OP_READ) ] = {
667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 },
670 [ C(OP_WRITE) ] = {
671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 },
674 [ C(OP_PREFETCH) ] = {
675 [ C(RESULT_ACCESS) ] = 0x0,
676 [ C(RESULT_MISS) ] = 0x0,
677 },
678 },
679 [ C(ITLB) ] = {
680 [ C(OP_READ) ] = {
681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
683 },
684 [ C(OP_WRITE) ] = {
685 [ C(RESULT_ACCESS) ] = -1,
686 [ C(RESULT_MISS) ] = -1,
687 },
688 [ C(OP_PREFETCH) ] = {
689 [ C(RESULT_ACCESS) ] = -1,
690 [ C(RESULT_MISS) ] = -1,
691 },
692 },
693 [ C(BPU ) ] = {
694 [ C(OP_READ) ] = {
695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 },
698 [ C(OP_WRITE) ] = {
699 [ C(RESULT_ACCESS) ] = -1,
700 [ C(RESULT_MISS) ] = -1,
701 },
702 [ C(OP_PREFETCH) ] = {
703 [ C(RESULT_ACCESS) ] = -1,
704 [ C(RESULT_MISS) ] = -1,
705 },
706 },
707 [ C(NODE) ] = {
708 [ C(OP_READ) ] = {
709 [ C(RESULT_ACCESS) ] = 0x01b7,
710 [ C(RESULT_MISS) ] = 0x01b7,
711 },
712 [ C(OP_WRITE) ] = {
713 [ C(RESULT_ACCESS) ] = 0x01b7,
714 [ C(RESULT_MISS) ] = 0x01b7,
715 },
716 [ C(OP_PREFETCH) ] = {
717 [ C(RESULT_ACCESS) ] = 0x01b7,
718 [ C(RESULT_MISS) ] = 0x01b7,
719 },
720 },
721
722 };
723
724 /*
725 * Notes on the events:
726 * - data reads do not include code reads (comparable to earlier tables)
727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
728 * - remote node access includes remote memory, remote cache, remote mmio.
729 * - prefetches are not included in the counts because they are not
730 * reliably counted.
731 */
732
733 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
734 #define HSW_DEMAND_RFO BIT_ULL(1)
735 #define HSW_ANY_RESPONSE BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
746 #define HSW_SNOOP_MISS BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
749 #define HSW_SNOOP_HITM BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL BIT(26)
763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769 [PERF_COUNT_HW_CACHE_MAX]
770 [PERF_COUNT_HW_CACHE_OP_MAX]
771 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773 [ C(L1D ) ] = {
774 [ C(OP_READ) ] = {
775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
777 },
778 [ C(OP_WRITE) ] = {
779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
780 [ C(RESULT_MISS) ] = 0x0,
781 },
782 [ C(OP_PREFETCH) ] = {
783 [ C(RESULT_ACCESS) ] = 0x0,
784 [ C(RESULT_MISS) ] = 0x0,
785 },
786 },
787 [ C(L1I ) ] = {
788 [ C(OP_READ) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
791 },
792 [ C(OP_WRITE) ] = {
793 [ C(RESULT_ACCESS) ] = -1,
794 [ C(RESULT_MISS) ] = -1,
795 },
796 [ C(OP_PREFETCH) ] = {
797 [ C(RESULT_ACCESS) ] = 0x0,
798 [ C(RESULT_MISS) ] = 0x0,
799 },
800 },
801 [ C(LL ) ] = {
802 [ C(OP_READ) ] = {
803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
805 },
806 [ C(OP_WRITE) ] = {
807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
809 },
810 [ C(OP_PREFETCH) ] = {
811 [ C(RESULT_ACCESS) ] = 0x0,
812 [ C(RESULT_MISS) ] = 0x0,
813 },
814 },
815 [ C(DTLB) ] = {
816 [ C(OP_READ) ] = {
817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 },
820 [ C(OP_WRITE) ] = {
821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 },
824 [ C(OP_PREFETCH) ] = {
825 [ C(RESULT_ACCESS) ] = 0x0,
826 [ C(RESULT_MISS) ] = 0x0,
827 },
828 },
829 [ C(ITLB) ] = {
830 [ C(OP_READ) ] = {
831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = -1,
836 [ C(RESULT_MISS) ] = -1,
837 },
838 [ C(OP_PREFETCH) ] = {
839 [ C(RESULT_ACCESS) ] = -1,
840 [ C(RESULT_MISS) ] = -1,
841 },
842 },
843 [ C(BPU ) ] = {
844 [ C(OP_READ) ] = {
845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
847 },
848 [ C(OP_WRITE) ] = {
849 [ C(RESULT_ACCESS) ] = -1,
850 [ C(RESULT_MISS) ] = -1,
851 },
852 [ C(OP_PREFETCH) ] = {
853 [ C(RESULT_ACCESS) ] = -1,
854 [ C(RESULT_MISS) ] = -1,
855 },
856 },
857 [ C(NODE) ] = {
858 [ C(OP_READ) ] = {
859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
861 },
862 [ C(OP_WRITE) ] = {
863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
865 },
866 [ C(OP_PREFETCH) ] = {
867 [ C(RESULT_ACCESS) ] = 0x0,
868 [ C(RESULT_MISS) ] = 0x0,
869 },
870 },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 [PERF_COUNT_HW_CACHE_MAX]
875 [PERF_COUNT_HW_CACHE_OP_MAX]
876 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878 [ C(LL ) ] = {
879 [ C(OP_READ) ] = {
880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 HSW_LLC_ACCESS,
882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
883 HSW_L3_MISS|HSW_ANY_SNOOP,
884 },
885 [ C(OP_WRITE) ] = {
886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 HSW_LLC_ACCESS,
888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
889 HSW_L3_MISS|HSW_ANY_SNOOP,
890 },
891 [ C(OP_PREFETCH) ] = {
892 [ C(RESULT_ACCESS) ] = 0x0,
893 [ C(RESULT_MISS) ] = 0x0,
894 },
895 },
896 [ C(NODE) ] = {
897 [ C(OP_READ) ] = {
898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 HSW_L3_MISS_LOCAL_DRAM|
900 HSW_SNOOP_DRAM,
901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
902 HSW_L3_MISS_REMOTE|
903 HSW_SNOOP_DRAM,
904 },
905 [ C(OP_WRITE) ] = {
906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 HSW_L3_MISS_LOCAL_DRAM|
908 HSW_SNOOP_DRAM,
909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
910 HSW_L3_MISS_REMOTE|
911 HSW_SNOOP_DRAM,
912 },
913 [ C(OP_PREFETCH) ] = {
914 [ C(RESULT_ACCESS) ] = 0x0,
915 [ C(RESULT_MISS) ] = 0x0,
916 },
917 },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921 [PERF_COUNT_HW_CACHE_MAX]
922 [PERF_COUNT_HW_CACHE_OP_MAX]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925 [ C(L1D) ] = {
926 [ C(OP_READ) ] = {
927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
929 },
930 [ C(OP_WRITE) ] = {
931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
933 },
934 [ C(OP_PREFETCH) ] = {
935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
937 },
938 },
939 [ C(L1I ) ] = {
940 [ C(OP_READ) ] = {
941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
943 },
944 [ C(OP_WRITE) ] = {
945 [ C(RESULT_ACCESS) ] = -1,
946 [ C(RESULT_MISS) ] = -1,
947 },
948 [ C(OP_PREFETCH) ] = {
949 [ C(RESULT_ACCESS) ] = 0x0,
950 [ C(RESULT_MISS) ] = 0x0,
951 },
952 },
953 [ C(LL ) ] = {
954 [ C(OP_READ) ] = {
955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 [ C(RESULT_ACCESS) ] = 0x01b7,
957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 [ C(RESULT_MISS) ] = 0x01b7,
959 },
960 /*
961 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 * on RFO.
963 */
964 [ C(OP_WRITE) ] = {
965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 [ C(RESULT_ACCESS) ] = 0x01b7,
967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 [ C(RESULT_MISS) ] = 0x01b7,
969 },
970 [ C(OP_PREFETCH) ] = {
971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 [ C(RESULT_ACCESS) ] = 0x01b7,
973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 [ C(RESULT_MISS) ] = 0x01b7,
975 },
976 },
977 [ C(DTLB) ] = {
978 [ C(OP_READ) ] = {
979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
981 },
982 [ C(OP_WRITE) ] = {
983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
985 },
986 [ C(OP_PREFETCH) ] = {
987 [ C(RESULT_ACCESS) ] = 0x0,
988 [ C(RESULT_MISS) ] = 0x0,
989 },
990 },
991 [ C(ITLB) ] = {
992 [ C(OP_READ) ] = {
993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
995 },
996 [ C(OP_WRITE) ] = {
997 [ C(RESULT_ACCESS) ] = -1,
998 [ C(RESULT_MISS) ] = -1,
999 },
1000 [ C(OP_PREFETCH) ] = {
1001 [ C(RESULT_ACCESS) ] = -1,
1002 [ C(RESULT_MISS) ] = -1,
1003 },
1004 },
1005 [ C(BPU ) ] = {
1006 [ C(OP_READ) ] = {
1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1009 },
1010 [ C(OP_WRITE) ] = {
1011 [ C(RESULT_ACCESS) ] = -1,
1012 [ C(RESULT_MISS) ] = -1,
1013 },
1014 [ C(OP_PREFETCH) ] = {
1015 [ C(RESULT_ACCESS) ] = -1,
1016 [ C(RESULT_MISS) ] = -1,
1017 },
1018 },
1019 [ C(NODE) ] = {
1020 [ C(OP_READ) ] = {
1021 [ C(RESULT_ACCESS) ] = 0x01b7,
1022 [ C(RESULT_MISS) ] = 0x01b7,
1023 },
1024 [ C(OP_WRITE) ] = {
1025 [ C(RESULT_ACCESS) ] = 0x01b7,
1026 [ C(RESULT_MISS) ] = 0x01b7,
1027 },
1028 [ C(OP_PREFETCH) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x01b7,
1030 [ C(RESULT_MISS) ] = 0x01b7,
1031 },
1032 },
1033 };
1034
1035 /*
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
1038 */
1039
1040 #define NHM_DMND_DATA_RD (1 << 0)
1041 #define NHM_DMND_RFO (1 << 1)
1042 #define NHM_DMND_IFETCH (1 << 2)
1043 #define NHM_DMND_WB (1 << 3)
1044 #define NHM_PF_DATA_RD (1 << 4)
1045 #define NHM_PF_DATA_RFO (1 << 5)
1046 #define NHM_PF_IFETCH (1 << 6)
1047 #define NHM_OFFCORE_OTHER (1 << 7)
1048 #define NHM_UNCORE_HIT (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1050 #define NHM_OTHER_CORE_HITM (1 << 10)
1051 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1053 #define NHM_REMOTE_DRAM (1 << 13)
1054 #define NHM_LOCAL_DRAM (1 << 14)
1055 #define NHM_NON_DRAM (1 << 15)
1056
1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 [PERF_COUNT_HW_CACHE_MAX]
1070 [PERF_COUNT_HW_CACHE_OP_MAX]
1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073 [ C(LL ) ] = {
1074 [ C(OP_READ) ] = {
1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1077 },
1078 [ C(OP_WRITE) ] = {
1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 },
1082 [ C(OP_PREFETCH) ] = {
1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 },
1086 },
1087 [ C(NODE) ] = {
1088 [ C(OP_READ) ] = {
1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1091 },
1092 [ C(OP_WRITE) ] = {
1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 },
1096 [ C(OP_PREFETCH) ] = {
1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 },
1100 },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 [PERF_COUNT_HW_CACHE_MAX]
1105 [PERF_COUNT_HW_CACHE_OP_MAX]
1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108 [ C(L1D) ] = {
1109 [ C(OP_READ) ] = {
1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1112 },
1113 [ C(OP_WRITE) ] = {
1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1116 },
1117 [ C(OP_PREFETCH) ] = {
1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1120 },
1121 },
1122 [ C(L1I ) ] = {
1123 [ C(OP_READ) ] = {
1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1126 },
1127 [ C(OP_WRITE) ] = {
1128 [ C(RESULT_ACCESS) ] = -1,
1129 [ C(RESULT_MISS) ] = -1,
1130 },
1131 [ C(OP_PREFETCH) ] = {
1132 [ C(RESULT_ACCESS) ] = 0x0,
1133 [ C(RESULT_MISS) ] = 0x0,
1134 },
1135 },
1136 [ C(LL ) ] = {
1137 [ C(OP_READ) ] = {
1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 [ C(RESULT_ACCESS) ] = 0x01b7,
1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 [ C(RESULT_MISS) ] = 0x01b7,
1142 },
1143 /*
1144 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 * on RFO.
