]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/events/intel/ds.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/perf_event.h>
7 #include <asm/insn.h>
8
9 #include "../perf_event.h"
10
11 /* The size of a BTS record in bytes: */
12 #define BTS_RECORD_SIZE 24
13
14 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
15 #define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
16 #define PEBS_FIXUP_SIZE PAGE_SIZE
17
18 /*
19 * pebs_record_32 for p4 and core not supported
20
21 struct pebs_record_32 {
22 u32 flags, ip;
23 u32 ax, bc, cx, dx;
24 u32 si, di, bp, sp;
25 };
26
27 */
28
29 union intel_x86_pebs_dse {
30 u64 val;
31 struct {
32 unsigned int ld_dse:4;
33 unsigned int ld_stlb_miss:1;
34 unsigned int ld_locked:1;
35 unsigned int ld_reserved:26;
36 };
37 struct {
38 unsigned int st_l1d_hit:1;
39 unsigned int st_reserved1:3;
40 unsigned int st_stlb_miss:1;
41 unsigned int st_locked:1;
42 unsigned int st_reserved2:26;
43 };
44 };
45
46
47 /*
48 * Map PEBS Load Latency Data Source encodings to generic
49 * memory data source information
50 */
51 #define P(a, b) PERF_MEM_S(a, b)
52 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
53 #define LEVEL(x) P(LVLNUM, x)
54 #define REM P(REMOTE, REMOTE)
55 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
56
57 /* Version for Sandy Bridge and later */
58 static u64 pebs_data_source[] = {
59 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
60 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
61 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
62 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
63 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
64 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
65 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
67 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
68 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
69 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
70 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
71 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
72 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
73 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
74 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
75 };
76
77 /* Patch up minor differences in the bits */
78 void __init intel_pmu_pebs_data_source_nhm(void)
79 {
80 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
81 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
82 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
83 }
84
85 void __init intel_pmu_pebs_data_source_skl(bool pmem)
86 {
87 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
88
89 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
90 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
91 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
92 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
93 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
94 }
95
96 static u64 precise_store_data(u64 status)
97 {
98 union intel_x86_pebs_dse dse;
99 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
100
101 dse.val = status;
102
103 /*
104 * bit 4: TLB access
105 * 1 = stored missed 2nd level TLB
106 *
107 * so it either hit the walker or the OS
108 * otherwise hit 2nd level TLB
109 */
110 if (dse.st_stlb_miss)
111 val |= P(TLB, MISS);
112 else
113 val |= P(TLB, HIT);
114
115 /*
116 * bit 0: hit L1 data cache
117 * if not set, then all we know is that
118 * it missed L1D
119 */
120 if (dse.st_l1d_hit)
121 val |= P(LVL, HIT);
122 else
123 val |= P(LVL, MISS);
124
125 /*
126 * bit 5: Locked prefix
127 */
128 if (dse.st_locked)
129 val |= P(LOCK, LOCKED);
130
131 return val;
132 }
133
134 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
135 {
136 union perf_mem_data_src dse;
137
138 dse.val = PERF_MEM_NA;
139
140 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
141 dse.mem_op = PERF_MEM_OP_STORE;
142 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
143 dse.mem_op = PERF_MEM_OP_LOAD;
144
145 /*
146 * L1 info only valid for following events:
147 *
148 * MEM_UOPS_RETIRED.STLB_MISS_STORES
149 * MEM_UOPS_RETIRED.LOCK_STORES
150 * MEM_UOPS_RETIRED.SPLIT_STORES
151 * MEM_UOPS_RETIRED.ALL_STORES
152 */
153 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
154 if (status & 1)
155 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
156 else
157 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
158 }
159 return dse.val;
160 }
161
162 static u64 load_latency_data(u64 status)
163 {
164 union intel_x86_pebs_dse dse;
165 u64 val;
166
167 dse.val = status;
168
169 /*
170 * use the mapping table for bit 0-3
171 */
172 val = pebs_data_source[dse.ld_dse];
173
174 /*
175 * Nehalem models do not support TLB, Lock infos
176 */
177 if (x86_pmu.pebs_no_tlb) {
178 val |= P(TLB, NA) | P(LOCK, NA);
179 return val;
180 }
181 /*
182 * bit 4: TLB access
183 * 0 = did not miss 2nd level TLB
184 * 1 = missed 2nd level TLB
185 */
186 if (dse.ld_stlb_miss)
187 val |= P(TLB, MISS) | P(TLB, L2);
188 else
189 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
190
191 /*
192 * bit 5: locked prefix
193 */
194 if (dse.ld_locked)
195 val |= P(LOCK, LOCKED);
196
197 return val;
198 }
199
200 struct pebs_record_core {
201 u64 flags, ip;
202 u64 ax, bx, cx, dx;
203 u64 si, di, bp, sp;
204 u64 r8, r9, r10, r11;
205 u64 r12, r13, r14, r15;
206 };
207
208 struct pebs_record_nhm {
209 u64 flags, ip;
210 u64 ax, bx, cx, dx;
211 u64 si, di, bp, sp;
212 u64 r8, r9, r10, r11;
213 u64 r12, r13, r14, r15;
214 u64 status, dla, dse, lat;
215 };
216
217 /*
218 * Same as pebs_record_nhm, with two additional fields.
