]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/events/intel/cqm.c
perf/x86/mbm: Add Intel Memory B/W Monitoring enumeration and init
[mirror_ubuntu-artful-kernel.git] / arch / x86 / events / intel / cqm.c
1 /*
2 * Intel Cache Quality-of-Service Monitoring (CQM) support.
3 *
4 * Based very, very heavily on work by Peter Zijlstra.
5 */
6
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "../perf_event.h"
11
12 #define MSR_IA32_PQR_ASSOC 0x0c8f
13 #define MSR_IA32_QM_CTR 0x0c8e
14 #define MSR_IA32_QM_EVTSEL 0x0c8d
15
16 static u32 cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18 static bool cqm_enabled, mbm_enabled;
19
20 /**
21 * struct intel_pqr_state - State cache for the PQR MSR
22 * @rmid: The cached Resource Monitoring ID
23 * @closid: The cached Class Of Service ID
24 * @rmid_usecnt: The usage counter for rmid
25 *
26 * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
27 * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
28 * contains both parts, so we need to cache them.
29 *
30 * The cache also helps to avoid pointless updates if the value does
31 * not change.
32 */
33 struct intel_pqr_state {
34 u32 rmid;
35 u32 closid;
36 int rmid_usecnt;
37 };
38
39 /*
40 * The cached intel_pqr_state is strictly per CPU and can never be
41 * updated from a remote CPU. Both functions which modify the state
42 * (intel_cqm_event_start and intel_cqm_event_stop) are called with
43 * interrupts disabled, which is sufficient for the protection.
44 */
45 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
46 /**
47 * struct sample - mbm event's (local or total) data
48 * @total_bytes #bytes since we began monitoring
49 * @prev_msr previous value of MSR
50 */
51 struct sample {
52 u64 total_bytes;
53 u64 prev_msr;
54 };
55
56 /*
57 * samples profiled for total memory bandwidth type events
58 */
59 static struct sample *mbm_total;
60 /*
61 * samples profiled for local memory bandwidth type events
62 */
63 static struct sample *mbm_local;
64
65 /*
66 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
67 * Also protects event->hw.cqm_rmid
68 *
69 * Hold either for stability, both for modification of ->hw.cqm_rmid.
70 */
71 static DEFINE_MUTEX(cache_mutex);
72 static DEFINE_RAW_SPINLOCK(cache_lock);
73
74 /*
75 * Groups of events that have the same target(s), one RMID per group.
76 */
77 static LIST_HEAD(cache_groups);
78
79 /*
80 * Mask of CPUs for reading CQM values. We only need one per-socket.
81 */
82 static cpumask_t cqm_cpumask;
83
84 #define RMID_VAL_ERROR (1ULL << 63)
85 #define RMID_VAL_UNAVAIL (1ULL << 62)
86
87 #define QOS_L3_OCCUP_EVENT_ID (1 << 0)
88
89 #define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID
90
91 /*
92 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
93 *
94 * This rmid is always free and is guaranteed to have an associated
95 * near-zero occupancy value, i.e. no cachelines are tagged with this
96 * RMID, once __intel_cqm_rmid_rotate() returns.
97 */
98 static u32 intel_cqm_rotation_rmid;
99
100 #define INVALID_RMID (-1)
101
102 /*
103 * Is @rmid valid for programming the hardware?
104 *
105 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
106 * means that we should never come across an rmid with that value.
107 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
108 * assigned" and is used as part of the rotation code.
109 */
110 static inline bool __rmid_valid(u32 rmid)
111 {
112 if (!rmid || rmid == INVALID_RMID)
113 return false;
114
115 return true;
116 }
117
118 static u64 __rmid_read(u32 rmid)
119 {
120 u64 val;
121
122 /*
123 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
124 * it just says that to increase confusion.
125 */
126 wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
127 rdmsrl(MSR_IA32_QM_CTR, val);
128
129 /*
130 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
131 * the number of cachelines tagged with @rmid.
132 */
133 return val;
134 }
135
136 enum rmid_recycle_state {
137 RMID_YOUNG = 0,
138 RMID_AVAILABLE,
139 RMID_DIRTY,
140 };
141
142 struct cqm_rmid_entry {
143 u32 rmid;
144 enum rmid_recycle_state state;
145 struct list_head list;
146 unsigned long queue_time;
147 };
148
149 /*
150 * cqm_rmid_free_lru - A least recently used list of RMIDs.
151 *
152 * Oldest entry at the head, newest (most recently used) entry at the
153 * tail. This list is never traversed, it's only used to keep track of
154 * the lru order. That is, we only pick entries of the head or insert
155 * them on the tail.
156 *
157 * All entries on the list are 'free', and their RMIDs are not currently
158 * in use. To mark an RMID as in use, remove its entry from the lru
159 * list.
160 *
161 *
162 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
163 *
164 * This list is contains RMIDs that no one is currently using but that
165 * may have a non-zero occupancy value associated with them. The
166 * rotation worker moves RMIDs from the limbo list to the free list once
167 * the occupancy value drops below __intel_cqm_threshold.
168 *
169 * Both lists are protected by cache_mutex.
170 */
171 static LIST_HEAD(cqm_rmid_free_lru);
172 static LIST_HEAD(cqm_rmid_limbo_lru);
173
174 /*
175 * We use a simple array of pointers so that we can lookup a struct
176 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
177 * and __put_rmid() from having to worry about dealing with struct
178 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
179 *
180 * Once this array is initialized it is read-only. No locks are required
181 * to access it.
182 *
183 * All entries for all RMIDs can be looked up in the this array at all
184 * times.