1146 */
1147 [ C(OP_WRITE) ] = {
1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 [ C(RESULT_ACCESS) ] = 0x01b7,
1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 [ C(RESULT_MISS) ] = 0x01b7,
1152 },
1153 [ C(OP_PREFETCH) ] = {
1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 [ C(RESULT_ACCESS) ] = 0x01b7,
1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 [ C(RESULT_MISS) ] = 0x01b7,
1158 },
1159 },
1160 [ C(DTLB) ] = {
1161 [ C(OP_READ) ] = {
1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1164 },
1165 [ C(OP_WRITE) ] = {
1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1168 },
1169 [ C(OP_PREFETCH) ] = {
1170 [ C(RESULT_ACCESS) ] = 0x0,
1171 [ C(RESULT_MISS) ] = 0x0,
1172 },
1173 },
1174 [ C(ITLB) ] = {
1175 [ C(OP_READ) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1178 },
1179 [ C(OP_WRITE) ] = {
1180 [ C(RESULT_ACCESS) ] = -1,
1181 [ C(RESULT_MISS) ] = -1,
1182 },
1183 [ C(OP_PREFETCH) ] = {
1184 [ C(RESULT_ACCESS) ] = -1,
1185 [ C(RESULT_MISS) ] = -1,
1186 },
1187 },
1188 [ C(BPU ) ] = {
1189 [ C(OP_READ) ] = {
1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1192 },
1193 [ C(OP_WRITE) ] = {
1194 [ C(RESULT_ACCESS) ] = -1,
1195 [ C(RESULT_MISS) ] = -1,
1196 },
1197 [ C(OP_PREFETCH) ] = {
1198 [ C(RESULT_ACCESS) ] = -1,
1199 [ C(RESULT_MISS) ] = -1,
1200 },
1201 },
1202 [ C(NODE) ] = {
1203 [ C(OP_READ) ] = {
1204 [ C(RESULT_ACCESS) ] = 0x01b7,
1205 [ C(RESULT_MISS) ] = 0x01b7,
1206 },
1207 [ C(OP_WRITE) ] = {
1208 [ C(RESULT_ACCESS) ] = 0x01b7,
1209 [ C(RESULT_MISS) ] = 0x01b7,
1210 },
1211 [ C(OP_PREFETCH) ] = {
1212 [ C(RESULT_ACCESS) ] = 0x01b7,
1213 [ C(RESULT_MISS) ] = 0x01b7,
1214 },
1215 },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 [PERF_COUNT_HW_CACHE_MAX]
1220 [PERF_COUNT_HW_CACHE_OP_MAX]
1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223 [ C(L1D) ] = {
1224 [ C(OP_READ) ] = {
1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1227 },
1228 [ C(OP_WRITE) ] = {
1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1231 },
1232 [ C(OP_PREFETCH) ] = {
1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1234 [ C(RESULT_MISS) ] = 0,
1235 },
1236 },
1237 [ C(L1I ) ] = {
1238 [ C(OP_READ) ] = {
1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1241 },
1242 [ C(OP_WRITE) ] = {
1243 [ C(RESULT_ACCESS) ] = -1,
1244 [ C(RESULT_MISS) ] = -1,
1245 },
1246 [ C(OP_PREFETCH) ] = {
1247 [ C(RESULT_ACCESS) ] = 0,
1248 [ C(RESULT_MISS) ] = 0,
1249 },
1250 },
1251 [ C(LL ) ] = {
1252 [ C(OP_READ) ] = {
1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1255 },
1256 [ C(OP_WRITE) ] = {
1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1259 },
1260 [ C(OP_PREFETCH) ] = {
1261 [ C(RESULT_ACCESS) ] = 0,
1262 [ C(RESULT_MISS) ] = 0,
1263 },
1264 },
1265 [ C(DTLB) ] = {
1266 [ C(OP_READ) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1269 },
1270 [ C(OP_WRITE) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1273 },
1274 [ C(OP_PREFETCH) ] = {
1275 [ C(RESULT_ACCESS) ] = 0,
1276 [ C(RESULT_MISS) ] = 0,
1277 },
1278 },
1279 [ C(ITLB) ] = {
1280 [ C(OP_READ) ] = {
1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1283 },
1284 [ C(OP_WRITE) ] = {
1285 [ C(RESULT_ACCESS) ] = -1,
1286 [ C(RESULT_MISS) ] = -1,
1287 },
1288 [ C(OP_PREFETCH) ] = {
1289 [ C(RESULT_ACCESS) ] = -1,
1290 [ C(RESULT_MISS) ] = -1,
1291 },
1292 },
1293 [ C(BPU ) ] = {
1294 [ C(OP_READ) ] = {
1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1297 },
1298 [ C(OP_WRITE) ] = {
1299 [ C(RESULT_ACCESS) ] = -1,
1300 [ C(RESULT_MISS) ] = -1,
1301 },
1302 [ C(OP_PREFETCH) ] = {
1303 [ C(RESULT_ACCESS) ] = -1,
1304 [ C(RESULT_MISS) ] = -1,
1305 },
1306 },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 [PERF_COUNT_HW_CACHE_MAX]
1311 [PERF_COUNT_HW_CACHE_OP_MAX]
1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314 [ C(L1D) ] = {
1315 [ C(OP_READ) ] = {
1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1317 [ C(RESULT_MISS) ] = 0,
1318 },
1319 [ C(OP_WRITE) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1321 [ C(RESULT_MISS) ] = 0,
1322 },
1323 [ C(OP_PREFETCH) ] = {
1324 [ C(RESULT_ACCESS) ] = 0x0,
1325 [ C(RESULT_MISS) ] = 0,
1326 },
1327 },
1328 [ C(L1I ) ] = {
1329 [ C(OP_READ) ] = {
1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1332 },
1333 [ C(OP_WRITE) ] = {
1334 [ C(RESULT_ACCESS) ] = -1,
1335 [ C(RESULT_MISS) ] = -1,
1336 },
1337 [ C(OP_PREFETCH) ] = {
1338 [ C(RESULT_ACCESS) ] = 0,
1339 [ C(RESULT_MISS) ] = 0,
1340 },
1341 },
1342 [ C(LL ) ] = {
1343 [ C(OP_READ) ] = {
1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1346 },
1347 [ C(OP_WRITE) ] = {
1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1350 },
1351 [ C(OP_PREFETCH) ] = {
1352 [ C(RESULT_ACCESS) ] = 0,
1353 [ C(RESULT_MISS) ] = 0,
1354 },
1355 },
1356 [ C(DTLB) ] = {
1357 [ C(OP_READ) ] = {
1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1360 },
1361 [ C(OP_WRITE) ] = {
1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1364 },
1365 [ C(OP_PREFETCH) ] = {
1366 [ C(RESULT_ACCESS) ] = 0,
1367 [ C(RESULT_MISS) ] = 0,
1368 },
1369 },
1370 [ C(ITLB) ] = {
1371 [ C(OP_READ) ] = {
1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1374 },
1375 [ C(OP_WRITE) ] = {
1376 [ C(RESULT_ACCESS) ] = -1,
1377 [ C(RESULT_MISS) ] = -1,
1378 },
1379 [ C(OP_PREFETCH) ] = {
1380 [ C(RESULT_ACCESS) ] = -1,
1381 [ C(RESULT_MISS) ] = -1,
1382 },
1383 },
1384 [ C(BPU ) ] = {
1385 [ C(OP_READ) ] = {
1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1388 },
1389 [ C(OP_WRITE) ] = {
1390 [ C(RESULT_ACCESS) ] = -1,
1391 [ C(RESULT_MISS) ] = -1,
1392 },
1393 [ C(OP_PREFETCH) ] = {
1394 [ C(RESULT_ACCESS) ] = -1,
1395 [ C(RESULT_MISS) ] = -1,
1396 },
1397 },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414 EVENT_PTR(td_total_slots_slm),
1415 EVENT_PTR(td_total_slots_scale_slm),
1416 EVENT_PTR(td_fetch_bubbles_slm),
1417 EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 EVENT_PTR(td_slots_issued_slm),
1419 EVENT_PTR(td_slots_retired_slm),
1420 NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS SNB_RESP_ANY
1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 [PERF_COUNT_HW_CACHE_MAX]
1441 [PERF_COUNT_HW_CACHE_OP_MAX]
1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444 [ C(LL ) ] = {
1445 [ C(OP_READ) ] = {
1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 [ C(RESULT_MISS) ] = 0,
1448 },
1449 [ C(OP_WRITE) ] = {
1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 },
1453 [ C(OP_PREFETCH) ] = {
1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 },
1457 },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 [PERF_COUNT_HW_CACHE_MAX]
1462 [PERF_COUNT_HW_CACHE_OP_MAX]
1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465 [ C(L1D) ] = {
1466 [ C(OP_READ) ] = {
1467 [ C(RESULT_ACCESS) ] = 0,
1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1469 },
1470 [ C(OP_WRITE) ] = {
1471 [ C(RESULT_ACCESS) ] = 0,
1472 [ C(RESULT_MISS) ] = 0,
1473 },
1474 [ C(OP_PREFETCH) ] = {
1475 [ C(RESULT_ACCESS) ] = 0,
1476 [ C(RESULT_MISS) ] = 0,
1477 },
1478 },
1479 [ C(L1I ) ] = {
1480 [ C(OP_READ) ] = {
1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1483 },
1484 [ C(OP_WRITE) ] = {
1485 [ C(RESULT_ACCESS) ] = -1,
1486 [ C(RESULT_MISS) ] = -1,
1487 },
1488 [ C(OP_PREFETCH) ] = {
1489 [ C(RESULT_ACCESS) ] = 0,
1490 [ C(RESULT_MISS) ] = 0,
1491 },
1492 },
1493 [ C(LL ) ] = {
1494 [ C(OP_READ) ] = {
1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 [ C(RESULT_ACCESS) ] = 0x01b7,
1497 [ C(RESULT_MISS) ] = 0,
1498 },
1499 [ C(OP_WRITE) ] = {
1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 [ C(RESULT_ACCESS) ] = 0x01b7,
1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 [ C(RESULT_MISS) ] = 0x01b7,
1504 },
1505 [ C(OP_PREFETCH) ] = {
1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 [ C(RESULT_ACCESS) ] = 0x01b7,
1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 [ C(RESULT_MISS) ] = 0x01b7,
1510 },
1511 },
1512 [ C(DTLB) ] = {
1513 [ C(OP_READ) ] = {
1514 [ C(RESULT_ACCESS) ] = 0,
1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1516 },
1517 [ C(OP_WRITE) ] = {
1518 [ C(RESULT_ACCESS) ] = 0,
1519 [ C(RESULT_MISS) ] = 0,
1520 },
1521 [ C(OP_PREFETCH) ] = {
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1524 },
1525 },
1526 [ C(ITLB) ] = {
1527 [ C(OP_READ) ] = {
1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 },
1531 [ C(OP_WRITE) ] = {
1532 [ C(RESULT_ACCESS) ] = -1,
1533 [ C(RESULT_MISS) ] = -1,
1534 },
1535 [ C(OP_PREFETCH) ] = {
1536 [ C(RESULT_ACCESS) ] = -1,
1537 [ C(RESULT_MISS) ] = -1,
1538 },
1539 },
1540 [ C(BPU ) ] = {
1541 [ C(OP_READ) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 },
1545 [ C(OP_WRITE) ] = {
1546 [ C(RESULT_ACCESS) ] = -1,
1547 [ C(RESULT_MISS) ] = -1,
1548 },
1549 [ C(OP_PREFETCH) ] = {
1550 [ C(RESULT_ACCESS) ] = -1,
1551 [ C(RESULT_MISS) ] = -1,
1552 },
1553 },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568 EVENT_PTR(td_total_slots_glm),
1569 EVENT_PTR(td_total_slots_scale_glm),
1570 EVENT_PTR(td_fetch_bubbles_glm),
1571 EVENT_PTR(td_recovery_bubbles_glm),
1572 EVENT_PTR(td_slots_issued_glm),
1573 EVENT_PTR(td_slots_retired_glm),
1574 NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581 EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1585 #define GLM_DEMAND_RFO BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1588 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596 [PERF_COUNT_HW_CACHE_MAX]
1597 [PERF_COUNT_HW_CACHE_OP_MAX]
1598 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599 [C(L1D)] = {
1600 [C(OP_READ)] = {
1601 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1602 [C(RESULT_MISS)] = 0x0,
1603 },
1604 [C(OP_WRITE)] = {
1605 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1606 [C(RESULT_MISS)] = 0x0,
1607 },
1608 [C(OP_PREFETCH)] = {
1609 [C(RESULT_ACCESS)] = 0x0,
1610 [C(RESULT_MISS)] = 0x0,
1611 },
1612 },
1613 [C(L1I)] = {
1614 [C(OP_READ)] = {
1615 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1616 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1617 },
1618 [C(OP_WRITE)] = {
1619 [C(RESULT_ACCESS)] = -1,
1620 [C(RESULT_MISS)] = -1,
1621 },
1622 [C(OP_PREFETCH)] = {
1623 [C(RESULT_ACCESS)] = 0x0,
1624 [C(RESULT_MISS)] = 0x0,
1625 },
1626 },
1627 [C(LL)] = {
1628 [C(OP_READ)] = {
1629 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1630 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1631 },
1632 [C(OP_WRITE)] = {
1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1635 },
1636 [C(OP_PREFETCH)] = {
1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1639 },
1640 },
1641 [C(DTLB)] = {
1642 [C(OP_READ)] = {
1643 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1644 [C(RESULT_MISS)] = 0x0,
1645 },
1646 [C(OP_WRITE)] = {
1647 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1648 [C(RESULT_MISS)] = 0x0,
1649 },
1650 [C(OP_PREFETCH)] = {
1651 [C(RESULT_ACCESS)] = 0x0,
1652 [C(RESULT_MISS)] = 0x0,
1653 },
1654 },
1655 [C(ITLB)] = {
1656 [C(OP_READ)] = {
1657 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1658 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1659 },