219 */
220 struct pebs_record_hsw {
221 u64 flags, ip;
222 u64 ax, bx, cx, dx;
223 u64 si, di, bp, sp;
224 u64 r8, r9, r10, r11;
225 u64 r12, r13, r14, r15;
226 u64 status, dla, dse, lat;
227 u64 real_ip, tsx_tuning;
228 };
229
230 union hsw_tsx_tuning {
231 struct {
232 u32 cycles_last_block : 32,
233 hle_abort : 1,
234 rtm_abort : 1,
235 instruction_abort : 1,
236 non_instruction_abort : 1,
237 retry : 1,
238 data_conflict : 1,
239 capacity_writes : 1,
240 capacity_reads : 1;
241 };
242 u64 value;
243 };
244
245 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
246
247 /* Same as HSW, plus TSC */
248
249 struct pebs_record_skl {
250 u64 flags, ip;
251 u64 ax, bx, cx, dx;
252 u64 si, di, bp, sp;
253 u64 r8, r9, r10, r11;
254 u64 r12, r13, r14, r15;
255 u64 status, dla, dse, lat;
256 u64 real_ip, tsx_tuning;
257 u64 tsc;
258 };
259
260 void init_debug_store_on_cpu(int cpu)
261 {
262 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
263
264 if (!ds)
265 return;
266
267 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
268 (u32)((u64)(unsigned long)ds),
269 (u32)((u64)(unsigned long)ds >> 32));
270 }
271
272 void fini_debug_store_on_cpu(int cpu)
273 {
274 if (!per_cpu(cpu_hw_events, cpu).ds)
275 return;
276
277 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
278 }
279
280 static DEFINE_PER_CPU(void *, insn_buffer);
281
282 static int alloc_pebs_buffer(int cpu)
283 {
284 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
285 int node = cpu_to_node(cpu);
286 int max;
287 void *buffer, *ibuffer;
288
289 if (!x86_pmu.pebs)
290 return 0;
291
292 buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
293 if (unlikely(!buffer))
294 return -ENOMEM;
295
296 /*
297 * HSW+ already provides us the eventing ip; no need to allocate this
298 * buffer then.
299 */
300 if (x86_pmu.intel_cap.pebs_format < 2) {
301 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
302 if (!ibuffer) {
303 kfree(buffer);
304 return -ENOMEM;
305 }
306 per_cpu(insn_buffer, cpu) = ibuffer;
307 }
308
309 max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
310
311 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
312 ds->pebs_index = ds->pebs_buffer_base;
313 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
314 max * x86_pmu.pebs_record_size;
315
316 return 0;
317 }
318
319 static void release_pebs_buffer(int cpu)
320 {
321 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
322
323 if (!ds || !x86_pmu.pebs)
324 return;
325
326 kfree(per_cpu(insn_buffer, cpu));
327 per_cpu(insn_buffer, cpu) = NULL;
328
329 kfree((void *)(unsigned long)ds->pebs_buffer_base);
330 ds->pebs_buffer_base = 0;
331 }
332
333 static int alloc_bts_buffer(int cpu)
334 {
335 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
336 int node = cpu_to_node(cpu);
337 int max, thresh;
338 void *buffer;
339
340 if (!x86_pmu.bts)
341 return 0;
342
343 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
344 if (unlikely(!buffer)) {
345 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
346 return -ENOMEM;
347 }
348
349 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
350 thresh = max / 16;
351
352 ds->bts_buffer_base = (u64)(unsigned long)buffer;
353 ds->bts_index = ds->bts_buffer_base;
354 ds->bts_absolute_maximum = ds->bts_buffer_base +
355 max * BTS_RECORD_SIZE;
356 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
357 thresh * BTS_RECORD_SIZE;
358
359 return 0;
360 }
361
362 static void release_bts_buffer(int cpu)
363 {
364 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
365
366 if (!ds || !x86_pmu.bts)
367 return;
368
369 kfree((void *)(unsigned long)ds->bts_buffer_base);
370 ds->bts_buffer_base = 0;
371 }
372
373 static int alloc_ds_buffer(int cpu)
374 {
375 int node = cpu_to_node(cpu);
376 struct debug_store *ds;
377
378 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
379 if (unlikely(!ds))
380 return -ENOMEM;
381
382 per_cpu(cpu_hw_events, cpu).ds = ds;
383
384 return 0;
385 }
386
387 static void release_ds_buffer(int cpu)
388 {
389 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
390
391 if (!ds)