185 */
186 static struct cqm_rmid_entry **cqm_rmid_ptrs;
187
188 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
189 {
190 struct cqm_rmid_entry *entry;
191
192 entry = cqm_rmid_ptrs[rmid];
193 WARN_ON(entry->rmid != rmid);
194
195 return entry;
196 }
197
198 /*
199 * Returns < 0 on fail.
200 *
201 * We expect to be called with cache_mutex held.
202 */
203 static u32 __get_rmid(void)
204 {
205 struct cqm_rmid_entry *entry;
206
207 lockdep_assert_held(&cache_mutex);
208
209 if (list_empty(&cqm_rmid_free_lru))
210 return INVALID_RMID;
211
212 entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
213 list_del(&entry->list);
214
215 return entry->rmid;
216 }
217
218 static void __put_rmid(u32 rmid)
219 {
220 struct cqm_rmid_entry *entry;
221
222 lockdep_assert_held(&cache_mutex);
223
224 WARN_ON(!__rmid_valid(rmid));
225 entry = __rmid_entry(rmid);
226
227 entry->queue_time = jiffies;
228 entry->state = RMID_YOUNG;
229
230 list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
231 }
232
233 static void cqm_cleanup(void)
234 {
235 int i;
236
237 if (!cqm_rmid_ptrs)
238 return;
239
240 for (i = 0; i < cqm_max_rmid; i++)
241 kfree(cqm_rmid_ptrs[i]);
242
243 kfree(cqm_rmid_ptrs);
244 cqm_rmid_ptrs = NULL;
245 cqm_enabled = false;
246 }
247
248 static int intel_cqm_setup_rmid_cache(void)
249 {
250 struct cqm_rmid_entry *entry;
251 unsigned int nr_rmids;
252 int r = 0;
253
254 nr_rmids = cqm_max_rmid + 1;
255 cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
256 nr_rmids, GFP_KERNEL);
257 if (!cqm_rmid_ptrs)
258 return -ENOMEM;
259
260 for (; r <= cqm_max_rmid; r++) {
261 struct cqm_rmid_entry *entry;
262
263 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
264 if (!entry)
265 goto fail;
266
267 INIT_LIST_HEAD(&entry->list);
268 entry->rmid = r;
269 cqm_rmid_ptrs[r] = entry;
270
271 list_add_tail(&entry->list, &cqm_rmid_free_lru);
272 }
273
274 /*
275 * RMID 0 is special and is always allocated. It's used for all
276 * tasks that are not monitored.
277 */
278 entry = __rmid_entry(0);
279 list_del(&entry->list);
280
281 mutex_lock(&cache_mutex);
282 intel_cqm_rotation_rmid = __get_rmid();
283 mutex_unlock(&cache_mutex);
284
285 return 0;
286
287 fail:
288 cqm_cleanup();
289 return -ENOMEM;
290 }
291
292 /*
293 * Determine if @a and @b measure the same set of tasks.
294 *
295 * If @a and @b measure the same set of tasks then we want to share a
296 * single RMID.
297 */
298 static bool __match_event(struct perf_event *a, struct perf_event *b)
299 {
300 /* Per-cpu and task events don't mix */
301 if ((a->attach_state & PERF_ATTACH_TASK) !=
302 (b->attach_state & PERF_ATTACH_TASK))
303 return false;
304
305 #ifdef CONFIG_CGROUP_PERF
306 if (a->cgrp != b->cgrp)
307 return false;
308 #endif
309
310 /* If not task event, we're machine wide */
311 if (!(b->attach_state & PERF_ATTACH_TASK))
312 return true;
313
314 /*
315 * Events that target same task are placed into the same cache group.
316 * Mark it as a multi event group, so that we update ->count
317 * for every event rather than just the group leader later.
318 */
319 if (a->hw.target == b->hw.target) {
320 b->hw.is_group_event = true;
321 return true;
322 }
323
324 /*
325 * Are we an inherited event?
326 */
327 if (b->parent == a)
328 return true;
329
330 return false;
331 }
332
333 #ifdef CONFIG_CGROUP_PERF
334 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
335 {
336 if (event->attach_state & PERF_ATTACH_TASK)
337 return perf_cgroup_from_task(event->hw.target, event->ctx);
338
339 return event->cgrp;
340 }
341 #endif
342
343 /*
344 * Determine if @a's tasks intersect with @b's tasks
345 *
346 * There are combinations of events that we explicitly prohibit,
347 *
348 * PROHIBITS
349 * system-wide -> cgroup and task
350 * cgroup -> system-wide
351 * -> task in cgroup
352 * task -> system-wide
353 * -> task in cgroup
354 *
355 * Call this function before allocating an RMID.
356 */
357 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
358 {
359 #ifdef CONFIG_CGROUP_PERF
360 /*
361 * We can have any number of cgroups but only one system-wide
362 * event at a time.
363 */
364 if (a->cgrp && b->cgrp) {
365 struct perf_cgroup *ac = a->cgrp;
366 struct perf_cgroup *bc = b->cgrp;
367
368 /*
369 * This condition should have been caught in
370 * __match_event() and we should be sharing an RMID.
371 */
372 WARN_ON_ONCE(ac == bc);
373
374 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
375 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
376 return true;
377
378 return false;
379 }
380
381 if (a->cgrp || b->cgrp) {
382 struct perf_cgroup *ac, *bc;
383
384 /*
385 * cgroup and system-wide events are mutually exclusive
386 */
387 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
388 (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
389 return true;
390
391 /*
392 * Ensure neither event is part of the other's cgroup
393 */
394 ac = event_to_cgroup(a);
395 bc = event_to_cgroup(b);
396 if (ac == bc)
397 return true;
398
399 /*
400 * Must have cgroup and non-intersecting task events.
401 */
402 if (!ac || !bc)
403 return false;
404
405 /*
406 * We have cgroup and task events, and the task belongs
407 * to a cgroup. Check for for overlap.