1660 [C(OP_WRITE)] = {
1661 [C(RESULT_ACCESS)] = -1,
1662 [C(RESULT_MISS)] = -1,
1663 },
1664 [C(OP_PREFETCH)] = {
1665 [C(RESULT_ACCESS)] = -1,
1666 [C(RESULT_MISS)] = -1,
1667 },
1668 },
1669 [C(BPU)] = {
1670 [C(OP_READ)] = {
1671 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1672 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1673 },
1674 [C(OP_WRITE)] = {
1675 [C(RESULT_ACCESS)] = -1,
1676 [C(RESULT_MISS)] = -1,
1677 },
1678 [C(OP_PREFETCH)] = {
1679 [C(RESULT_ACCESS)] = -1,
1680 [C(RESULT_MISS)] = -1,
1681 },
1682 },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686 [PERF_COUNT_HW_CACHE_MAX]
1687 [PERF_COUNT_HW_CACHE_OP_MAX]
1688 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689 [C(LL)] = {
1690 [C(OP_READ)] = {
1691 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1692 GLM_LLC_ACCESS,
1693 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1694 GLM_LLC_MISS,
1695 },
1696 [C(OP_WRITE)] = {
1697 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1698 GLM_LLC_ACCESS,
1699 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1700 GLM_LLC_MISS,
1701 },
1702 [C(OP_PREFETCH)] = {
1703 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1704 GLM_LLC_ACCESS,
1705 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1706 GLM_LLC_MISS,
1707 },
1708 },
1709 };
1710
1711 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1712 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1713 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1714 #define KNL_MCDRAM_FAR BIT_ULL(22)
1715 #define KNL_DDR_LOCAL BIT_ULL(23)
1716 #define KNL_DDR_FAR BIT_ULL(24)
1717 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1718 KNL_DDR_LOCAL | KNL_DDR_FAR)
1719 #define KNL_L2_READ SLM_DMND_READ
1720 #define KNL_L2_WRITE SLM_DMND_WRITE
1721 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1722 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1723 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1724 KNL_DRAM_ANY | SNB_SNP_ANY | \
1725 SNB_NON_DRAM)
1726
1727 static __initconst const u64 knl_hw_cache_extra_regs
1728 [PERF_COUNT_HW_CACHE_MAX]
1729 [PERF_COUNT_HW_CACHE_OP_MAX]
1730 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1731 [C(LL)] = {
1732 [C(OP_READ)] = {
1733 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1734 [C(RESULT_MISS)] = 0,
1735 },
1736 [C(OP_WRITE)] = {
1737 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1738 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1739 },
1740 [C(OP_PREFETCH)] = {
1741 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1742 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1743 },
1744 },
1745 };
1746
1747 /*
1748 * Used from PMIs where the LBRs are already disabled.
1749 *
1750 * This function could be called consecutively. It is required to remain in
1751 * disabled state if called consecutively.
1752 *
1753 * During consecutive calls, the same disable value will be written to related
1754 * registers, so the PMU state remains unchanged.
1755 *
1756 * intel_bts events don't coexist with intel PMU's BTS events because of
1757 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1758 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1759 */
1760 static void __intel_pmu_disable_all(void)
1761 {
1762 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1763
1764 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1765
1766 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1767 intel_pmu_disable_bts();
1768
1769 intel_pmu_pebs_disable_all();
1770 }
1771
1772 static void intel_pmu_disable_all(void)
1773 {
1774 __intel_pmu_disable_all();
1775 intel_pmu_lbr_disable_all();
1776 }
1777
1778 static void __intel_pmu_enable_all(int added, bool pmi)
1779 {
1780 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1781
1782 intel_pmu_pebs_enable_all();
1783 intel_pmu_lbr_enable_all(pmi);
1784 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1785 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1786
1787 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1788 struct perf_event *event =
1789 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1790
1791 if (WARN_ON_ONCE(!event))
1792 return;
1793
1794 intel_pmu_enable_bts(event->hw.config);
1795 }
1796 }
1797
1798 static void intel_pmu_enable_all(int added)
1799 {
1800 __intel_pmu_enable_all(added, false);
1801 }
1802
1803 /*
1804 * Workaround for:
1805 * Intel Errata AAK100 (model 26)
1806 * Intel Errata AAP53 (model 30)
1807 * Intel Errata BD53 (model 44)
1808 *
1809 * The official story:
1810 * These chips need to be 'reset' when adding counters by programming the
1811 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1812 * in sequence on the same PMC or on different PMCs.
1813 *
1814 * In practise it appears some of these events do in fact count, and
1815 * we need to programm all 4 events.
1816 */
1817 static void intel_pmu_nhm_workaround(void)
1818 {
1819 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1820 static const unsigned long nhm_magic[4] = {
1821 0x4300B5,
1822 0x4300D2,
1823 0x4300B1,
1824 0x4300B1
1825 };
1826 struct perf_event *event;
1827 int i;
1828
1829 /*
1830 * The Errata requires below steps:
1831 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1832 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1833 * the corresponding PMCx;
1834 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1835 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1836 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1837 */
1838
1839 /*
1840 * The real steps we choose are a little different from above.
1841 * A) To reduce MSR operations, we don't run step 1) as they
1842 * are already cleared before this function is called;
1843 * B) Call x86_perf_event_update to save PMCx before configuring
1844 * PERFEVTSELx with magic number;
1845 * C) With step 5), we do clear only when the PERFEVTSELx is
1846 * not used currently.
1847 * D) Call x86_perf_event_set_period to restore PMCx;
1848 */
1849
1850 /* We always operate 4 pairs of PERF Counters */
1851 for (i = 0; i < 4; i++) {
1852 event = cpuc->events[i];
1853 if (event)
1854 x86_perf_event_update(event);
1855 }
1856
1857 for (i = 0; i < 4; i++) {
1858 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1859 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1860 }
1861
1862 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1863 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1864
1865 for (i = 0; i < 4; i++) {
1866 event = cpuc->events[i];
1867
1868 if (event) {
1869 x86_perf_event_set_period(event);
1870 __x86_pmu_enable_event(&event->hw,
1871 ARCH_PERFMON_EVENTSEL_ENABLE);
1872 } else
1873 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1874 }
1875 }
1876
1877 static void intel_pmu_nhm_enable_all(int added)
1878 {
1879 if (added)
1880 intel_pmu_nhm_workaround();
1881 intel_pmu_enable_all(added);
1882 }
1883
1884 static inline u64 intel_pmu_get_status(void)
1885 {
1886 u64 status;
1887
1888 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1889
1890 return status;
1891 }
1892
1893 static inline void intel_pmu_ack_status(u64 ack)
1894 {
1895 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1896 }
1897
1898 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1899 {
1900 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1901 u64 ctrl_val, mask;
1902
1903 mask = 0xfULL << (idx * 4);
1904
1905 rdmsrl(hwc->config_base, ctrl_val);
1906 ctrl_val &= ~mask;
1907 wrmsrl(hwc->config_base, ctrl_val);
1908 }
1909
1910 static inline bool event_is_checkpointed(struct perf_event *event)
1911 {
1912 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1913 }
1914
1915 static void intel_pmu_disable_event(struct perf_event *event)
1916 {
1917 struct hw_perf_event *hwc = &event->hw;
1918 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1919
1920 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1921 intel_pmu_disable_bts();
1922 intel_pmu_drain_bts_buffer();
1923 return;
1924 }
1925
1926 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1927 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1928 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1929
1930 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1931 intel_pmu_disable_fixed(hwc);
1932 return;
1933 }
1934
1935 x86_pmu_disable_event(event);
1936
1937 if (unlikely(event->attr.precise_ip))
1938 intel_pmu_pebs_disable(event);
1939 }
1940
1941 static void intel_pmu_del_event(struct perf_event *event)
1942 {
1943 if (needs_branch_stack(event))
1944 intel_pmu_lbr_del(event);
1945 if (event->attr.precise_ip)
1946 intel_pmu_pebs_del(event);
1947 }
1948
1949 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1950 {
1951 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1952 u64 ctrl_val, bits, mask;
1953
1954 /*
1955 * Enable IRQ generation (0x8),
1956 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1957 * if requested:
1958 */
1959 bits = 0x8ULL;
1960 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1961 bits |= 0x2;
1962 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1963 bits |= 0x1;
1964
1965 /*
1966 * ANY bit is supported in v3 and up
1967 */
1968 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1969 bits |= 0x4;
1970
1971 bits <<= (idx * 4);
1972 mask = 0xfULL << (idx * 4);
1973
1974 rdmsrl(hwc->config_base, ctrl_val);
1975 ctrl_val &= ~mask;
1976 ctrl_val |= bits;
1977 wrmsrl(hwc->config_base, ctrl_val);
1978 }
1979
1980 static void intel_pmu_enable_event(struct perf_event *event)
1981 {
1982 struct hw_perf_event *hwc = &event->hw;
1983 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1984
1985 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1986 if (!__this_cpu_read(cpu_hw_events.enabled))
1987 return;
1988
1989 intel_pmu_enable_bts(hwc->config);
1990 return;
1991 }
1992
1993 if (event->attr.exclude_host)
1994 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1995 if (event->attr.exclude_guest)
1996 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1997
1998 if (unlikely(event_is_checkpointed(event)))
1999 cpuc->intel_cp_status |= (1ull << hwc->idx);
2000
2001 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2002 intel_pmu_enable_fixed(hwc);
2003 return;
2004 }
2005
2006 if (unlikely(event->attr.precise_ip))
2007 intel_pmu_pebs_enable(event);
2008
2009 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2010 }
2011
2012 static void intel_pmu_add_event(struct perf_event *event)
2013 {
2014 if (event->attr.precise_ip)
2015 intel_pmu_pebs_add(event);
2016 if (needs_branch_stack(event))
2017 intel_pmu_lbr_add(event);
2018 }
2019
2020 /*
2021 * Save and restart an expired event. Called by NMI contexts,
2022 * so it has to be careful about preempting normal event ops:
2023 */
2024 int intel_pmu_save_and_restart(struct perf_event *event)
2025 {
2026 x86_perf_event_update(event);
2027 /*
2028 * For a checkpointed counter always reset back to 0. This
2029 * avoids a situation where the counter overflows, aborts the
2030 * transaction and is then set back to shortly before the
2031 * overflow, and overflows and aborts again.