392 return;
393
394 per_cpu(cpu_hw_events, cpu).ds = NULL;
395 kfree(ds);
396 }
397
398 void release_ds_buffers(void)
399 {
400 int cpu;
401
402 if (!x86_pmu.bts && !x86_pmu.pebs)
403 return;
404
405 get_online_cpus();
406 for_each_online_cpu(cpu)
407 fini_debug_store_on_cpu(cpu);
408
409 for_each_possible_cpu(cpu) {
410 release_pebs_buffer(cpu);
411 release_bts_buffer(cpu);
412 release_ds_buffer(cpu);
413 }
414 put_online_cpus();
415 }
416
417 void reserve_ds_buffers(void)
418 {
419 int bts_err = 0, pebs_err = 0;
420 int cpu;
421
422 x86_pmu.bts_active = 0;
423 x86_pmu.pebs_active = 0;
424
425 if (!x86_pmu.bts && !x86_pmu.pebs)
426 return;
427
428 if (!x86_pmu.bts)
429 bts_err = 1;
430
431 if (!x86_pmu.pebs)
432 pebs_err = 1;
433
434 get_online_cpus();
435
436 for_each_possible_cpu(cpu) {
437 if (alloc_ds_buffer(cpu)) {
438 bts_err = 1;
439 pebs_err = 1;
440 }
441
442 if (!bts_err && alloc_bts_buffer(cpu))
443 bts_err = 1;
444
445 if (!pebs_err && alloc_pebs_buffer(cpu))
446 pebs_err = 1;
447
448 if (bts_err && pebs_err)
449 break;
450 }
451
452 if (bts_err) {
453 for_each_possible_cpu(cpu)
454 release_bts_buffer(cpu);
455 }
456
457 if (pebs_err) {
458 for_each_possible_cpu(cpu)
459 release_pebs_buffer(cpu);
460 }
461
462 if (bts_err && pebs_err) {
463 for_each_possible_cpu(cpu)
464 release_ds_buffer(cpu);
465 } else {
466 if (x86_pmu.bts && !bts_err)
467 x86_pmu.bts_active = 1;
468
469 if (x86_pmu.pebs && !pebs_err)
470 x86_pmu.pebs_active = 1;
471
472 for_each_online_cpu(cpu)
473 init_debug_store_on_cpu(cpu);
474 }
475
476 put_online_cpus();
477 }
478
479 /*
480 * BTS
481 */
482
483 struct event_constraint bts_constraint =
484 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
485
486 void intel_pmu_enable_bts(u64 config)
487 {
488 unsigned long debugctlmsr;
489
490 debugctlmsr = get_debugctlmsr();
491
492 debugctlmsr |= DEBUGCTLMSR_TR;
493 debugctlmsr |= DEBUGCTLMSR_BTS;
494 if (config & ARCH_PERFMON_EVENTSEL_INT)
495 debugctlmsr |= DEBUGCTLMSR_BTINT;
496
497 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
498 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
499
500 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
501 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
502
503 update_debugctlmsr(debugctlmsr);
504 }
505
506 void intel_pmu_disable_bts(void)
507 {
508 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
509 unsigned long debugctlmsr;
510
511 if (!cpuc->ds)
512 return;
513
514 debugctlmsr = get_debugctlmsr();
515
516 debugctlmsr &=
517 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
518 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
519
520 update_debugctlmsr(debugctlmsr);
521 }
522
523 int intel_pmu_drain_bts_buffer(void)
524 {
525 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
526 struct debug_store *ds = cpuc->ds;
527 struct bts_record {
528 u64 from;
529 u64 to;
530 u64 flags;
531 };
532 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
533 struct bts_record *at, *base, *top;
534 struct perf_output_handle handle;
535 struct perf_event_header header;
536 struct perf_sample_data data;
537 unsigned long skip = 0;
538 struct pt_regs regs;
539
540 if (!event)
541 return 0;
542
543 if (!x86_pmu.bts_active)
544 return 0;
545
546 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
547 top = (struct bts_record *)(unsigned long)ds->bts_index;
548
549 if (top <= base)
550 return 0;
551
552 memset(&regs, 0, sizeof(regs));
553
554 ds->bts_index = ds->bts_buffer_base;
555
556 perf_sample_data_init(&data, 0, event->hw.last_period);
557
558 /*
559 * BTS leaks kernel addresses in branches across the cpl boundary,
560 * such as traps or system calls, so unless the user is asking for
561 * kernel tracing (and right now it's not possible), we'd need to
562 * filter them out. But first we need to count how many of those we
563 * have in the current batch. This is an extra O(n) pass, however,
564 * it's much faster than the other one especially considering that
565 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
566 * alloc_bts_buffer()).