408 */
409 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
410 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
411 return true;
412
413 return false;
414 }
415 #endif
416 /*
417 * If one of them is not a task, same story as above with cgroups.
418 */
419 if (!(a->attach_state & PERF_ATTACH_TASK) ||
420 !(b->attach_state & PERF_ATTACH_TASK))
421 return true;
422
423 /*
424 * Must be non-overlapping.
425 */
426 return false;
427 }
428
429 struct rmid_read {
430 u32 rmid;
431 atomic64_t value;
432 };
433
434 static void __intel_cqm_event_count(void *info);
435
436 /*
437 * Exchange the RMID of a group of events.
438 */
439 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
440 {
441 struct perf_event *event;
442 struct list_head *head = &group->hw.cqm_group_entry;
443 u32 old_rmid = group->hw.cqm_rmid;
444
445 lockdep_assert_held(&cache_mutex);
446
447 /*
448 * If our RMID is being deallocated, perform a read now.
449 */
450 if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
451 struct rmid_read rr = {
452 .value = ATOMIC64_INIT(0),
453 .rmid = old_rmid,
454 };
455
456 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
457 &rr, 1);
458 local64_set(&group->count, atomic64_read(&rr.value));
459 }
460
461 raw_spin_lock_irq(&cache_lock);
462
463 group->hw.cqm_rmid = rmid;
464 list_for_each_entry(event, head, hw.cqm_group_entry)
465 event->hw.cqm_rmid = rmid;
466
467 raw_spin_unlock_irq(&cache_lock);
468
469 return old_rmid;
470 }
471
472 /*
473 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
474 * cachelines are still tagged with RMIDs in limbo, we progressively
475 * increment the threshold until we find an RMID in limbo with <=
476 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
477 * problem where cachelines tagged with an RMID are not steadily being
478 * evicted.
479 *
480 * On successful rotations we decrease the threshold back towards zero.
481 *
482 * __intel_cqm_max_threshold provides an upper bound on the threshold,
483 * and is measured in bytes because it's exposed to userland.
484 */
485 static unsigned int __intel_cqm_threshold;
486 static unsigned int __intel_cqm_max_threshold;
487
488 /*
489 * Test whether an RMID has a zero occupancy value on this cpu.
490 */
491 static void intel_cqm_stable(void *arg)
492 {
493 struct cqm_rmid_entry *entry;
494
495 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
496 if (entry->state != RMID_AVAILABLE)
497 break;
498
499 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
500 entry->state = RMID_DIRTY;
501 }
502 }
503
504 /*
505 * If we have group events waiting for an RMID that don't conflict with
506 * events already running, assign @rmid.
507 */
508 static bool intel_cqm_sched_in_event(u32 rmid)
509 {
510 struct perf_event *leader, *event;
511
512 lockdep_assert_held(&cache_mutex);
513
514 leader = list_first_entry(&cache_groups, struct perf_event,
515 hw.cqm_groups_entry);
516 event = leader;
517
518 list_for_each_entry_continue(event, &cache_groups,
519 hw.cqm_groups_entry) {
520 if (__rmid_valid(event->hw.cqm_rmid))
521 continue;
522
523 if (__conflict_event(event, leader))
524 continue;
525
526 intel_cqm_xchg_rmid(event, rmid);
527 return true;
528 }
529
530 return false;
531 }
532
533 /*
534 * Initially use this constant for both the limbo queue time and the
535 * rotation timer interval, pmu::hrtimer_interval_ms.
536 *
537 * They don't need to be the same, but the two are related since if you
538 * rotate faster than you recycle RMIDs, you may run out of available
539 * RMIDs.
540 */
541 #define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
542
543 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
544
545 /*
546 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
547 * @nr_available: number of freeable RMIDs on the limbo list
548 *
549 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
550 * cachelines are tagged with those RMIDs. After this we can reuse them
551 * and know that the current set of active RMIDs is stable.
552 *
553 * Return %true or %false depending on whether stabilization needs to be
554 * reattempted.
555 *
556 * If we return %true then @nr_available is updated to indicate the
557 * number of RMIDs on the limbo list that have been queued for the
558 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
559 * are above __intel_cqm_threshold.
560 */
561 static bool intel_cqm_rmid_stabilize(unsigned int *available)
562 {
563 struct cqm_rmid_entry *entry, *tmp;
564
565 lockdep_assert_held(&cache_mutex);
566
567 *available = 0;
568 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
569 unsigned long min_queue_time;
570 unsigned long now = jiffies;
571
572 /*
573 * We hold RMIDs placed into limbo for a minimum queue
574 * time. Before the minimum queue time has elapsed we do
575 * not recycle RMIDs.
576 *
577 * The reasoning is that until a sufficient time has
578 * passed since we stopped using an RMID, any RMID
579 * placed onto the limbo list will likely still have
580 * data tagged in the cache, which means we'll probably
581 * fail to recycle it anyway.
582 *
583 * We can save ourselves an expensive IPI by skipping
584 * any RMIDs that have not been queued for the minimum
585 * time.
586 */
587 min_queue_time = entry->queue_time +
588 msecs_to_jiffies(__rmid_queue_time_ms);
589
590 if (time_after(min_queue_time, now))
591 break;
592
593 entry->state = RMID_AVAILABLE;
594 (*available)++;
595 }
596
597 /*
598 * Fast return if none of the RMIDs on the limbo list have been
599 * sitting on the queue for the minimum queue time.
600 */
601 if (!*available)
602 return false;
603
604 /*
605 * Test whether an RMID is free for each package.
606 */
607 on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
608
609 list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
610 /*
611 * Exhausted all RMIDs that have waited min queue time.