2032 */
2033 if (unlikely(event_is_checkpointed(event))) {
2034 /* No race with NMIs because the counter should not be armed */
2035 wrmsrl(event->hw.event_base, 0);
2036 local64_set(&event->hw.prev_count, 0);
2037 }
2038 return x86_perf_event_set_period(event);
2039 }
2040
2041 static void intel_pmu_reset(void)
2042 {
2043 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2044 unsigned long flags;
2045 int idx;
2046
2047 if (!x86_pmu.num_counters)
2048 return;
2049
2050 local_irq_save(flags);
2051
2052 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2053
2054 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2055 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2056 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2057 }
2058 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2059 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2060
2061 if (ds)
2062 ds->bts_index = ds->bts_buffer_base;
2063
2064 /* Ack all overflows and disable fixed counters */
2065 if (x86_pmu.version >= 2) {
2066 intel_pmu_ack_status(intel_pmu_get_status());
2067 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2068 }
2069
2070 /* Reset LBRs and LBR freezing */
2071 if (x86_pmu.lbr_nr) {
2072 update_debugctlmsr(get_debugctlmsr() &
2073 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2074 }
2075
2076 local_irq_restore(flags);
2077 }
2078
2079 /*
2080 * This handler is triggered by the local APIC, so the APIC IRQ handling
2081 * rules apply:
2082 */
2083 static int intel_pmu_handle_irq(struct pt_regs *regs)
2084 {
2085 struct perf_sample_data data;
2086 struct cpu_hw_events *cpuc;
2087 int bit, loops;
2088 u64 status;
2089 int handled;
2090
2091 cpuc = this_cpu_ptr(&cpu_hw_events);
2092
2093 /*
2094 * No known reason to not always do late ACK,
2095 * but just in case do it opt-in.
2096 */
2097 if (!x86_pmu.late_ack)
2098 apic_write(APIC_LVTPC, APIC_DM_NMI);
2099 intel_bts_disable_local();
2100 __intel_pmu_disable_all();
2101 handled = intel_pmu_drain_bts_buffer();
2102 handled += intel_bts_interrupt();
2103 status = intel_pmu_get_status();
2104 if (!status)
2105 goto done;
2106
2107 loops = 0;
2108 again:
2109 intel_pmu_lbr_read();
2110 intel_pmu_ack_status(status);
2111 if (++loops > 100) {
2112 static bool warned = false;
2113 if (!warned) {
2114 WARN(1, "perfevents: irq loop stuck!\n");
2115 perf_event_print_debug();
2116 warned = true;
2117 }
2118 intel_pmu_reset();
2119 goto done;
2120 }
2121
2122 inc_irq_stat(apic_perf_irqs);
2123
2124
2125 /*
2126 * Ignore a range of extra bits in status that do not indicate
2127 * overflow by themselves.
2128 */
2129 status &= ~(GLOBAL_STATUS_COND_CHG |
2130 GLOBAL_STATUS_ASIF |
2131 GLOBAL_STATUS_LBRS_FROZEN);
2132 if (!status)
2133 goto done;
2134 /*
2135 * In case multiple PEBS events are sampled at the same time,
2136 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2137 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2138 * having their bits set in the status register. This is a sign
2139 * that there was at least one PEBS record pending at the time
2140 * of the PMU interrupt. PEBS counters must only be processed
2141 * via the drain_pebs() calls and not via the regular sample
2142 * processing loop coming after that the function, otherwise
2143 * phony regular samples may be generated in the sampling buffer
2144 * not marked with the EXACT tag. Another possibility is to have
2145 * one PEBS event and at least one non-PEBS event whic hoverflows
2146 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2147 * not be set, yet the overflow status bit for the PEBS counter will
2148 * be on Skylake.
2149 *
2150 * To avoid this problem, we systematically ignore the PEBS-enabled
2151 * counters from the GLOBAL_STATUS mask and we always process PEBS
2152 * events via drain_pebs().
2153 */
2154 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2155
2156 /*
2157 * PEBS overflow sets bit 62 in the global status register
2158 */
2159 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2160 handled++;
2161 x86_pmu.drain_pebs(regs);
2162 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2163 }
2164
2165 /*
2166 * Intel PT
2167 */
2168 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2169 handled++;
2170 intel_pt_interrupt();
2171 }
2172
2173 /*
2174 * Checkpointed counters can lead to 'spurious' PMIs because the
2175 * rollback caused by the PMI will have cleared the overflow status
2176 * bit. Therefore always force probe these counters.
2177 */
2178 status |= cpuc->intel_cp_status;
2179
2180 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2181 struct perf_event *event = cpuc->events[bit];
2182
2183 handled++;
2184
2185 if (!test_bit(bit, cpuc->active_mask))
2186 continue;
2187
2188 if (!intel_pmu_save_and_restart(event))
2189 continue;
2190
2191 perf_sample_data_init(&data, 0, event->hw.last_period);
2192
2193 if (has_branch_stack(event))
2194 data.br_stack = &cpuc->lbr_stack;
2195
2196 if (perf_event_overflow(event, &data, regs))
2197 x86_pmu_stop(event, 0);
2198 }
2199
2200 /*
2201 * Repeat if there is more work to be done:
2202 */
2203 status = intel_pmu_get_status();
2204 if (status)
2205 goto again;
2206
2207 done:
2208 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2209 if (cpuc->enabled)
2210 __intel_pmu_enable_all(0, true);
2211 intel_bts_enable_local();
2212
2213 /*
2214 * Only unmask the NMI after the overflow counters
2215 * have been reset. This avoids spurious NMIs on
2216 * Haswell CPUs.
2217 */
2218 if (x86_pmu.late_ack)
2219 apic_write(APIC_LVTPC, APIC_DM_NMI);
2220 return handled;
2221 }
2222
2223 static struct event_constraint *
2224 intel_bts_constraints(struct perf_event *event)
2225 {
2226 struct hw_perf_event *hwc = &event->hw;
2227 unsigned int hw_event, bts_event;
2228
2229 if (event->attr.freq)
2230 return NULL;
2231
2232 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2233 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2234
2235 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2236 return &bts_constraint;
2237
2238 return NULL;
2239 }
2240
2241 static int intel_alt_er(int idx, u64 config)
2242 {
2243 int alt_idx = idx;
2244
2245 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2246 return idx;
2247
2248 if (idx == EXTRA_REG_RSP_0)
2249 alt_idx = EXTRA_REG_RSP_1;
2250
2251 if (idx == EXTRA_REG_RSP_1)
2252 alt_idx = EXTRA_REG_RSP_0;
2253
2254 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2255 return idx;
2256
2257 return alt_idx;
2258 }
2259
2260 static void intel_fixup_er(struct perf_event *event, int idx)
2261 {
2262 event->hw.extra_reg.idx = idx;
2263
2264 if (idx == EXTRA_REG_RSP_0) {
2265 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2266 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2267 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2268 } else if (idx == EXTRA_REG_RSP_1) {
2269 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2270 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2271 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2272 }
2273 }
2274
2275 /*
2276 * manage allocation of shared extra msr for certain events
2277 *
2278 * sharing can be:
2279 * per-cpu: to be shared between the various events on a single PMU
2280 * per-core: per-cpu + shared by HT threads
2281 */
2282 static struct event_constraint *
2283 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2284 struct perf_event *event,
2285 struct hw_perf_event_extra *reg)
2286 {
2287 struct event_constraint *c = &emptyconstraint;
2288 struct er_account *era;
2289 unsigned long flags;
2290 int idx = reg->idx;
2291
2292 /*
2293 * reg->alloc can be set due to existing state, so for fake cpuc we
2294 * need to ignore this, otherwise we might fail to allocate proper fake
2295 * state for this extra reg constraint. Also see the comment below.
2296 */
2297 if (reg->alloc && !cpuc->is_fake)
2298 return NULL; /* call x86_get_event_constraint() */
2299
2300 again:
2301 era = &cpuc->shared_regs->regs[idx];
2302 /*
2303 * we use spin_lock_irqsave() to avoid lockdep issues when
2304 * passing a fake cpuc
2305 */
2306 raw_spin_lock_irqsave(&era->lock, flags);
2307
2308 if (!atomic_read(&era->ref) || era->config == reg->config) {
2309
2310 /*
2311 * If its a fake cpuc -- as per validate_{group,event}() we
2312 * shouldn't touch event state and we can avoid doing so
2313 * since both will only call get_event_constraints() once
2314 * on each event, this avoids the need for reg->alloc.
2315 *
2316 * Not doing the ER fixup will only result in era->reg being
2317 * wrong, but since we won't actually try and program hardware
2318 * this isn't a problem either.
2319 */
2320 if (!cpuc->is_fake) {
2321 if (idx != reg->idx)
2322 intel_fixup_er(event, idx);
2323
2324 /*
2325 * x86_schedule_events() can call get_event_constraints()
2326 * multiple times on events in the case of incremental
2327 * scheduling(). reg->alloc ensures we only do the ER
2328 * allocation once.
2329 */
2330 reg->alloc = 1;
2331 }
2332
2333 /* lock in msr value */
2334 era->config = reg->config;
2335 era->reg = reg->reg;
2336
2337 /* one more user */
2338 atomic_inc(&era->ref);
2339
2340 /*
2341 * need to call x86_get_event_constraint()
2342 * to check if associated event has constraints
2343 */
2344 c = NULL;
2345 } else {
2346 idx = intel_alt_er(idx, reg->config);
2347 if (idx != reg->idx) {
2348 raw_spin_unlock_irqrestore(&era->lock, flags);
2349 goto again;
2350 }
2351 }
2352 raw_spin_unlock_irqrestore(&era->lock, flags);
2353
2354 return c;
2355 }
2356
2357 static void
2358 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2359 struct hw_perf_event_extra *reg)
2360 {
2361 struct er_account *era;
2362
2363 /*
2364 * Only put constraint if extra reg was actually allocated. Also takes
2365 * care of event which do not use an extra shared reg.
2366 *
2367 * Also, if this is a fake cpuc we shouldn't touch any event state
2368 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2369 * either since it'll be thrown out.