567 */
568 for (at = base; at < top; at++) {
569 /*
570 * Note that right now *this* BTS code only works if
571 * attr::exclude_kernel is set, but let's keep this extra
572 * check here in case that changes.
573 */
574 if (event->attr.exclude_kernel &&
575 (kernel_ip(at->from) || kernel_ip(at->to)))
576 skip++;
577 }
578
579 /*
580 * Prepare a generic sample, i.e. fill in the invariant fields.
581 * We will overwrite the from and to address before we output
582 * the sample.
583 */
584 rcu_read_lock();
585 perf_prepare_sample(&header, &data, event, &regs);
586
587 if (perf_output_begin(&handle, event, header.size *
588 (top - base - skip)))
589 goto unlock;
590
591 for (at = base; at < top; at++) {
592 /* Filter out any records that contain kernel addresses. */
593 if (event->attr.exclude_kernel &&
594 (kernel_ip(at->from) || kernel_ip(at->to)))
595 continue;
596
597 data.ip = at->from;
598 data.addr = at->to;
599
600 perf_output_sample(&handle, &header, &data, event);
601 }
602
603 perf_output_end(&handle);
604
605 /* There's new data available. */
606 event->hw.interrupts++;
607 event->pending_kill = POLL_IN;
608 unlock:
609 rcu_read_unlock();
610 return 1;
611 }
612
613 static inline void intel_pmu_drain_pebs_buffer(void)
614 {
615 struct pt_regs regs;
616
617 x86_pmu.drain_pebs(&regs);
618 }
619
620 /*
621 * PEBS
622 */
623 struct event_constraint intel_core2_pebs_event_constraints[] = {
624 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
625 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
626 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
627 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
628 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
629 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
630 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
631 EVENT_CONSTRAINT_END
632 };
633
634 struct event_constraint intel_atom_pebs_event_constraints[] = {
635 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
636 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
637 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
638 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
639 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
640 /* Allow all events as PEBS with no flags */
641 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
642 EVENT_CONSTRAINT_END
643 };
644
645 struct event_constraint intel_slm_pebs_event_constraints[] = {
646 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
647 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
648 /* Allow all events as PEBS with no flags */
649 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
650 EVENT_CONSTRAINT_END
651 };
652
653 struct event_constraint intel_glm_pebs_event_constraints[] = {
654 /* Allow all events as PEBS with no flags */
655 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
656 EVENT_CONSTRAINT_END
657 };
658
659 struct event_constraint intel_glp_pebs_event_constraints[] = {
660 /* Allow all events as PEBS with no flags */
661 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
662 EVENT_CONSTRAINT_END
663 };
664
665 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
666 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
667 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
668 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
669 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
670 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
671 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
672 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
673 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
674 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
675 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
676 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
677 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
678 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
679 EVENT_CONSTRAINT_END
680 };
681
682 struct event_constraint intel_westmere_pebs_event_constraints[] = {
683 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
684 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
685 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
686 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
687 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
688 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
689 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
690 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
691 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
692 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
693 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
694 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
695 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
696 EVENT_CONSTRAINT_END
697 };
698
699 struct event_constraint intel_snb_pebs_event_constraints[] = {
700 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
701 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
702 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
703 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
704 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
705 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
706 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
707 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
708 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
709 /* Allow all events as PEBS with no flags */
710 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
711 EVENT_CONSTRAINT_END
712 };
713
714 struct event_constraint intel_ivb_pebs_event_constraints[] = {
715 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
716 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
717 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
718 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
719 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
720 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
721 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
722 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
723 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
724 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
725 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
726 /* Allow all events as PEBS with no flags */
727 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
728 EVENT_CONSTRAINT_END
729 };
730
731 struct event_constraint intel_hsw_pebs_event_constraints[] = {
732 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
733 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
734 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
735 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
736 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
737 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
738 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
739 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
740 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
741 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
742 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
743 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
744 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
745 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
746 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
747 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
748 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
749 /* Allow all events as PEBS with no flags */
750 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
751 EVENT_CONSTRAINT_END
752 };
753
754 struct event_constraint intel_bdw_pebs_event_constraints[] = {
755 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
756 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
757 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
758 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
759 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
760 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
761 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
762 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
763 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
764 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
765 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
766 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
767 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
768 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
769 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
770 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
771 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
772 /* Allow all events as PEBS with no flags */
773 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
774 EVENT_CONSTRAINT_END
775 };
776
777
778 struct event_constraint intel_skl_pebs_event_constraints[] = {
779 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
780 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
781 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
782 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
783 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
784 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
785 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
786 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
787 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
788 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
793 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
794 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
795 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
796 /* Allow all events as PEBS with no flags */
797 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
798 EVENT_CONSTRAINT_END
799 };
800
801 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
802 {
803 struct event_constraint *c;
804
805 if (!event->attr.precise_ip)
806 return NULL;
807
808 if (x86_pmu.pebs_constraints) {
809 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
810 if ((event->hw.config & c->cmask) == c->code) {
811 event->hw.flags |= c->flags;
812 return c;
813 }
814 }
815 }
816
817 return &emptyconstraint;
818 }
819
820 /*
821 * We need the sched_task callback even for per-cpu events when we use
822 * the large interrupt threshold, such that we can provide PID and TID
823 * to PEBS samples.
