]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/events/intel/ds.c
perf/x86/kvm: Avoid unnecessary work in guest filtering
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10
11 #include "../perf_event.h"
12
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
15
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE 24
18
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
20
21 /*
22 * pebs_record_32 for p4 and core not supported
23
24 struct pebs_record_32 {
25 u32 flags, ip;
26 u32 ax, bc, cx, dx;
27 u32 si, di, bp, sp;
28 };
29
30 */
31
32 union intel_x86_pebs_dse {
33 u64 val;
34 struct {
35 unsigned int ld_dse:4;
36 unsigned int ld_stlb_miss:1;
37 unsigned int ld_locked:1;
38 unsigned int ld_reserved:26;
39 };
40 struct {
41 unsigned int st_l1d_hit:1;
42 unsigned int st_reserved1:3;
43 unsigned int st_stlb_miss:1;
44 unsigned int st_locked:1;
45 unsigned int st_reserved2:26;
46 };
47 };
48
49
50 /*
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
53 */
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
59
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source[] = {
62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 };
79
80 /* Patch up minor differences in the bits */
81 void __init intel_pmu_pebs_data_source_nhm(void)
82 {
83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86 }
87
88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
89 {
90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
91
92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 }
98
99 static u64 precise_store_data(u64 status)
100 {
101 union intel_x86_pebs_dse dse;
102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
103
104 dse.val = status;
105
106 /*
107 * bit 4: TLB access
108 * 1 = stored missed 2nd level TLB
109 *
110 * so it either hit the walker or the OS
111 * otherwise hit 2nd level TLB
112 */
113 if (dse.st_stlb_miss)
114 val |= P(TLB, MISS);
115 else
116 val |= P(TLB, HIT);
117
118 /*
119 * bit 0: hit L1 data cache
120 * if not set, then all we know is that
121 * it missed L1D
122 */
123 if (dse.st_l1d_hit)
124 val |= P(LVL, HIT);
125 else
126 val |= P(LVL, MISS);
127
128 /*
129 * bit 5: Locked prefix
130 */
131 if (dse.st_locked)
132 val |= P(LOCK, LOCKED);
133
134 return val;
135 }
136
137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 {
139 union perf_mem_data_src dse;
140
141 dse.val = PERF_MEM_NA;
142
143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
144 dse.mem_op = PERF_MEM_OP_STORE;
145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
146 dse.mem_op = PERF_MEM_OP_LOAD;
147
148 /*
149 * L1 info only valid for following events:
150 *
151 * MEM_UOPS_RETIRED.STLB_MISS_STORES
152 * MEM_UOPS_RETIRED.LOCK_STORES
153 * MEM_UOPS_RETIRED.SPLIT_STORES
154 * MEM_UOPS_RETIRED.ALL_STORES
155 */
156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
157 if (status & 1)
158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
159 else
160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
161 }
162 return dse.val;
163 }
164
165 static u64 load_latency_data(u64 status)
166 {
167 union intel_x86_pebs_dse dse;
168 u64 val;
169
170 dse.val = status;
171
172 /*
173 * use the mapping table for bit 0-3
174 */
175 val = pebs_data_source[dse.ld_dse];
176
177 /*
178 * Nehalem models do not support TLB, Lock infos
179 */
180 if (x86_pmu.pebs_no_tlb) {
181 val |= P(TLB, NA) | P(LOCK, NA);
182 return val;
183 }
184 /*
185 * bit 4: TLB access
186 * 0 = did not miss 2nd level TLB
187 * 1 = missed 2nd level TLB
188 */
189 if (dse.ld_stlb_miss)
190 val |= P(TLB, MISS) | P(TLB, L2);
191 else
192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
193
194 /*
195 * bit 5: locked prefix
196 */
197 if (dse.ld_locked)
198 val |= P(LOCK, LOCKED);
199
200 return val;
201 }
202
203 struct pebs_record_core {
204 u64 flags, ip;
205 u64 ax, bx, cx, dx;
206 u64 si, di, bp, sp;
207 u64 r8, r9, r10, r11;
208 u64 r12, r13, r14, r15;
209 };
210
211 struct pebs_record_nhm {
212 u64 flags, ip;
213 u64 ax, bx, cx, dx;
214 u64 si, di, bp, sp;
215 u64 r8, r9, r10, r11;
216 u64 r12, r13, r14, r15;
217 u64 status, dla, dse, lat;
218 };
219
220 /*
221 * Same as pebs_record_nhm, with two additional fields.