2370 */
2371 if (!reg->alloc || cpuc->is_fake)
2372 return;
2373
2374 era = &cpuc->shared_regs->regs[reg->idx];
2375
2376 /* one fewer user */
2377 atomic_dec(&era->ref);
2378
2379 /* allocate again next time */
2380 reg->alloc = 0;
2381 }
2382
2383 static struct event_constraint *
2384 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2385 struct perf_event *event)
2386 {
2387 struct event_constraint *c = NULL, *d;
2388 struct hw_perf_event_extra *xreg, *breg;
2389
2390 xreg = &event->hw.extra_reg;
2391 if (xreg->idx != EXTRA_REG_NONE) {
2392 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2393 if (c == &emptyconstraint)
2394 return c;
2395 }
2396 breg = &event->hw.branch_reg;
2397 if (breg->idx != EXTRA_REG_NONE) {
2398 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2399 if (d == &emptyconstraint) {
2400 __intel_shared_reg_put_constraints(cpuc, xreg);
2401 c = d;
2402 }
2403 }
2404 return c;
2405 }
2406
2407 struct event_constraint *
2408 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2409 struct perf_event *event)
2410 {
2411 struct event_constraint *c;
2412
2413 if (x86_pmu.event_constraints) {
2414 for_each_event_constraint(c, x86_pmu.event_constraints) {
2415 if ((event->hw.config & c->cmask) == c->code) {
2416 event->hw.flags |= c->flags;
2417 return c;
2418 }
2419 }
2420 }
2421
2422 return &unconstrained;
2423 }
2424
2425 static struct event_constraint *
2426 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2427 struct perf_event *event)
2428 {
2429 struct event_constraint *c;
2430
2431 c = intel_bts_constraints(event);
2432 if (c)
2433 return c;
2434
2435 c = intel_shared_regs_constraints(cpuc, event);
2436 if (c)
2437 return c;
2438
2439 c = intel_pebs_constraints(event);
2440 if (c)
2441 return c;
2442
2443 return x86_get_event_constraints(cpuc, idx, event);
2444 }
2445
2446 static void
2447 intel_start_scheduling(struct cpu_hw_events *cpuc)
2448 {
2449 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2450 struct intel_excl_states *xl;
2451 int tid = cpuc->excl_thread_id;
2452
2453 /*
2454 * nothing needed if in group validation mode
2455 */
2456 if (cpuc->is_fake || !is_ht_workaround_enabled())
2457 return;
2458
2459 /*
2460 * no exclusion needed
2461 */
2462 if (WARN_ON_ONCE(!excl_cntrs))
2463 return;
2464
2465 xl = &excl_cntrs->states[tid];
2466
2467 xl->sched_started = true;
2468 /*
2469 * lock shared state until we are done scheduling
2470 * in stop_event_scheduling()
2471 * makes scheduling appear as a transaction
2472 */
2473 raw_spin_lock(&excl_cntrs->lock);
2474 }
2475
2476 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2477 {
2478 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2479 struct event_constraint *c = cpuc->event_constraint[idx];
2480 struct intel_excl_states *xl;
2481 int tid = cpuc->excl_thread_id;
2482
2483 if (cpuc->is_fake || !is_ht_workaround_enabled())
2484 return;
2485
2486 if (WARN_ON_ONCE(!excl_cntrs))
2487 return;
2488
2489 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2490 return;
2491
2492 xl = &excl_cntrs->states[tid];
2493
2494 lockdep_assert_held(&excl_cntrs->lock);
2495
2496 if (c->flags & PERF_X86_EVENT_EXCL)
2497 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2498 else
2499 xl->state[cntr] = INTEL_EXCL_SHARED;
2500 }
2501
2502 static void
2503 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2504 {
2505 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2506 struct intel_excl_states *xl;
2507 int tid = cpuc->excl_thread_id;
2508
2509 /*
2510 * nothing needed if in group validation mode
2511 */
2512 if (cpuc->is_fake || !is_ht_workaround_enabled())
2513 return;
2514 /*
2515 * no exclusion needed
2516 */
2517 if (WARN_ON_ONCE(!excl_cntrs))
2518 return;
2519
2520 xl = &excl_cntrs->states[tid];
2521
2522 xl->sched_started = false;
2523 /*
2524 * release shared state lock (acquired in intel_start_scheduling())
2525 */
2526 raw_spin_unlock(&excl_cntrs->lock);
2527 }
2528
2529 static struct event_constraint *
2530 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2531 int idx, struct event_constraint *c)
2532 {
2533 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2534 struct intel_excl_states *xlo;
2535 int tid = cpuc->excl_thread_id;
2536 int is_excl, i;
2537
2538 /*
2539 * validating a group does not require
2540 * enforcing cross-thread exclusion
2541 */
2542 if (cpuc->is_fake || !is_ht_workaround_enabled())
2543 return c;
2544
2545 /*
2546 * no exclusion needed
2547 */
2548 if (WARN_ON_ONCE(!excl_cntrs))
2549 return c;
2550
2551 /*
2552 * because we modify the constraint, we need
2553 * to make a copy. Static constraints come
2554 * from static const tables.
2555 *
2556 * only needed when constraint has not yet
2557 * been cloned (marked dynamic)
2558 */
2559 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2560 struct event_constraint *cx;
2561
2562 /*
2563 * grab pre-allocated constraint entry
2564 */
2565 cx = &cpuc->constraint_list[idx];
2566
2567 /*
2568 * initialize dynamic constraint
2569 * with static constraint
2570 */
2571 *cx = *c;
2572
2573 /*
2574 * mark constraint as dynamic, so we
2575 * can free it later on
2576 */
2577 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2578 c = cx;
2579 }
2580
2581 /*
2582 * From here on, the constraint is dynamic.
2583 * Either it was just allocated above, or it
2584 * was allocated during a earlier invocation
2585 * of this function
2586 */
2587
2588 /*
2589 * state of sibling HT
2590 */
2591 xlo = &excl_cntrs->states[tid ^ 1];
2592
2593 /*
2594 * event requires exclusive counter access
2595 * across HT threads
2596 */
2597 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2598 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2599 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2600 if (!cpuc->n_excl++)
2601 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2602 }
2603
2604 /*
2605 * Modify static constraint with current dynamic
2606 * state of thread
2607 *
2608 * EXCLUSIVE: sibling counter measuring exclusive event
2609 * SHARED : sibling counter measuring non-exclusive event
2610 * UNUSED : sibling counter unused
2611 */
2612 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2613 /*
2614 * exclusive event in sibling counter
2615 * our corresponding counter cannot be used
2616 * regardless of our event
2617 */
2618 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2619 __clear_bit(i, c->idxmsk);
2620 /*
2621 * if measuring an exclusive event, sibling
2622 * measuring non-exclusive, then counter cannot
2623 * be used
2624 */
2625 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2626 __clear_bit(i, c->idxmsk);
2627 }
2628
2629 /*
2630 * recompute actual bit weight for scheduling algorithm
2631 */
2632 c->weight = hweight64(c->idxmsk64);
2633
2634 /*
2635 * if we return an empty mask, then switch
2636 * back to static empty constraint to avoid
2637 * the cost of freeing later on
2638 */
2639 if (c->weight == 0)
2640 c = &emptyconstraint;
2641
2642 return c;
2643 }
2644
2645 static struct event_constraint *
2646 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2647 struct perf_event *event)
2648 {
2649 struct event_constraint *c1 = NULL;
2650 struct event_constraint *c2;
2651
2652 if (idx >= 0) /* fake does < 0 */
2653 c1 = cpuc->event_constraint[idx];
2654
2655 /*
2656 * first time only
2657 * - static constraint: no change across incremental scheduling calls
2658 * - dynamic constraint: handled by intel_get_excl_constraints()
2659 */
2660 c2 = __intel_get_event_constraints(cpuc, idx, event);
2661 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2662 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2663 c1->weight = c2->weight;
2664 c2 = c1;
2665 }
2666
2667 if (cpuc->excl_cntrs)
2668 return intel_get_excl_constraints(cpuc, event, idx, c2);
2669
2670 return c2;
2671 }
2672
2673 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2674 struct perf_event *event)
2675 {
2676 struct hw_perf_event *hwc = &event->hw;
2677 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2678 int tid = cpuc->excl_thread_id;
2679 struct intel_excl_states *xl;
2680
2681 /*
2682 * nothing needed if in group validation mode
2683 */
2684 if (cpuc->is_fake)
2685 return;
2686
2687 if (WARN_ON_ONCE(!excl_cntrs))
2688 return;
2689
2690 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2691 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2692 if (!--cpuc->n_excl)
2693 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2694 }
2695
2696 /*
2697 * If event was actually assigned, then mark the counter state as
2698 * unused now.
2699 */
2700 if (hwc->idx >= 0) {
2701 xl = &excl_cntrs->states[tid];
2702
2703 /*
2704 * put_constraint may be called from x86_schedule_events()
2705 * which already has the lock held so here make locking
2706 * conditional.
2707 */
2708 if (!xl->sched_started)
2709 raw_spin_lock(&excl_cntrs->lock);
2710
2711 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2712
2713 if (!xl->sched_started)
2714 raw_spin_unlock(&excl_cntrs->lock);
2715 }
2716 }
2717
2718 static void
2719 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2720 struct perf_event *event)
2721 {
2722 struct hw_perf_event_extra *reg;
2723
2724 reg = &event->hw.extra_reg;
2725 if (reg->idx != EXTRA_REG_NONE)
2726 __intel_shared_reg_put_constraints(cpuc, reg);
2727
2728 reg = &event->hw.branch_reg;
2729 if (reg->idx != EXTRA_REG_NONE)
2730 __intel_shared_reg_put_constraints(cpuc, reg);
2731 }
2732
2733 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2734 struct perf_event *event)
2735 {
2736 intel_put_shared_regs_event_constraints(cpuc, event);
2737
2738 /*
2739 * is PMU has exclusive counter restrictions, then
2740 * all events are subject to and must call the
2741 * put_excl_constraints() routine
2742 */
2743 if (cpuc->excl_cntrs)
2744 intel_put_excl_constraints(cpuc, event);
2745 }
2746
2747 static void intel_pebs_aliases_core2(struct perf_event *event)
2748 {
2749 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2750 /*
2751 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2752 * (0x003c) so that we can use it with PEBS.
2753 *
2754 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2755 * PEBS capable. However we can use INST_RETIRED.ANY_P
2756 * (0x00c0), which is a PEBS capable event, to get the same
2757 * count.
2758 *
2759 * INST_RETIRED.ANY_P counts the number of cycles that retires
2760 * CNTMASK instructions. By setting CNTMASK to a value (16)
2761 * larger than the maximum number of instructions that can be
2762 * retired per cycle (4) and then inverting the condition, we
2763 * count all cycles that retire 16 or less instructions, which
2764 * is every cycle.
2765 *
2766 * Thereby we gain a PEBS capable cycle counter.
2767 */
2768 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2769
2770 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2771 event->hw.config = alt_config;
2772 }
2773 }
2774
2775 static void intel_pebs_aliases_snb(struct perf_event *event)
2776 {
2777 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2778 /*
2779 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2780 * (0x003c) so that we can use it with PEBS.
2781 *
2782 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2783 * PEBS capable. However we can use UOPS_RETIRED.ALL
2784 * (0x01c2), which is a PEBS capable event, to get the same
2785 * count.
2786 *
2787 * UOPS_RETIRED.ALL counts the number of cycles that retires
2788 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2789 * larger than the maximum number of micro-ops that can be
2790 * retired per cycle (4) and then inverting the condition, we
2791 * count all cycles that retire 16 or less micro-ops, which
2792 * is every cycle.
2793 *
2794 * Thereby we gain a PEBS capable cycle counter.
2795 */
2796 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2797
2798 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2799 event->hw.config = alt_config;
2800 }
2801 }
2802
2803 static void intel_pebs_aliases_precdist(struct perf_event *event)
2804 {
2805 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2806 /*
2807 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2808 * (0x003c) so that we can use it with PEBS.
2809 *
2810 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2811 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2812 * (0x01c0), which is a PEBS capable event, to get the same
2813 * count.
2814 *
2815 * The PREC_DIST event has special support to minimize sample
2816 * shadowing effects. One drawback is that it can be
2817 * only programmed on counter 1, but that seems like an
2818 * acceptable trade off.
2819 */
2820 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2821
2822 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2823 event->hw.config = alt_config;
2824 }
2825 }
2826
2827 static void intel_pebs_aliases_ivb(struct perf_event *event)
2828 {
2829 if (event->attr.precise_ip < 3)
2830 return intel_pebs_aliases_snb(event);
2831 return intel_pebs_aliases_precdist(event);
2832 }
2833
2834 static void intel_pebs_aliases_skl(struct perf_event *event)
2835 {
2836 if (event->attr.precise_ip < 3)
2837 return intel_pebs_aliases_core2(event);
2838 return intel_pebs_aliases_precdist(event);
2839 }
2840
2841 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2842 {
2843 unsigned long flags = x86_pmu.free_running_flags;
2844
2845 if (event->attr.use_clockid)
2846 flags &= ~PERF_SAMPLE_TIME;
2847 return flags;
2848 }
2849
2850 static int intel_pmu_hw_config(struct perf_event *event)
2851 {
2852 int ret = x86_pmu_hw_config(event);
2853
2854 if (ret)
2855 return ret;
2856
2857 if (event->attr.precise_ip) {
2858 if (!event->attr.freq) {
2859 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2860 if (!(event->attr.sample_type &
2861 ~intel_pmu_free_running_flags(event)))
2862 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2863 }
2864 if (x86_pmu.pebs_aliases)
2865 x86_pmu.pebs_aliases(event);
2866 }
2867
2868 if (needs_branch_stack(event)) {
2869 ret = intel_pmu_setup_lbr_filter(event);
2870 if (ret)
2871 return ret;
2872
2873 /*
2874 * BTS is set up earlier in this path, so don't account twice
2875 */
2876 if (!intel_pmu_has_bts(event)) {
2877 /* disallow lbr if conflicting events are present */
2878 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2879 return -EBUSY;
2880
2881 event->destroy = hw_perf_lbr_event_destroy;
2882 }
2883 }
2884
2885 if (event->attr.type != PERF_TYPE_RAW)
2886 return 0;
2887
2888 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2889 return 0;
2890
2891 if (x86_pmu.version < 3)
2892 return -EINVAL;
2893
2894 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2895 return -EACCES;
2896
2897 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2898
2899 return 0;
2900 }
2901
2902 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2903 {
2904 if (x86_pmu.guest_get_msrs)
2905 return x86_pmu.guest_get_msrs(nr);
2906 *nr = 0;
2907 return NULL;
2908 }
2909 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2910
2911 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2912 {
2913 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2914 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2915
2916 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2917 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2918 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2919 /*
2920 * If PMU counter has PEBS enabled it is not enough to disable counter
2921 * on a guest entry since PEBS memory write can overshoot guest entry
2922 * and corrupt guest memory. Disabling PEBS solves the problem.