612 */
613 if (entry->state == RMID_YOUNG)
614 break;
615
616 if (entry->state == RMID_DIRTY)
617 continue;
618
619 list_del(&entry->list); /* remove from limbo */
620
621 /*
622 * The rotation RMID gets priority if it's
623 * currently invalid. In which case, skip adding
624 * the RMID to the the free lru.
625 */
626 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
627 intel_cqm_rotation_rmid = entry->rmid;
628 continue;
629 }
630
631 /*
632 * If we have groups waiting for RMIDs, hand
633 * them one now provided they don't conflict.
634 */
635 if (intel_cqm_sched_in_event(entry->rmid))
636 continue;
637
638 /*
639 * Otherwise place it onto the free list.
640 */
641 list_add_tail(&entry->list, &cqm_rmid_free_lru);
642 }
643
644
645 return __rmid_valid(intel_cqm_rotation_rmid);
646 }
647
648 /*
649 * Pick a victim group and move it to the tail of the group list.
650 * @next: The first group without an RMID
651 */
652 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
653 {
654 struct perf_event *rotor;
655 u32 rmid;
656
657 lockdep_assert_held(&cache_mutex);
658
659 rotor = list_first_entry(&cache_groups, struct perf_event,
660 hw.cqm_groups_entry);
661
662 /*
663 * The group at the front of the list should always have a valid
664 * RMID. If it doesn't then no groups have RMIDs assigned and we
665 * don't need to rotate the list.
666 */
667 if (next == rotor)
668 return;
669
670 rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
671 __put_rmid(rmid);
672
673 list_rotate_left(&cache_groups);
674 }
675
676 /*
677 * Deallocate the RMIDs from any events that conflict with @event, and
678 * place them on the back of the group list.
679 */
680 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
681 {
682 struct perf_event *group, *g;
683 u32 rmid;
684
685 lockdep_assert_held(&cache_mutex);
686
687 list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
688 if (group == event)
689 continue;
690
691 rmid = group->hw.cqm_rmid;
692
693 /*
694 * Skip events that don't have a valid RMID.
695 */
696 if (!__rmid_valid(rmid))
697 continue;
698
699 /*
700 * No conflict? No problem! Leave the event alone.
701 */
702 if (!__conflict_event(group, event))
703 continue;
704
705 intel_cqm_xchg_rmid(group, INVALID_RMID);
706 __put_rmid(rmid);
707 }
708 }
709
710 /*
711 * Attempt to rotate the groups and assign new RMIDs.
712 *
713 * We rotate for two reasons,
714 * 1. To handle the scheduling of conflicting events
715 * 2. To recycle RMIDs
716 *
717 * Rotating RMIDs is complicated because the hardware doesn't give us
718 * any clues.
719 *
720 * There's problems with the hardware interface; when you change the
721 * task:RMID map cachelines retain their 'old' tags, giving a skewed
722 * picture. In order to work around this, we must always keep one free
723 * RMID - intel_cqm_rotation_rmid.
724 *
725 * Rotation works by taking away an RMID from a group (the old RMID),
726 * and assigning the free RMID to another group (the new RMID). We must
727 * then wait for the old RMID to not be used (no cachelines tagged).
728 * This ensure that all cachelines are tagged with 'active' RMIDs. At
729 * this point we can start reading values for the new RMID and treat the
730 * old RMID as the free RMID for the next rotation.
731 *
732 * Return %true or %false depending on whether we did any rotating.
733 */
734 static bool __intel_cqm_rmid_rotate(void)
735 {
736 struct perf_event *group, *start = NULL;
737 unsigned int threshold_limit;
738 unsigned int nr_needed = 0;
739 unsigned int nr_available;
740 bool rotated = false;
741
742 mutex_lock(&cache_mutex);
743
744 again:
745 /*
746 * Fast path through this function if there are no groups and no
747 * RMIDs that need cleaning.
748 */
749 if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
750 goto out;
751
752 list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
753 if (!__rmid_valid(group->hw.cqm_rmid)) {
754 if (!start)
755 start = group;
756 nr_needed++;
757 }
758 }
759
760 /*
761 * We have some event groups, but they all have RMIDs assigned
762 * and no RMIDs need cleaning.
763 */
764 if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
765 goto out;
766
767 if (!nr_needed)
768 goto stabilize;
769
770 /*
771 * We have more event groups without RMIDs than available RMIDs,
772 * or we have event groups that conflict with the ones currently
773 * scheduled.
774 *
775 * We force deallocate the rmid of the group at the head of
776 * cache_groups. The first event group without an RMID then gets
777 * assigned intel_cqm_rotation_rmid. This ensures we always make
778 * forward progress.
779 *
780 * Rotate the cache_groups list so the previous head is now the
781 * tail.
782 */
783 __intel_cqm_pick_and_rotate(start);
784
785 /*
786 * If the rotation is going to succeed, reduce the threshold so
787 * that we don't needlessly reuse dirty RMIDs.
788 */
789 if (__rmid_valid(intel_cqm_rotation_rmid)) {
790 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
791 intel_cqm_rotation_rmid = __get_rmid();
792
793 intel_cqm_sched_out_conflicting_events(start);
794
795 if (__intel_cqm_threshold)
796 __intel_cqm_threshold--;
797 }
798
799 rotated = true;
800
801 stabilize:
802 /*
803 * We now need to stablize the RMID we freed above (if any) to
804 * ensure that the next time we rotate we have an RMID with zero
805 * occupancy value.
806 *
807 * Alternatively, if we didn't need to perform any rotation,
808 * we'll have a bunch of RMIDs in limbo that need stabilizing.
809 */
810 threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
811
812 while (intel_cqm_rmid_stabilize(&nr_available) &&
813 __intel_cqm_threshold < threshold_limit) {
814 unsigned int steal_limit;
815
816 /*
817 * Don't spin if nobody is actively waiting for an RMID,
818 * the rotation worker will be kicked as soon as an
819 * event needs an RMID anyway.