222 */
223 struct pebs_record_hsw {
224 u64 flags, ip;
225 u64 ax, bx, cx, dx;
226 u64 si, di, bp, sp;
227 u64 r8, r9, r10, r11;
228 u64 r12, r13, r14, r15;
229 u64 status, dla, dse, lat;
230 u64 real_ip, tsx_tuning;
231 };
232
233 union hsw_tsx_tuning {
234 struct {
235 u32 cycles_last_block : 32,
236 hle_abort : 1,
237 rtm_abort : 1,
238 instruction_abort : 1,
239 non_instruction_abort : 1,
240 retry : 1,
241 data_conflict : 1,
242 capacity_writes : 1,
243 capacity_reads : 1;
244 };
245 u64 value;
246 };
247
248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
249
250 /* Same as HSW, plus TSC */
251
252 struct pebs_record_skl {
253 u64 flags, ip;
254 u64 ax, bx, cx, dx;
255 u64 si, di, bp, sp;
256 u64 r8, r9, r10, r11;
257 u64 r12, r13, r14, r15;
258 u64 status, dla, dse, lat;
259 u64 real_ip, tsx_tuning;
260 u64 tsc;
261 };
262
263 void init_debug_store_on_cpu(int cpu)
264 {
265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
266
267 if (!ds)
268 return;
269
270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
271 (u32)((u64)(unsigned long)ds),
272 (u32)((u64)(unsigned long)ds >> 32));
273 }
274
275 void fini_debug_store_on_cpu(int cpu)
276 {
277 if (!per_cpu(cpu_hw_events, cpu).ds)
278 return;
279
280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
281 }
282
283 static DEFINE_PER_CPU(void *, insn_buffer);
284
285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286 {
287 unsigned long start = (unsigned long)cea;
288 phys_addr_t pa;
289 size_t msz = 0;
290
291 pa = virt_to_phys(addr);
292
293 preempt_disable();
294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
295 cea_set_pte(cea, pa, prot);
296
297 /*
298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299 * all TLB entries for it.
300 */
301 flush_tlb_kernel_range(start, start + size);
302 preempt_enable();
303 }
304
305 static void ds_clear_cea(void *cea, size_t size)
306 {
307 unsigned long start = (unsigned long)cea;
308 size_t msz = 0;
309
310 preempt_disable();
311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
312 cea_set_pte(cea, 0, PAGE_NONE);
313
314 flush_tlb_kernel_range(start, start + size);
315 preempt_enable();
316 }
317
318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
319 {
320 unsigned int order = get_order(size);
321 int node = cpu_to_node(cpu);
322 struct page *page;
323
324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
325 return page ? page_address(page) : NULL;
326 }
327
328 static void dsfree_pages(const void *buffer, size_t size)
329 {
330 if (buffer)
331 free_pages((unsigned long)buffer, get_order(size));
332 }
333
334 static int alloc_pebs_buffer(int cpu)
335 {
336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
337 struct debug_store *ds = hwev->ds;
338 size_t bsiz = x86_pmu.pebs_buffer_size;
339 int max, node = cpu_to_node(cpu);
340 void *buffer, *ibuffer, *cea;
341
342 if (!x86_pmu.pebs)
343 return 0;
344
345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 if (unlikely(!buffer))
347 return -ENOMEM;
348
349 /*
350 * HSW+ already provides us the eventing ip; no need to allocate this
351 * buffer then.
352 */
353 if (x86_pmu.intel_cap.pebs_format < 2) {
354 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
355 if (!ibuffer) {
356 dsfree_pages(buffer, bsiz);
357 return -ENOMEM;
358 }
359 per_cpu(insn_buffer, cpu) = ibuffer;
360 }
361 hwev->ds_pebs_vaddr = buffer;
362 /* Update the cpu entry area mapping */
363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
364 ds->pebs_buffer_base = (unsigned long) cea;
365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366 ds->pebs_index = ds->pebs_buffer_base;
367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 return 0;
370 }
371
372 static void release_pebs_buffer(int cpu)
373 {
374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
375 void *cea;
376
377 if (!x86_pmu.pebs)
378 return;
379
380 kfree(per_cpu(insn_buffer, cpu));
381 per_cpu(insn_buffer, cpu) = NULL;
382
383 /* Clear the fixmap */
384 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
385 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
386 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
387 hwev->ds_pebs_vaddr = NULL;
388 }
389
390 static int alloc_bts_buffer(int cpu)
391 {
392 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
393 struct debug_store *ds = hwev->ds;
394 void *buffer, *cea;
395 int max;
396
397 if (!x86_pmu.bts)
398 return 0;
399
400 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 if (unlikely(!buffer)) {
402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403 return -ENOMEM;
404 }
405 hwev->ds_bts_vaddr = buffer;
406 /* Update the fixmap */
407 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
408 ds->bts_buffer_base = (unsigned long) cea;
409 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410 ds->bts_index = ds->bts_buffer_base;
411 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
412 ds->bts_absolute_maximum = ds->bts_buffer_base +
413 max * BTS_RECORD_SIZE;
414 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
415 (max / 16) * BTS_RECORD_SIZE;
416 return 0;
417 }
418
419 static void release_bts_buffer(int cpu)
420 {
421 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
422 void *cea;
423
424 if (!x86_pmu.bts)
425 return;
426
427 /* Clear the fixmap */
428 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
429 ds_clear_cea(cea, BTS_BUFFER_SIZE);
430 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
431 hwev->ds_bts_vaddr = NULL;
432 }
433
434 static int alloc_ds_buffer(int cpu)
435 {
436 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
437
438 memset(ds, 0, sizeof(*ds));
439 per_cpu(cpu_hw_events, cpu).ds = ds;
440 return 0;
441 }
442
443 static void release_ds_buffer(int cpu)
444 {
445 per_cpu(cpu_hw_events, cpu).ds = NULL;
446 }
447
448 void release_ds_buffers(void)
449 {
450 int cpu;
451
452 if (!x86_pmu.bts && !x86_pmu.pebs)
453 return;
454
455 for_each_possible_cpu(cpu)
456 release_ds_buffer(cpu);
457
458 for_each_possible_cpu(cpu) {
459 /*
460 * Again, ignore errors from offline CPUs, they will no longer
461 * observe cpu_hw_events.ds and not program the DS_AREA when
462 * they come up.