2923 */
2924 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2925 arr[1].host = cpuc->pebs_enabled;
2926 arr[1].guest = 0;
2927
2928 *nr = 2;
2929 return arr;
2930 }
2931
2932 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2933 {
2934 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2935 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2936 int idx;
2937
2938 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2939 struct perf_event *event = cpuc->events[idx];
2940
2941 arr[idx].msr = x86_pmu_config_addr(idx);
2942 arr[idx].host = arr[idx].guest = 0;
2943
2944 if (!test_bit(idx, cpuc->active_mask))
2945 continue;
2946
2947 arr[idx].host = arr[idx].guest =
2948 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2949
2950 if (event->attr.exclude_host)
2951 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2952 else if (event->attr.exclude_guest)
2953 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2954 }
2955
2956 *nr = x86_pmu.num_counters;
2957 return arr;
2958 }
2959
2960 static void core_pmu_enable_event(struct perf_event *event)
2961 {
2962 if (!event->attr.exclude_host)
2963 x86_pmu_enable_event(event);
2964 }
2965
2966 static void core_pmu_enable_all(int added)
2967 {
2968 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2969 int idx;
2970
2971 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2972 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2973
2974 if (!test_bit(idx, cpuc->active_mask) ||
2975 cpuc->events[idx]->attr.exclude_host)
2976 continue;
2977
2978 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2979 }
2980 }
2981
2982 static int hsw_hw_config(struct perf_event *event)
2983 {
2984 int ret = intel_pmu_hw_config(event);
2985
2986 if (ret)
2987 return ret;
2988 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2989 return 0;
2990 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2991
2992 /*
2993 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2994 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2995 * this combination.
2996 */
2997 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2998 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2999 event->attr.precise_ip > 0))
3000 return -EOPNOTSUPP;
3001
3002 if (event_is_checkpointed(event)) {
3003 /*
3004 * Sampling of checkpointed events can cause situations where
3005 * the CPU constantly aborts because of a overflow, which is
3006 * then checkpointed back and ignored. Forbid checkpointing
3007 * for sampling.
3008 *
3009 * But still allow a long sampling period, so that perf stat
3010 * from KVM works.
3011 */
3012 if (event->attr.sample_period > 0 &&
3013 event->attr.sample_period < 0x7fffffff)
3014 return -EOPNOTSUPP;
3015 }
3016 return 0;
3017 }
3018
3019 static struct event_constraint counter2_constraint =
3020 EVENT_CONSTRAINT(0, 0x4, 0);
3021
3022 static struct event_constraint *
3023 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3024 struct perf_event *event)
3025 {
3026 struct event_constraint *c;
3027
3028 c = intel_get_event_constraints(cpuc, idx, event);
3029
3030 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3031 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3032 if (c->idxmsk64 & (1U << 2))
3033 return &counter2_constraint;
3034 return &emptyconstraint;
3035 }
3036
3037 return c;
3038 }
3039
3040 /*
3041 * Broadwell:
3042 *
3043 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3044 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3045 * the two to enforce a minimum period of 128 (the smallest value that has bits
3046 * 0-5 cleared and >= 100).
3047 *
3048 * Because of how the code in x86_perf_event_set_period() works, the truncation
3049 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3050 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3051 *
3052 * Therefore the effective (average) period matches the requested period,
3053 * despite coarser hardware granularity.
3054 */
3055 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3056 {
3057 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3058 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3059 if (left < 128)
3060 left = 128;
3061 left &= ~0x3fu;
3062 }
3063 return left;
3064 }
3065
3066 PMU_FORMAT_ATTR(event, "config:0-7" );
3067 PMU_FORMAT_ATTR(umask, "config:8-15" );
3068 PMU_FORMAT_ATTR(edge, "config:18" );
3069 PMU_FORMAT_ATTR(pc, "config:19" );
3070 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3071 PMU_FORMAT_ATTR(inv, "config:23" );
3072 PMU_FORMAT_ATTR(cmask, "config:24-31" );
3073 PMU_FORMAT_ATTR(in_tx, "config:32");
3074 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3075
3076 static struct attribute *intel_arch_formats_attr[] = {
3077 &format_attr_event.attr,
3078 &format_attr_umask.attr,
3079 &format_attr_edge.attr,
3080 &format_attr_pc.attr,
3081 &format_attr_inv.attr,
3082 &format_attr_cmask.attr,
3083 NULL,
3084 };
3085
3086 ssize_t intel_event_sysfs_show(char *page, u64 config)
3087 {
3088 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3089
3090 return x86_event_sysfs_show(page, config, event);
3091 }
3092
3093 struct intel_shared_regs *allocate_shared_regs(int cpu)
3094 {
3095 struct intel_shared_regs *regs;
3096 int i;
3097
3098 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3099 GFP_KERNEL, cpu_to_node(cpu));
3100 if (regs) {
3101 /*
3102 * initialize the locks to keep lockdep happy
3103 */
3104 for (i = 0; i < EXTRA_REG_MAX; i++)
3105 raw_spin_lock_init(&regs->regs[i].lock);
3106
3107 regs->core_id = -1;
3108 }
3109 return regs;
3110 }
3111
3112 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3113 {
3114 struct intel_excl_cntrs *c;
3115
3116 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3117 GFP_KERNEL, cpu_to_node(cpu));
3118 if (c) {
3119 raw_spin_lock_init(&c->lock);
3120 c->core_id = -1;
3121 }
3122 return c;
3123 }
3124
3125 static int intel_pmu_cpu_prepare(int cpu)
3126 {
3127 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3128
3129 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3130 cpuc->shared_regs = allocate_shared_regs(cpu);
3131 if (!cpuc->shared_regs)
3132 goto err;
3133 }
3134
3135 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3136 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3137
3138 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3139 if (!cpuc->constraint_list)
3140 goto err_shared_regs;
3141
3142 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3143 if (!cpuc->excl_cntrs)
3144 goto err_constraint_list;
3145
3146 cpuc->excl_thread_id = 0;
3147 }
3148
3149 return 0;
3150
3151 err_constraint_list:
3152 kfree(cpuc->constraint_list);
3153 cpuc->constraint_list = NULL;
3154
3155 err_shared_regs:
3156 kfree(cpuc->shared_regs);
3157 cpuc->shared_regs = NULL;
3158
3159 err:
3160 return -ENOMEM;
3161 }
3162
3163 static void intel_pmu_cpu_starting(int cpu)
3164 {
3165 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3166 int core_id = topology_core_id(cpu);
3167 int i;
3168
3169 init_debug_store_on_cpu(cpu);
3170 /*
3171 * Deal with CPUs that don't clear their LBRs on power-up.
3172 */
3173 intel_pmu_lbr_reset();
3174
3175 cpuc->lbr_sel = NULL;
3176
3177 if (!cpuc->shared_regs)
3178 return;
3179
3180 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3181 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3182 struct intel_shared_regs *pc;
3183
3184 pc = per_cpu(cpu_hw_events, i).shared_regs;
3185 if (pc && pc->core_id == core_id) {
3186 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3187 cpuc->shared_regs = pc;
3188 break;
3189 }
3190 }
3191 cpuc->shared_regs->core_id = core_id;
3192 cpuc->shared_regs->refcnt++;
3193 }
3194
3195 if (x86_pmu.lbr_sel_map)
3196 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3197
3198 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3199 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3200 struct cpu_hw_events *sibling;
3201 struct intel_excl_cntrs *c;
3202
3203 sibling = &per_cpu(cpu_hw_events, i);
3204 c = sibling->excl_cntrs;
3205 if (c && c->core_id == core_id) {
3206 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3207 cpuc->excl_cntrs = c;
3208 if (!sibling->excl_thread_id)
3209 cpuc->excl_thread_id = 1;
3210 break;
3211 }
3212 }
3213 cpuc->excl_cntrs->core_id = core_id;
3214 cpuc->excl_cntrs->refcnt++;
3215 }
3216 }
3217
3218 static void free_excl_cntrs(int cpu)
3219 {
3220 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3221 struct intel_excl_cntrs *c;
3222
3223 c = cpuc->excl_cntrs;
3224 if (c) {
3225 if (c->core_id == -1 || --c->refcnt == 0)
3226 kfree(c);
3227 cpuc->excl_cntrs = NULL;
3228 kfree(cpuc->constraint_list);
3229 cpuc->constraint_list = NULL;
3230 }
3231 }
3232
3233 static void intel_pmu_cpu_dying(int cpu)
3234 {
3235 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3236 struct intel_shared_regs *pc;
3237
3238 pc = cpuc->shared_regs;
3239 if (pc) {
3240 if (pc->core_id == -1 || --pc->refcnt == 0)
3241 kfree(pc);
3242 cpuc->shared_regs = NULL;
3243 }
3244
3245 free_excl_cntrs(cpu);
3246
3247 fini_debug_store_on_cpu(cpu);
3248 }
3249
3250 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3251 bool sched_in)
3252 {
3253 if (x86_pmu.pebs_active)
3254 intel_pmu_pebs_sched_task(ctx, sched_in);
3255 if (x86_pmu.lbr_nr)
3256 intel_pmu_lbr_sched_task(ctx, sched_in);
3257 }
3258
3259 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3260
3261 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3262
3263 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3264
3265 static struct attribute *intel_arch3_formats_attr[] = {
3266 &format_attr_event.attr,
3267 &format_attr_umask.attr,
3268 &format_attr_edge.attr,
3269 &format_attr_pc.attr,
3270 &format_attr_any.attr,
3271 &format_attr_inv.attr,
3272 &format_attr_cmask.attr,
3273 &format_attr_in_tx.attr,
3274 &format_attr_in_tx_cp.attr,
3275
3276 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3277 &format_attr_ldlat.attr, /* PEBS load latency */
3278 NULL,
3279 };
3280
3281 static struct attribute *skl_format_attr[] = {
3282 &format_attr_frontend.attr,
3283 NULL,
3284 };
3285
3286 static __initconst const struct x86_pmu core_pmu = {
3287 .name = "core",
3288 .handle_irq = x86_pmu_handle_irq,
3289 .disable_all = x86_pmu_disable_all,
3290 .enable_all = core_pmu_enable_all,
3291 .enable = core_pmu_enable_event,
3292 .disable = x86_pmu_disable_event,
3293 .hw_config = x86_pmu_hw_config,
3294 .schedule_events = x86_schedule_events,
3295 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3296 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3297 .event_map = intel_pmu_event_map,
3298 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3299 .apic = 1,
3300 .free_running_flags = PEBS_FREERUNNING_FLAGS,
3301
3302 /*
3303 * Intel PMCs cannot be accessed sanely above 32-bit width,
3304 * so we install an artificial 1<<31 period regardless of
3305 * the generic event period:
3306 */
3307 .max_period = (1ULL<<31) - 1,
3308 .get_event_constraints = intel_get_event_constraints,
3309 .put_event_constraints = intel_put_event_constraints,
3310 .event_constraints = intel_core_event_constraints,
3311 .guest_get_msrs = core_guest_get_msrs,
3312 .format_attrs = intel_arch_formats_attr,
3313 .events_sysfs_show = intel_event_sysfs_show,
3314
3315 /*
3316 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3317 * together with PMU version 1 and thus be using core_pmu with
3318 * shared_regs. We need following callbacks here to allocate
3319 * it properly.