820 */
821 if (!nr_needed)
822 break;
823
824 /* Allow max 25% of RMIDs to be in limbo. */
825 steal_limit = (cqm_max_rmid + 1) / 4;
826
827 /*
828 * We failed to stabilize any RMIDs so our rotation
829 * logic is now stuck. In order to make forward progress
830 * we have a few options:
831 *
832 * 1. rotate ("steal") another RMID
833 * 2. increase the threshold
834 * 3. do nothing
835 *
836 * We do both of 1. and 2. until we hit the steal limit.
837 *
838 * The steal limit prevents all RMIDs ending up on the
839 * limbo list. This can happen if every RMID has a
840 * non-zero occupancy above threshold_limit, and the
841 * occupancy values aren't dropping fast enough.
842 *
843 * Note that there is prioritisation at work here - we'd
844 * rather increase the number of RMIDs on the limbo list
845 * than increase the threshold, because increasing the
846 * threshold skews the event data (because we reuse
847 * dirty RMIDs) - threshold bumps are a last resort.
848 */
849 if (nr_available < steal_limit)
850 goto again;
851
852 __intel_cqm_threshold++;
853 }
854
855 out:
856 mutex_unlock(&cache_mutex);
857 return rotated;
858 }
859
860 static void intel_cqm_rmid_rotate(struct work_struct *work);
861
862 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
863
864 static struct pmu intel_cqm_pmu;
865
866 static void intel_cqm_rmid_rotate(struct work_struct *work)
867 {
868 unsigned long delay;
869
870 __intel_cqm_rmid_rotate();
871
872 delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
873 schedule_delayed_work(&intel_cqm_rmid_work, delay);
874 }
875
876 /*
877 * Find a group and setup RMID.
878 *
879 * If we're part of a group, we use the group's RMID.
880 */
881 static void intel_cqm_setup_event(struct perf_event *event,
882 struct perf_event **group)
883 {
884 struct perf_event *iter;
885 bool conflict = false;
886 u32 rmid;
887
888 event->hw.is_group_event = false;
889 list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
890 rmid = iter->hw.cqm_rmid;
891
892 if (__match_event(iter, event)) {
893 /* All tasks in a group share an RMID */
894 event->hw.cqm_rmid = rmid;
895 *group = iter;
896 return;
897 }
898
899 /*
900 * We only care about conflicts for events that are
901 * actually scheduled in (and hence have a valid RMID).
902 */
903 if (__conflict_event(iter, event) && __rmid_valid(rmid))
904 conflict = true;
905 }
906
907 if (conflict)
908 rmid = INVALID_RMID;
909 else
910 rmid = __get_rmid();
911
912 event->hw.cqm_rmid = rmid;
913 }
914
915 static void intel_cqm_event_read(struct perf_event *event)
916 {
917 unsigned long flags;
918 u32 rmid;
919 u64 val;
920
921 /*
922 * Task events are handled by intel_cqm_event_count().
923 */
924 if (event->cpu == -1)
925 return;
926
927 raw_spin_lock_irqsave(&cache_lock, flags);
928 rmid = event->hw.cqm_rmid;
929
930 if (!__rmid_valid(rmid))
931 goto out;
932
933 val = __rmid_read(rmid);
934
935 /*
936 * Ignore this reading on error states and do not update the value.
937 */
938 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
939 goto out;
940
941 local64_set(&event->count, val);
942 out:
943 raw_spin_unlock_irqrestore(&cache_lock, flags);
944 }
945
946 static void __intel_cqm_event_count(void *info)
947 {
948 struct rmid_read *rr = info;
949 u64 val;
950
951 val = __rmid_read(rr->rmid);
952
953 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
954 return;
955
956 atomic64_add(val, &rr->value);
957 }
958
959 static inline bool cqm_group_leader(struct perf_event *event)
960 {
961 return !list_empty(&event->hw.cqm_groups_entry);
962 }
963
964 static u64 intel_cqm_event_count(struct perf_event *event)
965 {
966 unsigned long flags;
967 struct rmid_read rr = {
968 .value = ATOMIC64_INIT(0),
969 };
970
971 /*
972 * We only need to worry about task events. System-wide events
973 * are handled like usual, i.e. entirely with
974 * intel_cqm_event_read().
975 */
976 if (event->cpu != -1)
977 return __perf_event_count(event);
978
979 /*
980 * Only the group leader gets to report values except in case of
981 * multiple events in the same group, we still need to read the
982 * other events.This stops us
983 * reporting duplicate values to userspace, and gives us a clear
984 * rule for which task gets to report the values.
985 *
986 * Note that it is impossible to attribute these values to
987 * specific packages - we forfeit that ability when we create
988 * task events.
989 */
990 if (!cqm_group_leader(event) && !event->hw.is_group_event)
991 return 0;
992
993 /*
994 * Getting up-to-date values requires an SMP IPI which is not
995 * possible if we're being called in interrupt context. Return
996 * the cached values instead.
997 */
998 if (unlikely(in_interrupt()))
999 goto out;
1000
1001 /*
1002 * Notice that we don't perform the reading of an RMID
1003 * atomically, because we can't hold a spin lock across the
1004 * IPIs.
1005 *
1006 * Speculatively perform the read, since @event might be
1007 * assigned a different (possibly invalid) RMID while we're
1008 * busying performing the IPI calls. It's therefore necessary to
1009 * check @event's RMID afterwards, and if it has changed,
1010 * discard the result of the read.