463 */
464 fini_debug_store_on_cpu(cpu);
465 }
466
467 for_each_possible_cpu(cpu) {
468 release_pebs_buffer(cpu);
469 release_bts_buffer(cpu);
470 }
471 }
472
473 void reserve_ds_buffers(void)
474 {
475 int bts_err = 0, pebs_err = 0;
476 int cpu;
477
478 x86_pmu.bts_active = 0;
479 x86_pmu.pebs_active = 0;
480
481 if (!x86_pmu.bts && !x86_pmu.pebs)
482 return;
483
484 if (!x86_pmu.bts)
485 bts_err = 1;
486
487 if (!x86_pmu.pebs)
488 pebs_err = 1;
489
490 for_each_possible_cpu(cpu) {
491 if (alloc_ds_buffer(cpu)) {
492 bts_err = 1;
493 pebs_err = 1;
494 }
495
496 if (!bts_err && alloc_bts_buffer(cpu))
497 bts_err = 1;
498
499 if (!pebs_err && alloc_pebs_buffer(cpu))
500 pebs_err = 1;
501
502 if (bts_err && pebs_err)
503 break;
504 }
505
506 if (bts_err) {
507 for_each_possible_cpu(cpu)
508 release_bts_buffer(cpu);
509 }
510
511 if (pebs_err) {
512 for_each_possible_cpu(cpu)
513 release_pebs_buffer(cpu);
514 }
515
516 if (bts_err && pebs_err) {
517 for_each_possible_cpu(cpu)
518 release_ds_buffer(cpu);
519 } else {
520 if (x86_pmu.bts && !bts_err)
521 x86_pmu.bts_active = 1;
522
523 if (x86_pmu.pebs && !pebs_err)
524 x86_pmu.pebs_active = 1;
525
526 for_each_possible_cpu(cpu) {
527 /*
528 * Ignores wrmsr_on_cpu() errors for offline CPUs they
529 * will get this call through intel_pmu_cpu_starting().
530 */
531 init_debug_store_on_cpu(cpu);
532 }
533 }
534 }
535
536 /*
537 * BTS
538 */
539
540 struct event_constraint bts_constraint =
541 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
542
543 void intel_pmu_enable_bts(u64 config)
544 {
545 unsigned long debugctlmsr;
546
547 debugctlmsr = get_debugctlmsr();
548
549 debugctlmsr |= DEBUGCTLMSR_TR;
550 debugctlmsr |= DEBUGCTLMSR_BTS;
551 if (config & ARCH_PERFMON_EVENTSEL_INT)
552 debugctlmsr |= DEBUGCTLMSR_BTINT;
553
554 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
556
557 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
559
560 update_debugctlmsr(debugctlmsr);
561 }
562
563 void intel_pmu_disable_bts(void)
564 {
565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 unsigned long debugctlmsr;
567
568 if (!cpuc->ds)
569 return;
570
571 debugctlmsr = get_debugctlmsr();
572
573 debugctlmsr &=
574 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
575 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
576
577 update_debugctlmsr(debugctlmsr);
578 }
579
580 int intel_pmu_drain_bts_buffer(void)
581 {
582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583 struct debug_store *ds = cpuc->ds;
584 struct bts_record {
585 u64 from;
586 u64 to;
587 u64 flags;
588 };
589 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590 struct bts_record *at, *base, *top;
591 struct perf_output_handle handle;
592 struct perf_event_header header;
593 struct perf_sample_data data;
594 unsigned long skip = 0;
595 struct pt_regs regs;
596
597 if (!event)
598 return 0;
599
600 if (!x86_pmu.bts_active)
601 return 0;
602
603 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
604 top = (struct bts_record *)(unsigned long)ds->bts_index;
605
606 if (top <= base)
607 return 0;
608
609 memset(&regs, 0, sizeof(regs));
610
611 ds->bts_index = ds->bts_buffer_base;
612
613 perf_sample_data_init(&data, 0, event->hw.last_period);
614
615 /*
616 * BTS leaks kernel addresses in branches across the cpl boundary,
617 * such as traps or system calls, so unless the user is asking for
618 * kernel tracing (and right now it's not possible), we'd need to
619 * filter them out. But first we need to count how many of those we
620 * have in the current batch. This is an extra O(n) pass, however,
621 * it's much faster than the other one especially considering that
622 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
623 * alloc_bts_buffer()).
624 */
625 for (at = base; at < top; at++) {
626 /*
627 * Note that right now *this* BTS code only works if
628 * attr::exclude_kernel is set, but let's keep this extra
629 * check here in case that changes.
630 */
631 if (event->attr.exclude_kernel &&
632 (kernel_ip(at->from) || kernel_ip(at->to)))
633 skip++;
634 }
635
636 /*
637 * Prepare a generic sample, i.e. fill in the invariant fields.
638 * We will overwrite the from and to address before we output
639 * the sample.