3320 */
3321 .cpu_prepare = intel_pmu_cpu_prepare,
3322 .cpu_starting = intel_pmu_cpu_starting,
3323 .cpu_dying = intel_pmu_cpu_dying,
3324 };
3325
3326 static __initconst const struct x86_pmu intel_pmu = {
3327 .name = "Intel",
3328 .handle_irq = intel_pmu_handle_irq,
3329 .disable_all = intel_pmu_disable_all,
3330 .enable_all = intel_pmu_enable_all,
3331 .enable = intel_pmu_enable_event,
3332 .disable = intel_pmu_disable_event,
3333 .add = intel_pmu_add_event,
3334 .del = intel_pmu_del_event,
3335 .hw_config = intel_pmu_hw_config,
3336 .schedule_events = x86_schedule_events,
3337 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3338 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3339 .event_map = intel_pmu_event_map,
3340 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3341 .apic = 1,
3342 .free_running_flags = PEBS_FREERUNNING_FLAGS,
3343 /*
3344 * Intel PMCs cannot be accessed sanely above 32 bit width,
3345 * so we install an artificial 1<<31 period regardless of
3346 * the generic event period:
3347 */
3348 .max_period = (1ULL << 31) - 1,
3349 .get_event_constraints = intel_get_event_constraints,
3350 .put_event_constraints = intel_put_event_constraints,
3351 .pebs_aliases = intel_pebs_aliases_core2,
3352
3353 .format_attrs = intel_arch3_formats_attr,
3354 .events_sysfs_show = intel_event_sysfs_show,
3355
3356 .cpu_prepare = intel_pmu_cpu_prepare,
3357 .cpu_starting = intel_pmu_cpu_starting,
3358 .cpu_dying = intel_pmu_cpu_dying,
3359 .guest_get_msrs = intel_guest_get_msrs,
3360 .sched_task = intel_pmu_sched_task,
3361 };
3362
3363 static __init void intel_clovertown_quirk(void)
3364 {
3365 /*
3366 * PEBS is unreliable due to:
3367 *
3368 * AJ67 - PEBS may experience CPL leaks
3369 * AJ68 - PEBS PMI may be delayed by one event
3370 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3371 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3372 *
3373 * AJ67 could be worked around by restricting the OS/USR flags.
3374 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3375 *
3376 * AJ106 could possibly be worked around by not allowing LBR
3377 * usage from PEBS, including the fixup.
3378 * AJ68 could possibly be worked around by always programming
3379 * a pebs_event_reset[0] value and coping with the lost events.
3380 *
3381 * But taken together it might just make sense to not enable PEBS on
3382 * these chips.
3383 */
3384 pr_warn("PEBS disabled due to CPU errata\n");
3385 x86_pmu.pebs = 0;
3386 x86_pmu.pebs_constraints = NULL;
3387 }
3388
3389 static int intel_snb_pebs_broken(int cpu)
3390 {
3391 u32 rev = UINT_MAX; /* default to broken for unknown models */
3392
3393 switch (cpu_data(cpu).x86_model) {
3394 case INTEL_FAM6_SANDYBRIDGE:
3395 rev = 0x28;
3396 break;
3397
3398 case INTEL_FAM6_SANDYBRIDGE_X:
3399 switch (cpu_data(cpu).x86_mask) {
3400 case 6: rev = 0x618; break;
3401 case 7: rev = 0x70c; break;
3402 }
3403 }
3404
3405 return (cpu_data(cpu).microcode < rev);
3406 }
3407
3408 static void intel_snb_check_microcode(void)
3409 {
3410 int pebs_broken = 0;
3411 int cpu;
3412
3413 get_online_cpus();
3414 for_each_online_cpu(cpu) {
3415 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3416 break;
3417 }
3418 put_online_cpus();
3419
3420 if (pebs_broken == x86_pmu.pebs_broken)
3421 return;
3422
3423 /*
3424 * Serialized by the microcode lock..
3425 */
3426 if (x86_pmu.pebs_broken) {
3427 pr_info("PEBS enabled due to microcode update\n");
3428 x86_pmu.pebs_broken = 0;
3429 } else {
3430 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3431 x86_pmu.pebs_broken = 1;
3432 }
3433 }
3434
3435 static bool is_lbr_from(unsigned long msr)
3436 {
3437 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3438
3439 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3440 }
3441
3442 /*
3443 * Under certain circumstances, access certain MSR may cause #GP.
3444 * The function tests if the input MSR can be safely accessed.
3445 */
3446 static bool check_msr(unsigned long msr, u64 mask)
3447 {
3448 u64 val_old, val_new, val_tmp;
3449
3450 /*
3451 * Read the current value, change it and read it back to see if it
3452 * matches, this is needed to detect certain hardware emulators
3453 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3454 */
3455 if (rdmsrl_safe(msr, &val_old))
3456 return false;
3457
3458 /*
3459 * Only change the bits which can be updated by wrmsrl.
3460 */
3461 val_tmp = val_old ^ mask;
3462
3463 if (is_lbr_from(msr))
3464 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3465
3466 if (wrmsrl_safe(msr, val_tmp) ||
3467 rdmsrl_safe(msr, &val_new))
3468 return false;
3469
3470 /*
3471 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3472 * should equal rdmsrl()'s even with the quirk.
3473 */
3474 if (val_new != val_tmp)
3475 return false;
3476
3477 if (is_lbr_from(msr))
3478 val_old = lbr_from_signext_quirk_wr(val_old);
3479
3480 /* Here it's sure that the MSR can be safely accessed.
3481 * Restore the old value and return.
3482 */
3483 wrmsrl(msr, val_old);
3484
3485 return true;
3486 }
3487
3488 static __init void intel_sandybridge_quirk(void)
3489 {
3490 x86_pmu.check_microcode = intel_snb_check_microcode;
3491 intel_snb_check_microcode();
3492 }
3493
3494 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3495 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3496 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3497 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3498 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3499 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3500 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3501 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3502 };
3503
3504 static __init void intel_arch_events_quirk(void)
3505 {
3506 int bit;
3507
3508 /* disable event that reported as not presend by cpuid */
3509 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3510 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3511 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3512 intel_arch_events_map[bit].name);
3513 }
3514 }
3515
3516 static __init void intel_nehalem_quirk(void)
3517 {
3518 union cpuid10_ebx ebx;
3519
3520 ebx.full = x86_pmu.events_maskl;
3521 if (ebx.split.no_branch_misses_retired) {
3522 /*
3523 * Erratum AAJ80 detected, we work it around by using
3524 * the BR_MISP_EXEC.ANY event. This will over-count
3525 * branch-misses, but it's still much better than the
3526 * architectural event which is often completely bogus:
3527 */
3528 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3529 ebx.split.no_branch_misses_retired = 0;
3530 x86_pmu.events_maskl = ebx.full;
3531 pr_info("CPU erratum AAJ80 worked around\n");
3532 }
3533 }
3534
3535 /*
3536 * enable software workaround for errata:
3537 * SNB: BJ122
3538 * IVB: BV98
3539 * HSW: HSD29
3540 *
3541 * Only needed when HT is enabled. However detecting
3542 * if HT is enabled is difficult (model specific). So instead,
3543 * we enable the workaround in the early boot, and verify if
3544 * it is needed in a later initcall phase once we have valid
3545 * topology information to check if HT is actually enabled
3546 */
3547 static __init void intel_ht_bug(void)
3548 {
3549 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3550
3551 x86_pmu.start_scheduling = intel_start_scheduling;
3552 x86_pmu.commit_scheduling = intel_commit_scheduling;
3553 x86_pmu.stop_scheduling = intel_stop_scheduling;
3554 }
3555
3556 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3557 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
3558
3559 /* Haswell special events */
3560 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3561 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3562 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3563 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3564 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3565 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3566 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3567 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3568 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3569 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3570 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3571 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
3572
3573 static struct attribute *hsw_events_attrs[] = {
3574 EVENT_PTR(tx_start),
3575 EVENT_PTR(tx_commit),
3576 EVENT_PTR(tx_abort),
3577 EVENT_PTR(tx_capacity),
3578 EVENT_PTR(tx_conflict),
3579 EVENT_PTR(el_start),
3580 EVENT_PTR(el_commit),
3581 EVENT_PTR(el_abort),
3582 EVENT_PTR(el_capacity),
3583 EVENT_PTR(el_conflict),
3584 EVENT_PTR(cycles_t),
3585 EVENT_PTR(cycles_ct),
3586 EVENT_PTR(mem_ld_hsw),
3587 EVENT_PTR(mem_st_hsw),
3588 EVENT_PTR(td_slots_issued),
3589 EVENT_PTR(td_slots_retired),
3590 EVENT_PTR(td_fetch_bubbles),
3591 EVENT_PTR(td_total_slots),
3592 EVENT_PTR(td_total_slots_scale),
3593 EVENT_PTR(td_recovery_bubbles),
3594 EVENT_PTR(td_recovery_bubbles_scale),
3595 NULL
3596 };
3597
3598 __init int intel_pmu_init(void)
3599 {
3600 union cpuid10_edx edx;
3601 union cpuid10_eax eax;
3602 union cpuid10_ebx ebx;
3603 struct event_constraint *c;
3604 unsigned int unused;
3605 struct extra_reg *er;
3606 int version, i;
3607
3608 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3609 switch (boot_cpu_data.x86) {
3610 case 0x6:
3611 return p6_pmu_init();
3612 case 0xb:
3613 return knc_pmu_init();
3614 case 0xf:
3615 return p4_pmu_init();
3616 }
3617 return -ENODEV;
3618 }
3619
3620 /*
3621 * Check whether the Architectural PerfMon supports
3622 * Branch Misses Retired hw_event or not.
3623 */
3624 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3625 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3626 return -ENODEV;
3627
3628 version = eax.split.version_id;
3629 if (version < 2)
3630 x86_pmu = core_pmu;
3631 else
3632 x86_pmu = intel_pmu;
3633
3634 x86_pmu.version = version;
3635 x86_pmu.num_counters = eax.split.num_counters;
3636 x86_pmu.cntval_bits = eax.split.bit_width;
3637 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
3638
3639 x86_pmu.events_maskl = ebx.full;
3640 x86_pmu.events_mask_len = eax.split.mask_length;
3641
3642 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3643
3644 /*
3645 * Quirk: v2 perfmon does not report fixed-purpose events, so
3646 * assume at least 3 events, when not running in a hypervisor:
3647 */
3648 if (version > 1) {
3649 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3650
3651 x86_pmu.num_counters_fixed =
3652 max((int)edx.split.num_counters_fixed, assume);
3653 }
3654
3655 if (boot_cpu_has(X86_FEATURE_PDCM)) {
3656 u64 capabilities;
3657
3658 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3659 x86_pmu.intel_cap.capabilities = capabilities;
3660 }
3661
3662 intel_ds_init();
3663
3664 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3665
3666 /*
3667 * Install the hw-cache-events table:
3668 */
3669 switch (boot_cpu_data.x86_model) {
3670 case INTEL_FAM6_CORE_YONAH:
3671 pr_cont("Core events, ");
3672 break;
3673
3674 case INTEL_FAM6_CORE2_MEROM:
3675 x86_add_quirk(intel_clovertown_quirk);
3676 case INTEL_FAM6_CORE2_MEROM_L:
3677 case INTEL_FAM6_CORE2_PENRYN:
3678 case INTEL_FAM6_CORE2_DUNNINGTON:
3679 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3680 sizeof(hw_cache_event_ids));
3681
3682 intel_pmu_lbr_init_core();
3683
3684 x86_pmu.event_constraints = intel_core2_event_constraints;
3685 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3686 pr_cont("Core2 events, ");
3687 break;
3688
3689 case INTEL_FAM6_NEHALEM:
3690 case INTEL_FAM6_NEHALEM_EP:
3691 case INTEL_FAM6_NEHALEM_EX:
3692 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3693 sizeof(hw_cache_event_ids));
3694 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3695 sizeof(hw_cache_extra_regs));
3696
3697 intel_pmu_lbr_init_nhm();
3698
3699 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3700 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3701 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3702 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3703
3704 x86_pmu.cpu_events = nhm_events_attrs;
3705
3706 /* UOPS_ISSUED.STALLED_CYCLES */
3707 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3708 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3709 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3710 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3711 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3712
3713 intel_pmu_pebs_data_source_nhm();
3714 x86_add_quirk(intel_nehalem_quirk);
3715
3716 pr_cont("Nehalem events, ");
3717 break;
3718
3719 case INTEL_FAM6_ATOM_PINEVIEW:
3720 case INTEL_FAM6_ATOM_LINCROFT:
3721 case INTEL_FAM6_ATOM_PENWELL:
3722 case INTEL_FAM6_ATOM_CLOVERVIEW:
3723 case INTEL_FAM6_ATOM_CEDARVIEW:
3724 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3725 sizeof(hw_cache_event_ids));
3726
3727 intel_pmu_lbr_init_atom();
3728
3729 x86_pmu.event_constraints = intel_gen_event_constraints;
3730 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3731 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3732 pr_cont("Atom events, ");
3733 break;
3734
3735 case INTEL_FAM6_ATOM_SILVERMONT1:
3736 case INTEL_FAM6_ATOM_SILVERMONT2:
3737 case INTEL_FAM6_ATOM_AIRMONT:
3738 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3739 sizeof(hw_cache_event_ids));
3740 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3741 sizeof(hw_cache_extra_regs));
3742
3743 intel_pmu_lbr_init_slm();
3744
3745 x86_pmu.event_constraints = intel_slm_event_constraints;
3746 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3747 x86_pmu.extra_regs = intel_slm_extra_regs;
3748 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3749 x86_pmu.cpu_events = slm_events_attrs;
3750 pr_cont("Silvermont events, ");
3751 break;
3752
3753 case INTEL_FAM6_ATOM_GOLDMONT:
3754 case INTEL_FAM6_ATOM_DENVERTON:
3755 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3756 sizeof(hw_cache_event_ids));
3757 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3758 sizeof(hw_cache_extra_regs));
3759
3760 intel_pmu_lbr_init_skl();
3761
3762 x86_pmu.event_constraints = intel_slm_event_constraints;
3763 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3764 x86_pmu.extra_regs = intel_glm_extra_regs;
3765 /*
3766 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3767 * for precise cycles.