1011 */
1012 rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
1013
1014 if (!__rmid_valid(rr.rmid))
1015 goto out;
1016
1017 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
1018
1019 raw_spin_lock_irqsave(&cache_lock, flags);
1020 if (event->hw.cqm_rmid == rr.rmid)
1021 local64_set(&event->count, atomic64_read(&rr.value));
1022 raw_spin_unlock_irqrestore(&cache_lock, flags);
1023 out:
1024 return __perf_event_count(event);
1025 }
1026
1027 static void intel_cqm_event_start(struct perf_event *event, int mode)
1028 {
1029 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1030 u32 rmid = event->hw.cqm_rmid;
1031
1032 if (!(event->hw.cqm_state & PERF_HES_STOPPED))
1033 return;
1034
1035 event->hw.cqm_state &= ~PERF_HES_STOPPED;
1036
1037 if (state->rmid_usecnt++) {
1038 if (!WARN_ON_ONCE(state->rmid != rmid))
1039 return;
1040 } else {
1041 WARN_ON_ONCE(state->rmid);
1042 }
1043
1044 state->rmid = rmid;
1045 wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1046 }
1047
1048 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1049 {
1050 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1051
1052 if (event->hw.cqm_state & PERF_HES_STOPPED)
1053 return;
1054
1055 event->hw.cqm_state |= PERF_HES_STOPPED;
1056
1057 intel_cqm_event_read(event);
1058
1059 if (!--state->rmid_usecnt) {
1060 state->rmid = 0;
1061 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1062 } else {
1063 WARN_ON_ONCE(!state->rmid);
1064 }
1065 }
1066
1067 static int intel_cqm_event_add(struct perf_event *event, int mode)
1068 {
1069 unsigned long flags;
1070 u32 rmid;
1071
1072 raw_spin_lock_irqsave(&cache_lock, flags);
1073
1074 event->hw.cqm_state = PERF_HES_STOPPED;
1075 rmid = event->hw.cqm_rmid;
1076
1077 if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1078 intel_cqm_event_start(event, mode);
1079
1080 raw_spin_unlock_irqrestore(&cache_lock, flags);
1081
1082 return 0;
1083 }
1084
1085 static void intel_cqm_event_destroy(struct perf_event *event)
1086 {
1087 struct perf_event *group_other = NULL;
1088
1089 mutex_lock(&cache_mutex);
1090
1091 /*
1092 * If there's another event in this group...
1093 */
1094 if (!list_empty(&event->hw.cqm_group_entry)) {
1095 group_other = list_first_entry(&event->hw.cqm_group_entry,
1096 struct perf_event,
1097 hw.cqm_group_entry);
1098 list_del(&event->hw.cqm_group_entry);
1099 }
1100
1101 /*
1102 * And we're the group leader..
1103 */
1104 if (cqm_group_leader(event)) {
1105 /*
1106 * If there was a group_other, make that leader, otherwise
1107 * destroy the group and return the RMID.
1108 */
1109 if (group_other) {
1110 list_replace(&event->hw.cqm_groups_entry,
1111 &group_other->hw.cqm_groups_entry);
1112 } else {
1113 u32 rmid = event->hw.cqm_rmid;
1114
1115 if (__rmid_valid(rmid))
1116 __put_rmid(rmid);
1117 list_del(&event->hw.cqm_groups_entry);
1118 }
1119 }
1120
1121 mutex_unlock(&cache_mutex);
1122 }
1123
1124 static int intel_cqm_event_init(struct perf_event *event)
1125 {
1126 struct perf_event *group = NULL;
1127 bool rotate = false;
1128
1129 if (event->attr.type != intel_cqm_pmu.type)
1130 return -ENOENT;
1131
1132 if (event->attr.config & ~QOS_EVENT_MASK)
1133 return -EINVAL;
1134
1135 /* unsupported modes and filters */
1136 if (event->attr.exclude_user ||
1137 event->attr.exclude_kernel ||
1138 event->attr.exclude_hv ||
1139 event->attr.exclude_idle ||
1140 event->attr.exclude_host ||
1141 event->attr.exclude_guest ||
1142 event->attr.sample_period) /* no sampling */
1143 return -EINVAL;
1144
1145 INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1146 INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1147
1148 event->destroy = intel_cqm_event_destroy;
1149
1150 mutex_lock(&cache_mutex);
1151
1152 /* Will also set rmid */
1153 intel_cqm_setup_event(event, &group);
1154
1155 if (group) {
1156 list_add_tail(&event->hw.cqm_group_entry,
1157 &group->hw.cqm_group_entry);
1158 } else {
1159 list_add_tail(&event->hw.cqm_groups_entry,
1160 &cache_groups);
1161
1162 /*
1163 * All RMIDs are either in use or have recently been
1164 * used. Kick the rotation worker to clean/free some.
1165 *
1166 * We only do this for the group leader, rather than for
1167 * every event in a group to save on needless work.