640 */
641 rcu_read_lock();
642 perf_prepare_sample(&header, &data, event, &regs);
643
644 if (perf_output_begin(&handle, event, header.size *
645 (top - base - skip)))
646 goto unlock;
647
648 for (at = base; at < top; at++) {
649 /* Filter out any records that contain kernel addresses. */
650 if (event->attr.exclude_kernel &&
651 (kernel_ip(at->from) || kernel_ip(at->to)))
652 continue;
653
654 data.ip = at->from;
655 data.addr = at->to;
656
657 perf_output_sample(&handle, &header, &data, event);
658 }
659
660 perf_output_end(&handle);
661
662 /* There's new data available. */
663 event->hw.interrupts++;
664 event->pending_kill = POLL_IN;
665 unlock:
666 rcu_read_unlock();
667 return 1;
668 }
669
670 static inline void intel_pmu_drain_pebs_buffer(void)
671 {
672 struct pt_regs regs;
673
674 x86_pmu.drain_pebs(&regs);
675 }
676
677 /*
678 * PEBS
679 */
680 struct event_constraint intel_core2_pebs_event_constraints[] = {
681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
682 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
683 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
685 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
686 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
687 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
688 EVENT_CONSTRAINT_END
689 };
690
691 struct event_constraint intel_atom_pebs_event_constraints[] = {
692 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
694 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
695 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
696 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697 /* Allow all events as PEBS with no flags */
698 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
699 EVENT_CONSTRAINT_END
700 };
701
702 struct event_constraint intel_slm_pebs_event_constraints[] = {
703 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
704 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705 /* Allow all events as PEBS with no flags */
706 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
707 EVENT_CONSTRAINT_END
708 };
709
710 struct event_constraint intel_glm_pebs_event_constraints[] = {
711 /* Allow all events as PEBS with no flags */
712 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
713 EVENT_CONSTRAINT_END
714 };
715
716 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
717 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
718 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
719 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
720 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
721 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
722 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
725 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
726 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
727 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
728 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
729 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
730 EVENT_CONSTRAINT_END
731 };
732
733 struct event_constraint intel_westmere_pebs_event_constraints[] = {
734 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
735 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
736 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
737 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
738 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
739 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
742 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
743 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
745 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
746 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
747 EVENT_CONSTRAINT_END
748 };
749
750 struct event_constraint intel_snb_pebs_event_constraints[] = {
751 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
752 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
753 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
754 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
755 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
756 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
757 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
758 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
759 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
760 /* Allow all events as PEBS with no flags */
761 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
762 EVENT_CONSTRAINT_END
763 };
764
765 struct event_constraint intel_ivb_pebs_event_constraints[] = {
766 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
767 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
768 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
769 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
771 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
773 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
774 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
775 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
776 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
777 /* Allow all events as PEBS with no flags */
778 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
779 EVENT_CONSTRAINT_END
780 };
781
782 struct event_constraint intel_hsw_pebs_event_constraints[] = {
783 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
784 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
785 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
786 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
787 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
788 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
797 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
800 /* Allow all events as PEBS with no flags */
801 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
802 EVENT_CONSTRAINT_END
803 };
804
805 struct event_constraint intel_bdw_pebs_event_constraints[] = {
806 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
807 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
808 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
809 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
810 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
811 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
812 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
820 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
823 /* Allow all events as PEBS with no flags */
824 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
825 EVENT_CONSTRAINT_END
826 };
827
828
829 struct event_constraint intel_skl_pebs_event_constraints[] = {
830 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
831 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
832 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
833 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
834 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
835 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
836 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
844 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
847 /* Allow all events as PEBS with no flags */
848 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
849 EVENT_CONSTRAINT_END
850 };
851
852 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
853 {
854 struct event_constraint *c;
855
856 if (!event->attr.precise_ip)
857 return NULL;
858
859 if (x86_pmu.pebs_constraints) {
860 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
861 if ((event->hw.config & c->cmask) == c->code) {
862 event->hw.flags |= c->flags;
863 return c;
864 }
865 }
866 }
867
868 /*
869 * Extended PEBS support
870 * Makes the PEBS code search the normal constraints.
871 */
872 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
873 return NULL;
874
875 return &emptyconstraint;
876 }
877
878 /*
879 * We need the sched_task callback even for per-cpu events when we use
880 * the large interrupt threshold, such that we can provide PID and TID
881 * to PEBS samples.
882 */
883 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
884 {
885 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
886 }
887
888 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
889 {
890 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
891
892 if (!sched_in && pebs_needs_sched_cb(cpuc))
893 intel_pmu_drain_pebs_buffer();
894 }
895
896 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
897 {
898 struct debug_store *ds = cpuc->ds;
899 u64 threshold;
900 int reserved;
901
902 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
903 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
904 else
905 reserved = x86_pmu.max_pebs_events;
906
907 if (cpuc->n_pebs == cpuc->n_large_pebs) {
908 threshold = ds->pebs_absolute_maximum -
909 reserved * x86_pmu.pebs_record_size;
910 } else {
911 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
912 }
913
914 ds->pebs_interrupt_threshold = threshold;
915 }
916
917 static void
918 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
919 {
920 /*
921 * Make sure we get updated with the first PEBS
922 * event. It will trigger also during removal, but
923 * that does not hurt:
924 */
925 bool update = cpuc->n_pebs == 1;
926
927 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
928 if (!needed_cb)
929 perf_sched_cb_inc(pmu);
930 else
931 perf_sched_cb_dec(pmu);
932
933 update = true;
934 }
935
936 if (update)
937 pebs_update_threshold(cpuc);
938 }
939
940 void intel_pmu_pebs_add(struct perf_event *event)
941 {
942 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
943 struct hw_perf_event *hwc = &event->hw;
944 bool needed_cb = pebs_needs_sched_cb(cpuc);
945
946 cpuc->n_pebs++;
947 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
948 cpuc->n_large_pebs++;
949
950 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
951 }
952
953 void intel_pmu_pebs_enable(struct perf_event *event)
954 {
955 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
956 struct hw_perf_event *hwc = &event->hw;
957 struct debug_store *ds = cpuc->ds;
958
959 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
960
961 cpuc->pebs_enabled |= 1ULL << hwc->idx;
962
963 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
964 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
965 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
966 cpuc->pebs_enabled |= 1ULL << 63;
967
968 /*
969 * Use auto-reload if possible to save a MSR write in the PMI.