3768 * :pp is identical to :ppp
3769 */
3770 x86_pmu.pebs_aliases = NULL;
3771 x86_pmu.pebs_prec_dist = true;
3772 x86_pmu.lbr_pt_coexist = true;
3773 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3774 x86_pmu.cpu_events = glm_events_attrs;
3775 pr_cont("Goldmont events, ");
3776 break;
3777
3778 case INTEL_FAM6_WESTMERE:
3779 case INTEL_FAM6_WESTMERE_EP:
3780 case INTEL_FAM6_WESTMERE_EX:
3781 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3782 sizeof(hw_cache_event_ids));
3783 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3784 sizeof(hw_cache_extra_regs));
3785
3786 intel_pmu_lbr_init_nhm();
3787
3788 x86_pmu.event_constraints = intel_westmere_event_constraints;
3789 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3790 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3791 x86_pmu.extra_regs = intel_westmere_extra_regs;
3792 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3793
3794 x86_pmu.cpu_events = nhm_events_attrs;
3795
3796 /* UOPS_ISSUED.STALLED_CYCLES */
3797 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3798 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3799 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3800 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3801 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3802
3803 intel_pmu_pebs_data_source_nhm();
3804 pr_cont("Westmere events, ");
3805 break;
3806
3807 case INTEL_FAM6_SANDYBRIDGE:
3808 case INTEL_FAM6_SANDYBRIDGE_X:
3809 x86_add_quirk(intel_sandybridge_quirk);
3810 x86_add_quirk(intel_ht_bug);
3811 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3812 sizeof(hw_cache_event_ids));
3813 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3814 sizeof(hw_cache_extra_regs));
3815
3816 intel_pmu_lbr_init_snb();
3817
3818 x86_pmu.event_constraints = intel_snb_event_constraints;
3819 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3820 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3821 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3822 x86_pmu.extra_regs = intel_snbep_extra_regs;
3823 else
3824 x86_pmu.extra_regs = intel_snb_extra_regs;
3825
3826
3827 /* all extra regs are per-cpu when HT is on */
3828 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3829 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3830
3831 x86_pmu.cpu_events = snb_events_attrs;
3832
3833 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3834 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3835 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3836 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3837 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3838 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3839
3840 pr_cont("SandyBridge events, ");
3841 break;
3842
3843 case INTEL_FAM6_IVYBRIDGE:
3844 case INTEL_FAM6_IVYBRIDGE_X:
3845 x86_add_quirk(intel_ht_bug);
3846 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3847 sizeof(hw_cache_event_ids));
3848 /* dTLB-load-misses on IVB is different than SNB */
3849 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3850
3851 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3852 sizeof(hw_cache_extra_regs));
3853
3854 intel_pmu_lbr_init_snb();
3855
3856 x86_pmu.event_constraints = intel_ivb_event_constraints;
3857 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3858 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3859 x86_pmu.pebs_prec_dist = true;
3860 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3861 x86_pmu.extra_regs = intel_snbep_extra_regs;
3862 else
3863 x86_pmu.extra_regs = intel_snb_extra_regs;
3864 /* all extra regs are per-cpu when HT is on */
3865 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3866 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3867
3868 x86_pmu.cpu_events = snb_events_attrs;
3869
3870 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3871 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3872 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3873
3874 pr_cont("IvyBridge events, ");
3875 break;
3876
3877
3878 case INTEL_FAM6_HASWELL_CORE:
3879 case INTEL_FAM6_HASWELL_X:
3880 case INTEL_FAM6_HASWELL_ULT:
3881 case INTEL_FAM6_HASWELL_GT3E:
3882 x86_add_quirk(intel_ht_bug);
3883 x86_pmu.late_ack = true;
3884 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3885 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3886
3887 intel_pmu_lbr_init_hsw();
3888
3889 x86_pmu.event_constraints = intel_hsw_event_constraints;
3890 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3891 x86_pmu.extra_regs = intel_snbep_extra_regs;
3892 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3893 x86_pmu.pebs_prec_dist = true;
3894 /* all extra regs are per-cpu when HT is on */
3895 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3896 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3897
3898 x86_pmu.hw_config = hsw_hw_config;
3899 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3900 x86_pmu.cpu_events = hsw_events_attrs;
3901 x86_pmu.lbr_double_abort = true;
3902 pr_cont("Haswell events, ");
3903 break;
3904
3905 case INTEL_FAM6_BROADWELL_CORE:
3906 case INTEL_FAM6_BROADWELL_XEON_D:
3907 case INTEL_FAM6_BROADWELL_GT3E:
3908 case INTEL_FAM6_BROADWELL_X:
3909 x86_pmu.late_ack = true;
3910 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3911 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3912
3913 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3914 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3915 BDW_L3_MISS|HSW_SNOOP_DRAM;
3916 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3917 HSW_SNOOP_DRAM;
3918 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3919 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3920 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3921 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3922
3923 intel_pmu_lbr_init_hsw();
3924
3925 x86_pmu.event_constraints = intel_bdw_event_constraints;
3926 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3927 x86_pmu.extra_regs = intel_snbep_extra_regs;
3928 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3929 x86_pmu.pebs_prec_dist = true;
3930 /* all extra regs are per-cpu when HT is on */
3931 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3932 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3933
3934 x86_pmu.hw_config = hsw_hw_config;
3935 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3936 x86_pmu.cpu_events = hsw_events_attrs;
3937 x86_pmu.limit_period = bdw_limit_period;
3938 pr_cont("Broadwell events, ");
3939 break;
3940
3941 case INTEL_FAM6_XEON_PHI_KNL:
3942 case INTEL_FAM6_XEON_PHI_KNM:
3943 memcpy(hw_cache_event_ids,
3944 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3945 memcpy(hw_cache_extra_regs,
3946 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3947 intel_pmu_lbr_init_knl();
3948
3949 x86_pmu.event_constraints = intel_slm_event_constraints;
3950 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3951 x86_pmu.extra_regs = intel_knl_extra_regs;
3952
3953 /* all extra regs are per-cpu when HT is on */
3954 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3955 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3956
3957 pr_cont("Knights Landing/Mill events, ");
3958 break;
3959
3960 case INTEL_FAM6_SKYLAKE_MOBILE:
3961 case INTEL_FAM6_SKYLAKE_DESKTOP:
3962 case INTEL_FAM6_SKYLAKE_X:
3963 case INTEL_FAM6_KABYLAKE_MOBILE:
3964 case INTEL_FAM6_KABYLAKE_DESKTOP:
3965 x86_pmu.late_ack = true;
3966 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3967 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3968 intel_pmu_lbr_init_skl();
3969
3970 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
3971 event_attr_td_recovery_bubbles.event_str_noht =
3972 "event=0xd,umask=0x1,cmask=1";
3973 event_attr_td_recovery_bubbles.event_str_ht =
3974 "event=0xd,umask=0x1,cmask=1,any=1";
3975
3976 x86_pmu.event_constraints = intel_skl_event_constraints;
3977 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3978 x86_pmu.extra_regs = intel_skl_extra_regs;
3979 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3980 x86_pmu.pebs_prec_dist = true;
3981 /* all extra regs are per-cpu when HT is on */
3982 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3983 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3984
3985 x86_pmu.hw_config = hsw_hw_config;
3986 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3987 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3988 skl_format_attr);
3989 WARN_ON(!x86_pmu.format_attrs);
3990 x86_pmu.cpu_events = hsw_events_attrs;
3991 pr_cont("Skylake events, ");
3992 break;
3993
3994 default:
3995 switch (x86_pmu.version) {
3996 case 1:
3997 x86_pmu.event_constraints = intel_v1_event_constraints;
3998 pr_cont("generic architected perfmon v1, ");
3999 break;
4000 default:
4001 /*
4002 * default constraints for v2 and up
4003 */
4004 x86_pmu.event_constraints = intel_gen_event_constraints;
4005 pr_cont("generic architected perfmon, ");
4006 break;
4007 }
4008 }
4009
4010 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4011 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4012 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4013 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4014 }
4015 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4016
4017 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4018 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4019 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4020 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4021 }
4022
4023 x86_pmu.intel_ctrl |=
4024 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4025
4026 if (x86_pmu.event_constraints) {
4027 /*
4028 * event on fixed counter2 (REF_CYCLES) only works on this
4029 * counter, so do not extend mask to generic counters
4030 */
4031 for_each_event_constraint(c, x86_pmu.event_constraints) {
4032 if (c->cmask == FIXED_EVENT_FLAGS
4033 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4034 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4035 }
4036 c->idxmsk64 &=
4037 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4038 c->weight = hweight64(c->idxmsk64);
4039 }
4040 }
4041
4042 /*
4043 * Access LBR MSR may cause #GP under certain circumstances.
4044 * E.g. KVM doesn't support LBR MSR
4045 * Check all LBT MSR here.
4046 * Disable LBR access if any LBR MSRs can not be accessed.
4047 */
4048 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4049 x86_pmu.lbr_nr = 0;
4050 for (i = 0; i < x86_pmu.lbr_nr; i++) {
4051 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4052 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4053 x86_pmu.lbr_nr = 0;
4054 }
4055
4056 if (x86_pmu.lbr_nr)
4057 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4058 /*
4059 * Access extra MSR may cause #GP under certain circumstances.
4060 * E.g. KVM doesn't support offcore event
4061 * Check all extra_regs here.
4062 */
4063 if (x86_pmu.extra_regs) {
4064 for (er = x86_pmu.extra_regs; er->msr; er++) {
4065 er->extra_msr_access = check_msr(er->msr, 0x11UL);
4066 /* Disable LBR select mapping */
4067 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4068 x86_pmu.lbr_sel_map = NULL;
4069 }
4070 }
4071
4072 /* Support full width counters using alternative MSR range */
4073 if (x86_pmu.intel_cap.full_width_write) {
4074 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4075 x86_pmu.perfctr = MSR_IA32_PMC0;
4076 pr_cont("full-width counters, ");
4077 }
4078
4079 return 0;
4080 }
4081
4082 /*
4083 * HT bug: phase 2 init
4084 * Called once we have valid topology information to check
4085 * whether or not HT is enabled
4086 * If HT is off, then we disable the workaround
4087 */
4088 static __init int fixup_ht_bug(void)
4089 {
4090 int c;
4091 /*
4092 * problem not present on this CPU model, nothing to do
4093 */
4094 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4095 return 0;
4096
4097 if (topology_max_smt_threads() > 1) {
4098 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4099 return 0;
4100 }
4101
4102 if (lockup_detector_suspend() != 0) {
4103 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4104 return 0;
4105 }
4106
4107 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4108
4109 x86_pmu.start_scheduling = NULL;
4110 x86_pmu.commit_scheduling = NULL;
4111 x86_pmu.stop_scheduling = NULL;
4112
4113 lockup_detector_resume();
4114
4115 get_online_cpus();
4116
4117 for_each_online_cpu(c) {
4118 free_excl_cntrs(c);
4119 }
4120
4121 put_online_cpus();
4122 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4123 return 0;
4124 }
4125 subsys_initcall(fixup_ht_bug)