1168 */
1169 if (!__rmid_valid(event->hw.cqm_rmid))
1170 rotate = true;
1171 }
1172
1173 mutex_unlock(&cache_mutex);
1174
1175 if (rotate)
1176 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1177
1178 return 0;
1179 }
1180
1181 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1182 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1183 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1184 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1185 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1186
1187 EVENT_ATTR_STR(total_bytes, intel_cqm_total_bytes, "event=0x02");
1188 EVENT_ATTR_STR(total_bytes.per-pkg, intel_cqm_total_bytes_pkg, "1");
1189 EVENT_ATTR_STR(total_bytes.unit, intel_cqm_total_bytes_unit, "MB");
1190 EVENT_ATTR_STR(total_bytes.scale, intel_cqm_total_bytes_scale, "1e-6");
1191
1192 EVENT_ATTR_STR(local_bytes, intel_cqm_local_bytes, "event=0x03");
1193 EVENT_ATTR_STR(local_bytes.per-pkg, intel_cqm_local_bytes_pkg, "1");
1194 EVENT_ATTR_STR(local_bytes.unit, intel_cqm_local_bytes_unit, "MB");
1195 EVENT_ATTR_STR(local_bytes.scale, intel_cqm_local_bytes_scale, "1e-6");
1196
1197 static struct attribute *intel_cqm_events_attr[] = {
1198 EVENT_PTR(intel_cqm_llc),
1199 EVENT_PTR(intel_cqm_llc_pkg),
1200 EVENT_PTR(intel_cqm_llc_unit),
1201 EVENT_PTR(intel_cqm_llc_scale),
1202 EVENT_PTR(intel_cqm_llc_snapshot),
1203 NULL,
1204 };
1205
1206 static struct attribute *intel_mbm_events_attr[] = {
1207 EVENT_PTR(intel_cqm_total_bytes),
1208 EVENT_PTR(intel_cqm_local_bytes),
1209 EVENT_PTR(intel_cqm_total_bytes_pkg),
1210 EVENT_PTR(intel_cqm_local_bytes_pkg),
1211 EVENT_PTR(intel_cqm_total_bytes_unit),
1212 EVENT_PTR(intel_cqm_local_bytes_unit),
1213 EVENT_PTR(intel_cqm_total_bytes_scale),
1214 EVENT_PTR(intel_cqm_local_bytes_scale),
1215 NULL,
1216 };
1217
1218 static struct attribute *intel_cmt_mbm_events_attr[] = {
1219 EVENT_PTR(intel_cqm_llc),
1220 EVENT_PTR(intel_cqm_total_bytes),
1221 EVENT_PTR(intel_cqm_local_bytes),
1222 EVENT_PTR(intel_cqm_llc_pkg),
1223 EVENT_PTR(intel_cqm_total_bytes_pkg),
1224 EVENT_PTR(intel_cqm_local_bytes_pkg),
1225 EVENT_PTR(intel_cqm_llc_unit),
1226 EVENT_PTR(intel_cqm_total_bytes_unit),
1227 EVENT_PTR(intel_cqm_local_bytes_unit),
1228 EVENT_PTR(intel_cqm_llc_scale),
1229 EVENT_PTR(intel_cqm_total_bytes_scale),
1230 EVENT_PTR(intel_cqm_local_bytes_scale),
1231 EVENT_PTR(intel_cqm_llc_snapshot),
1232 NULL,
1233 };
1234
1235 static struct attribute_group intel_cqm_events_group = {
1236 .name = "events",
1237 .attrs = NULL,
1238 };
1239
1240 PMU_FORMAT_ATTR(event, "config:0-7");
1241 static struct attribute *intel_cqm_formats_attr[] = {
1242 &format_attr_event.attr,
1243 NULL,
1244 };
1245
1246 static struct attribute_group intel_cqm_format_group = {
1247 .name = "format",
1248 .attrs = intel_cqm_formats_attr,
1249 };
1250
1251 static ssize_t
1252 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1253 char *page)
1254 {
1255 ssize_t rv;
1256
1257 mutex_lock(&cache_mutex);
1258 rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1259 mutex_unlock(&cache_mutex);
1260
1261 return rv;
1262 }
1263
1264 static ssize_t
1265 max_recycle_threshold_store(struct device *dev,
1266 struct device_attribute *attr,
1267 const char *buf, size_t count)
1268 {
1269 unsigned int bytes, cachelines;
1270 int ret;
1271
1272 ret = kstrtouint(buf, 0, &bytes);
1273 if (ret)
1274 return ret;
1275
1276 mutex_lock(&cache_mutex);
1277
1278 __intel_cqm_max_threshold = bytes;
1279 cachelines = bytes / cqm_l3_scale;
1280
1281 /*
1282 * The new maximum takes effect immediately.
1283 */
1284 if (__intel_cqm_threshold > cachelines)
1285 __intel_cqm_threshold = cachelines;
1286
1287 mutex_unlock(&cache_mutex);
1288
1289 return count;
1290 }
1291
1292 static DEVICE_ATTR_RW(max_recycle_threshold);
1293
1294 static struct attribute *intel_cqm_attrs[] = {
1295 &dev_attr_max_recycle_threshold.attr,
1296 NULL,
1297 };
1298
1299 static const struct attribute_group intel_cqm_group = {
1300 .attrs = intel_cqm_attrs,
1301 };
1302
1303 static const struct attribute_group *intel_cqm_attr_groups[] = {
1304 &intel_cqm_events_group,
1305 &intel_cqm_format_group,
1306 &intel_cqm_group,
1307 NULL,
1308 };
1309
1310 static struct pmu intel_cqm_pmu = {
1311 .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1312 .attr_groups = intel_cqm_attr_groups,
1313 .task_ctx_nr = perf_sw_context,
1314 .event_init = intel_cqm_event_init,
1315 .add = intel_cqm_event_add,
1316 .del = intel_cqm_event_stop,
1317 .start = intel_cqm_event_start,
1318 .stop = intel_cqm_event_stop,
1319 .read = intel_cqm_event_read,
1320 .count = intel_cqm_event_count,
1321 };
1322
1323 static inline void cqm_pick_event_reader(int cpu)
1324 {
1325 int reader;
1326
1327 /* First online cpu in package becomes the reader */
1328 reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
1329 if (reader >= nr_cpu_ids)
1330 cpumask_set_cpu(cpu, &cqm_cpumask);
1331 }
1332
1333 static void intel_cqm_cpu_starting(unsigned int cpu)
1334 {
1335 struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1336 struct cpuinfo_x86 *c = &cpu_data(cpu);