970 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
971 */
972 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
973 unsigned int idx = hwc->idx;
974
975 if (idx >= INTEL_PMC_IDX_FIXED)
976 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
977 ds->pebs_event_reset[idx] =
978 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
979 } else {
980 ds->pebs_event_reset[hwc->idx] = 0;
981 }
982 }
983
984 void intel_pmu_pebs_del(struct perf_event *event)
985 {
986 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
987 struct hw_perf_event *hwc = &event->hw;
988 bool needed_cb = pebs_needs_sched_cb(cpuc);
989
990 cpuc->n_pebs--;
991 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
992 cpuc->n_large_pebs--;
993
994 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
995 }
996
997 void intel_pmu_pebs_disable(struct perf_event *event)
998 {
999 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1000 struct hw_perf_event *hwc = &event->hw;
1001
1002 if (cpuc->n_pebs == cpuc->n_large_pebs)
1003 intel_pmu_drain_pebs_buffer();
1004
1005 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1006
1007 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
1008 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1009 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1010 cpuc->pebs_enabled &= ~(1ULL << 63);
1011
1012 if (cpuc->enabled)
1013 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1014
1015 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1016 }
1017
1018 void intel_pmu_pebs_enable_all(void)
1019 {
1020 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1021
1022 if (cpuc->pebs_enabled)
1023 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1024 }
1025
1026 void intel_pmu_pebs_disable_all(void)
1027 {
1028 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029
1030 if (cpuc->pebs_enabled)
1031 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1032 }
1033
1034 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1035 {
1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037 unsigned long from = cpuc->lbr_entries[0].from;
1038 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1039 unsigned long ip = regs->ip;
1040 int is_64bit = 0;
1041 void *kaddr;
1042 int size;
1043
1044 /*
1045 * We don't need to fixup if the PEBS assist is fault like
1046 */
1047 if (!x86_pmu.intel_cap.pebs_trap)
1048 return 1;
1049
1050 /*
1051 * No LBR entry, no basic block, no rewinding
1052 */
1053 if (!cpuc->lbr_stack.nr || !from || !to)
1054 return 0;
1055
1056 /*
1057 * Basic blocks should never cross user/kernel boundaries
1058 */
1059 if (kernel_ip(ip) != kernel_ip(to))
1060 return 0;
1061
1062 /*
1063 * unsigned math, either ip is before the start (impossible) or
1064 * the basic block is larger than 1 page (sanity)
1065 */
1066 if ((ip - to) > PEBS_FIXUP_SIZE)
1067 return 0;
1068
1069 /*
1070 * We sampled a branch insn, rewind using the LBR stack
1071 */
1072 if (ip == to) {
1073 set_linear_ip(regs, from);
1074 return 1;
1075 }
1076
1077 size = ip - to;
1078 if (!kernel_ip(ip)) {
1079 int bytes;
1080 u8 *buf = this_cpu_read(insn_buffer);
1081
1082 /* 'size' must fit our buffer, see above */
1083 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1084 if (bytes != 0)
1085 return 0;
1086
1087 kaddr = buf;
1088 } else {
1089 kaddr = (void *)to;
1090 }
1091
1092 do {
1093 struct insn insn;
1094
1095 old_to = to;
1096
1097 #ifdef CONFIG_X86_64
1098 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1099 #endif
1100 insn_init(&insn, kaddr, size, is_64bit);
1101 insn_get_length(&insn);
1102 /*
1103 * Make sure there was not a problem decoding the
1104 * instruction and getting the length. This is
1105 * doubly important because we have an infinite
1106 * loop if insn.length=0.
1107 */
1108 if (!insn.length)
1109 break;
1110
1111 to += insn.length;
1112 kaddr += insn.length;
1113 size -= insn.length;
1114 } while (to < ip);
1115
1116 if (to == ip) {
1117 set_linear_ip(regs, old_to);
1118 return 1;
1119 }
1120
1121 /*
1122 * Even though we decoded the basic block, the instruction stream
1123 * never matched the given IP, either the TO or the IP got corrupted.
1124 */
1125 return 0;
1126 }
1127
1128 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1129 {
1130 if (pebs->tsx_tuning) {
1131 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1132 return tsx.cycles_last_block;
1133 }
1134 return 0;
1135 }
1136
1137 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1138 {
1139 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1140
1141 /* For RTM XABORTs also log the abort code from AX */
1142 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1143 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1144 return txn;
1145 }
1146
1147 static void setup_pebs_sample_data(struct perf_event *event,
1148 struct pt_regs *iregs, void *__pebs,
1149 struct perf_sample_data *data,
1150 struct pt_regs *regs)
1151 {
1152 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1153 (PERF_X86_EVENT_PEBS_ST_HSW | \
1154 PERF_X86_EVENT_PEBS_LD_HSW | \
1155 PERF_X86_EVENT_PEBS_NA_HSW)
1156 /*
1157 * We cast to the biggest pebs_record but are careful not to
1158 * unconditionally access the 'extra' entries.
1159 */
1160 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1161 struct pebs_record_skl *pebs = __pebs;
1162 u64 sample_type;
1163 int fll, fst, dsrc;
1164 int fl = event->hw.flags;
1165
1166 if (pebs == NULL)
1167 return;
1168
1169 sample_type = event->attr.sample_type;
1170 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1171
1172 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1173 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1174
1175 perf_sample_data_init(data, 0, event->hw.last_period);
1176
1177 data->period = event->hw.last_period;
1178
1179 /*
1180 * Use latency for weight (only avail with PEBS-LL)
1181 */
1182 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1183 data->weight = pebs->lat;
1184
1185 /*
1186 * data.data_src encodes the data source
1187 */
1188 if (dsrc) {
1189 u64 val = PERF_MEM_NA;
1190 if (fll)
1191 val = load_latency_data(pebs->dse);
1192 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1193 val = precise_datala_hsw(event, pebs->dse);
1194 else if (fst)
1195 val = precise_store_data(pebs->dse);
1196 data->data_src.val = val;
1197 }
1198
1199 /*
1200 * We must however always use iregs for the unwinder to stay sane; the
1201 * record BP,SP,IP can point into thin air when the record is from a
1202 * previous PMI context or an (I)RET happened between the record and
1203 * PMI.
1204 */
1205 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1206 data->callchain = perf_callchain(event, iregs);
1207
1208 /*
1209 * We use the interrupt regs as a base because the PEBS record does not
1210 * contain a full regs set, specifically it seems to lack segment
1211 * descriptors, which get used by things like user_mode().
1212 *
1213 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1214 */
1215 *regs = *iregs;
1216
1217 /*
1218 * Initialize regs_>flags from PEBS,
1219 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1220 * i.e., do not rely on it being zero:
1221 */
1222 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1223
1224 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1225 regs->ax = pebs->ax;
1226 regs->bx = pebs->bx;
1227 regs->cx = pebs->cx;
1228 regs->dx = pebs->dx;
1229 regs->si = pebs->si;
1230 regs->di = pebs->di;
1231
1232 regs->bp = pebs->bp;
1233 regs->sp = pebs->sp;
1234
1235 #ifndef CONFIG_X86_32
1236 regs->r8 = pebs->r8;
1237 regs->r9 = pebs->r9;
1238 regs->r10 = pebs->r10;
1239 regs->r11 = pebs->r11;
1240 regs->r12 = pebs->r12;
1241 regs->r13 = pebs->r13;
1242 regs->r14 = pebs->r14;
1243 regs->r15 = pebs->r15;
1244 #endif
1245 }
1246
1247 if (event->attr.precise_ip > 1) {
1248 /*
1249 * Haswell and later processors have an 'eventing IP'
1250 * (real IP) which fixes the off-by-1 skid in hardware.
1251 * Use it when precise_ip >= 2 :
1252 */
1253 if (x86_pmu.intel_cap.pebs_format >= 2) {
1254 set_linear_ip(regs, pebs->real_ip);
1255 regs->flags |= PERF_EFLAGS_EXACT;
1256 } else {
1257 /* Otherwise, use PEBS off-by-1 IP: */
1258 set_linear_ip(regs, pebs->ip);
1259
1260 /*
1261 * With precise_ip >= 2, try to fix up the off-by-1 IP
1262 * using the LBR. If successful, the fixup function
1263 * corrects regs->ip and calls set_linear_ip() on regs:
1264 */
1265 if (intel_pmu_pebs_fixup_ip(regs))
1266 regs->flags |= PERF_EFLAGS_EXACT;
1267 }
1268 } else {
1269 /*
1270 * When precise_ip == 1, return the PEBS off-by-1 IP,
1271 * no fixup attempted:
1272 */
1273 set_linear_ip(regs, pebs->ip);
1274 }
1275
1276
1277 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1278 x86_pmu.intel_cap.pebs_format >= 1)
1279 data->addr = pebs->dla;
1280
1281 if (x86_pmu.intel_cap.pebs_format >= 2) {
1282 /* Only set the TSX weight when no memory weight. */
1283 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1284 data->weight = intel_hsw_weight(pebs);
1285
1286 if (sample_type & PERF_SAMPLE_TRANSACTION)
1287 data->txn = intel_hsw_transaction(pebs);
1288 }
1289
1290 /*
1291 * v3 supplies an accurate time stamp, so we use that
1292 * for the time stamp.
1293 *
1294 * We can only do this for the default trace clock.