1337
1338 state->rmid = 0;
1339 state->closid = 0;
1340 state->rmid_usecnt = 0;
1341
1342 WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1343 WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1344 }
1345
1346 static void intel_cqm_cpu_exit(unsigned int cpu)
1347 {
1348 int target;
1349
1350 /* Is @cpu the current cqm reader for this package ? */
1351 if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1352 return;
1353
1354 /* Find another online reader in this package */
1355 target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1356
1357 if (target < nr_cpu_ids)
1358 cpumask_set_cpu(target, &cqm_cpumask);
1359 }
1360
1361 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1362 unsigned long action, void *hcpu)
1363 {
1364 unsigned int cpu = (unsigned long)hcpu;
1365
1366 switch (action & ~CPU_TASKS_FROZEN) {
1367 case CPU_DOWN_PREPARE:
1368 intel_cqm_cpu_exit(cpu);
1369 break;
1370 case CPU_STARTING:
1371 intel_cqm_cpu_starting(cpu);
1372 cqm_pick_event_reader(cpu);
1373 break;
1374 }
1375
1376 return NOTIFY_OK;
1377 }
1378
1379 static const struct x86_cpu_id intel_cqm_match[] = {
1380 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1381 {}
1382 };
1383
1384 static void mbm_cleanup(void)
1385 {
1386 if (!mbm_enabled)
1387 return;
1388
1389 kfree(mbm_local);
1390 kfree(mbm_total);
1391 mbm_enabled = false;
1392 }
1393
1394 static const struct x86_cpu_id intel_mbm_local_match[] = {
1395 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_LOCAL },
1396 {}
1397 };
1398
1399 static const struct x86_cpu_id intel_mbm_total_match[] = {
1400 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_TOTAL },
1401 {}
1402 };
1403
1404 static int intel_mbm_init(void)
1405 {
1406 int array_size, maxid = cqm_max_rmid + 1;
1407
1408 array_size = sizeof(struct sample) * maxid * topology_max_packages();
1409 mbm_local = kmalloc(array_size, GFP_KERNEL);
1410 if (!mbm_local)
1411 return -ENOMEM;
1412
1413 mbm_total = kmalloc(array_size, GFP_KERNEL);
1414 if (!mbm_total) {
1415 mbm_cleanup();
1416 return -ENOMEM;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static int __init intel_cqm_init(void)
1423 {
1424 char *str = NULL, scale[20];
1425 int i, cpu, ret;
1426
1427 if (x86_match_cpu(intel_cqm_match))
1428 cqm_enabled = true;
1429
1430 if (x86_match_cpu(intel_mbm_local_match) &&
1431 x86_match_cpu(intel_mbm_total_match))
1432 mbm_enabled = true;
1433
1434 if (!cqm_enabled && !mbm_enabled)
1435 return -ENODEV;
1436
1437 cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1438
1439 /*
1440 * It's possible that not all resources support the same number
1441 * of RMIDs. Instead of making scheduling much more complicated
1442 * (where we have to match a task's RMID to a cpu that supports
1443 * that many RMIDs) just find the minimum RMIDs supported across
1444 * all cpus.
1445 *
1446 * Also, check that the scales match on all cpus.
1447 */
1448 cpu_notifier_register_begin();
1449
1450 for_each_online_cpu(cpu) {
1451 struct cpuinfo_x86 *c = &cpu_data(cpu);
1452
1453 if (c->x86_cache_max_rmid < cqm_max_rmid)
1454 cqm_max_rmid = c->x86_cache_max_rmid;
1455
1456 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1457 pr_err("Multiple LLC scale values, disabling\n");
1458 ret = -EINVAL;
1459 goto out;
1460 }
1461 }
1462
1463 /*
1464 * A reasonable upper limit on the max threshold is the number
1465 * of lines tagged per RMID if all RMIDs have the same number of
1466 * lines tagged in the LLC.
1467 *
1468 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1469 */
1470 __intel_cqm_max_threshold =
1471 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1472
1473 snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1474 str = kstrdup(scale, GFP_KERNEL);
1475 if (!str) {
1476 ret = -ENOMEM;
1477 goto out;
1478 }
1479
1480 event_attr_intel_cqm_llc_scale.event_str = str;
1481
1482 ret = intel_cqm_setup_rmid_cache();
1483 if (ret)
1484 goto out;
1485
1486 for_each_online_cpu(i) {
1487 intel_cqm_cpu_starting(i);
1488 cqm_pick_event_reader(i);
1489 }
1490
1491 if (mbm_enabled)
1492 ret = intel_mbm_init();
1493 if (ret && !cqm_enabled)
1494 goto out;
1495
1496 if (cqm_enabled && mbm_enabled)
1497 intel_cqm_events_group.attrs = intel_cmt_mbm_events_attr;
1498 else if (!cqm_enabled && mbm_enabled)
1499 intel_cqm_events_group.attrs = intel_mbm_events_attr;
1500 else if (cqm_enabled && !mbm_enabled)
1501 intel_cqm_events_group.attrs = intel_cqm_events_attr;
1502
1503 ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1504 if (ret) {
1505 pr_err("Intel CQM perf registration failed: %d\n", ret);
1506 goto out;
1507 }
1508
1509 if (cqm_enabled)
1510 pr_info("Intel CQM monitoring enabled\n");
1511 if (mbm_enabled)
1512 pr_info("Intel MBM enabled\n");
1513
1514 /*
1515 * Register the hot cpu notifier once we are sure cqm
1516 * is enabled to avoid notifier leak.
1517 */
1518 __perf_cpu_notifier(intel_cqm_cpu_notifier);
1519 out:
1520 cpu_notifier_register_done();
1521 if (ret) {
1522 kfree(str);
1523 cqm_cleanup();
1524 mbm_cleanup();
1525 }
1526
1527 return ret;
1528 }
1529 device_initcall(intel_cqm_init);