1295 */
1296 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1297 event->attr.use_clockid == 0)
1298 data->time = native_sched_clock_from_tsc(pebs->tsc);
1299
1300 if (has_branch_stack(event))
1301 data->br_stack = &cpuc->lbr_stack;
1302 }
1303
1304 static inline void *
1305 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1306 {
1307 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1308 void *at;
1309 u64 pebs_status;
1310
1311 /*
1312 * fmt0 does not have a status bitfield (does not use
1313 * perf_record_nhm format)
1314 */
1315 if (x86_pmu.intel_cap.pebs_format < 1)
1316 return base;
1317
1318 if (base == NULL)
1319 return NULL;
1320
1321 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1322 struct pebs_record_nhm *p = at;
1323
1324 if (test_bit(bit, (unsigned long *)&p->status)) {
1325 /* PEBS v3 has accurate status bits */
1326 if (x86_pmu.intel_cap.pebs_format >= 3)
1327 return at;
1328
1329 if (p->status == (1 << bit))
1330 return at;
1331
1332 /* clear non-PEBS bit and re-check */
1333 pebs_status = p->status & cpuc->pebs_enabled;
1334 pebs_status &= PEBS_COUNTER_MASK;
1335 if (pebs_status == (1 << bit))
1336 return at;
1337 }
1338 }
1339 return NULL;
1340 }
1341
1342 void intel_pmu_auto_reload_read(struct perf_event *event)
1343 {
1344 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1345
1346 perf_pmu_disable(event->pmu);
1347 intel_pmu_drain_pebs_buffer();
1348 perf_pmu_enable(event->pmu);
1349 }
1350
1351 /*
1352 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1353 */
1354 static int
1355 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1356 {
1357 struct hw_perf_event *hwc = &event->hw;
1358 int shift = 64 - x86_pmu.cntval_bits;
1359 u64 period = hwc->sample_period;
1360 u64 prev_raw_count, new_raw_count;
1361 s64 new, old;
1362
1363 WARN_ON(!period);
1364
1365 /*
1366 * drain_pebs() only happens when the PMU is disabled.
1367 */
1368 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1369
1370 prev_raw_count = local64_read(&hwc->prev_count);
1371 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1372 local64_set(&hwc->prev_count, new_raw_count);
1373
1374 /*
1375 * Since the counter increments a negative counter value and
1376 * overflows on the sign switch, giving the interval:
1377 *
1378 * [-period, 0]
1379 *
1380 * the difference between two consequtive reads is:
1381 *
1382 * A) value2 - value1;
1383 * when no overflows have happened in between,
1384 *
1385 * B) (0 - value1) + (value2 - (-period));
1386 * when one overflow happened in between,
1387 *
1388 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1389 * when @n overflows happened in between.
1390 *
1391 * Here A) is the obvious difference, B) is the extension to the
1392 * discrete interval, where the first term is to the top of the
1393 * interval and the second term is from the bottom of the next
1394 * interval and C) the extension to multiple intervals, where the
1395 * middle term is the whole intervals covered.
1396 *
1397 * An equivalent of C, by reduction, is:
1398 *
1399 * value2 - value1 + n * period
1400 */
1401 new = ((s64)(new_raw_count << shift) >> shift);
1402 old = ((s64)(prev_raw_count << shift) >> shift);
1403 local64_add(new - old + count * period, &event->count);
1404
1405 perf_event_update_userpage(event);
1406
1407 return 0;
1408 }
1409
1410 static void __intel_pmu_pebs_event(struct perf_event *event,
1411 struct pt_regs *iregs,
1412 void *base, void *top,
1413 int bit, int count)
1414 {
1415 struct hw_perf_event *hwc = &event->hw;
1416 struct perf_sample_data data;
1417 struct pt_regs regs;
1418 void *at = get_next_pebs_record_by_bit(base, top, bit);
1419
1420 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1421 /*
1422 * Now, auto-reload is only enabled in fixed period mode.
1423 * The reload value is always hwc->sample_period.
1424 * May need to change it, if auto-reload is enabled in
1425 * freq mode later.
1426 */
1427 intel_pmu_save_and_restart_reload(event, count);
1428 } else if (!intel_pmu_save_and_restart(event))
1429 return;
1430
1431 while (count > 1) {
1432 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1433 perf_event_output(event, &data, &regs);
1434 at += x86_pmu.pebs_record_size;
1435 at = get_next_pebs_record_by_bit(at, top, bit);
1436 count--;
1437 }
1438
1439 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1440
1441 /*
1442 * All but the last records are processed.
1443 * The last one is left to be able to call the overflow handler.
1444 */
1445 if (perf_event_overflow(event, &data, &regs)) {
1446 x86_pmu_stop(event, 0);
1447 return;
1448 }
1449
1450 }
1451
1452 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1453 {
1454 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1455 struct debug_store *ds = cpuc->ds;
1456 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1457 struct pebs_record_core *at, *top;
1458 int n;
1459
1460 if (!x86_pmu.pebs_active)
1461 return;
1462
1463 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1464 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1465
1466 /*
1467 * Whatever else happens, drain the thing
1468 */
1469 ds->pebs_index = ds->pebs_buffer_base;
1470
1471 if (!test_bit(0, cpuc->active_mask))
1472 return;
1473
1474 WARN_ON_ONCE(!event);
1475
1476 if (!event->attr.precise_ip)
1477 return;
1478
1479 n = top - at;
1480 if (n <= 0) {
1481 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1482 intel_pmu_save_and_restart_reload(event, 0);
1483 return;
1484 }
1485
1486 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1487 }
1488
1489 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1490 {
1491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492 struct debug_store *ds = cpuc->ds;
1493 struct perf_event *event;
1494 void *base, *at, *top;
1495 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1496 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1497 int bit, i, size;
1498 u64 mask;
1499
1500 if (!x86_pmu.pebs_active)
1501 return;
1502
1503 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1504 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1505
1506 ds->pebs_index = ds->pebs_buffer_base;
1507
1508 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1509 size = x86_pmu.max_pebs_events;
1510 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1511 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1512 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1513 }
1514
1515 if (unlikely(base >= top)) {
1516 /*
1517 * The drain_pebs() could be called twice in a short period
1518 * for auto-reload event in pmu::read(). There are no
1519 * overflows have happened in between.
1520 * It needs to call intel_pmu_save_and_restart_reload() to
1521 * update the event->count for this case.
1522 */
1523 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled,
1524 size) {
1525 event = cpuc->events[bit];
1526 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1527 intel_pmu_save_and_restart_reload(event, 0);
1528 }
1529 return;
1530 }
1531
1532 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1533 struct pebs_record_nhm *p = at;
1534 u64 pebs_status;
1535
1536 pebs_status = p->status & cpuc->pebs_enabled;
1537 pebs_status &= mask;
1538
1539 /* PEBS v3 has more accurate status bits */
1540 if (x86_pmu.intel_cap.pebs_format >= 3) {
1541 for_each_set_bit(bit, (unsigned long *)&pebs_status,
1542 size)
1543 counts[bit]++;
1544
1545 continue;
1546 }
1547
1548 /*
1549 * On some CPUs the PEBS status can be zero when PEBS is
1550 * racing with clearing of GLOBAL_STATUS.
1551 *
1552 * Normally we would drop that record, but in the
1553 * case when there is only a single active PEBS event
1554 * we can assume it's for that event.
1555 */
1556 if (!pebs_status && cpuc->pebs_enabled &&
1557 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1558 pebs_status = cpuc->pebs_enabled;
1559
1560 bit = find_first_bit((unsigned long *)&pebs_status,
1561 x86_pmu.max_pebs_events);
1562 if (bit >= x86_pmu.max_pebs_events)
1563 continue;
1564
1565 /*
1566 * The PEBS hardware does not deal well with the situation
1567 * when events happen near to each other and multiple bits
1568 * are set. But it should happen rarely.
1569 *
1570 * If these events include one PEBS and multiple non-PEBS
1571 * events, it doesn't impact PEBS record. The record will
1572 * be handled normally. (slow path)
1573 *
1574 * If these events include two or more PEBS events, the
1575 * records for the events can be collapsed into a single
1576 * one, and it's not possible to reconstruct all events
1577 * that caused the PEBS record. It's called collision.
1578 * If collision happened, the record will be dropped.
1579 */
1580 if (p->status != (1ULL << bit)) {
1581 for_each_set_bit(i, (unsigned long *)&pebs_status,
1582 x86_pmu.max_pebs_events)
1583 error[i]++;
1584 continue;
1585 }
1586
1587 counts[bit]++;
1588 }
1589
1590 for (bit = 0; bit < size; bit++) {
1591 if ((counts[bit] == 0) && (error[bit] == 0))
1592 continue;
1593
1594 event = cpuc->events[bit];
1595 if (WARN_ON_ONCE(!event))
1596 continue;
1597
1598 if (WARN_ON_ONCE(!event->attr.precise_ip))
1599 continue;
1600
1601 /* log dropped samples number */
1602 if (error[bit]) {
1603 perf_log_lost_samples(event, error[bit]);
1604
1605 if (perf_event_account_interrupt(event))
1606 x86_pmu_stop(event, 0);
1607 }
1608
1609 if (counts[bit]) {
1610 __intel_pmu_pebs_event(event, iregs, base,
1611 top, bit, counts[bit]);
1612 }
1613 }
1614 }
1615
1616 /*
1617 * BTS, PEBS probe and setup
1618 */
1619
1620 void __init intel_ds_init(void)
1621 {
1622 /*
1623 * No support for 32bit formats
1624 */
1625 if (!boot_cpu_has(X86_FEATURE_DTES64))
1626 return;
1627
1628 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1629 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1630 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1631 if (x86_pmu.version <= 4)
1632 x86_pmu.pebs_no_isolation = 1;
1633 if (x86_pmu.pebs) {
1634 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1635 int format = x86_pmu.intel_cap.pebs_format;
1636
1637 switch (format) {
1638 case 0:
1639 pr_cont("PEBS fmt0%c, ", pebs_type);
1640 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1641 /*
1642 * Using >PAGE_SIZE buffers makes the WRMSR to
1643 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1644 * mysteriously hang on Core2.
1645 *
1646 * As a workaround, we don't do this.
1647 */
1648 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1649 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1650 break;
1651
1652 case 1:
1653 pr_cont("PEBS fmt1%c, ", pebs_type);
1654 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1655 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1656 break;
1657
1658 case 2:
1659 pr_cont("PEBS fmt2%c, ", pebs_type);
1660 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1661 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1662 break;
1663
1664 case 3:
1665 pr_cont("PEBS fmt3%c, ", pebs_type);
1666 x86_pmu.pebs_record_size =
1667 sizeof(struct pebs_record_skl);
1668 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1669 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
1670 break;
1671
1672 default:
1673 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1674 x86_pmu.pebs = 0;
1675 }
1676 }
1677 }
1678
1679 void perf_restore_debug_store(void)
1680 {
1681 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1682
1683 if (!x86_pmu.bts && !x86_pmu.pebs)
1684 return;
1685
1686 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1687 }