824 */
825 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
826 {
827 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
828 }
829
830 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
831 {
832 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
833
834 if (!sched_in && pebs_needs_sched_cb(cpuc))
835 intel_pmu_drain_pebs_buffer();
836 }
837
838 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
839 {
840 struct debug_store *ds = cpuc->ds;
841 u64 threshold;
842
843 if (cpuc->n_pebs == cpuc->n_large_pebs) {
844 threshold = ds->pebs_absolute_maximum -
845 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
846 } else {
847 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
848 }
849
850 ds->pebs_interrupt_threshold = threshold;
851 }
852
853 static void
854 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
855 {
856 /*
857 * Make sure we get updated with the first PEBS
858 * event. It will trigger also during removal, but
859 * that does not hurt:
860 */
861 bool update = cpuc->n_pebs == 1;
862
863 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
864 if (!needed_cb)
865 perf_sched_cb_inc(pmu);
866 else
867 perf_sched_cb_dec(pmu);
868
869 update = true;
870 }
871
872 if (update)
873 pebs_update_threshold(cpuc);
874 }
875
876 void intel_pmu_pebs_add(struct perf_event *event)
877 {
878 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
879 struct hw_perf_event *hwc = &event->hw;
880 bool needed_cb = pebs_needs_sched_cb(cpuc);
881
882 cpuc->n_pebs++;
883 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
884 cpuc->n_large_pebs++;
885
886 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
887 }
888
889 void intel_pmu_pebs_enable(struct perf_event *event)
890 {
891 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
892 struct hw_perf_event *hwc = &event->hw;
893 struct debug_store *ds = cpuc->ds;
894
895 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
896
897 cpuc->pebs_enabled |= 1ULL << hwc->idx;
898
899 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
900 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
901 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
902 cpuc->pebs_enabled |= 1ULL << 63;
903
904 /*
905 * Use auto-reload if possible to save a MSR write in the PMI.
906 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
907 */
908 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
909 ds->pebs_event_reset[hwc->idx] =
910 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
911 } else {
912 ds->pebs_event_reset[hwc->idx] = 0;
913 }
914 }
915
916 void intel_pmu_pebs_del(struct perf_event *event)
917 {
918 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
919 struct hw_perf_event *hwc = &event->hw;
920 bool needed_cb = pebs_needs_sched_cb(cpuc);
921
922 cpuc->n_pebs--;
923 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
924 cpuc->n_large_pebs--;
925
926 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
927 }
928
929 void intel_pmu_pebs_disable(struct perf_event *event)
930 {
931 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
932 struct hw_perf_event *hwc = &event->hw;
933
934 if (cpuc->n_pebs == cpuc->n_large_pebs)
935 intel_pmu_drain_pebs_buffer();
936
937 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
938
939 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
940 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
941 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
942 cpuc->pebs_enabled &= ~(1ULL << 63);
943
944 if (cpuc->enabled)
945 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
946
947 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
948 }
949
950 void intel_pmu_pebs_enable_all(void)
951 {
952 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
953
954 if (cpuc->pebs_enabled)
955 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
956 }
957
958 void intel_pmu_pebs_disable_all(void)
959 {
960 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
961
962 if (cpuc->pebs_enabled)
963 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
964 }
965
966 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
967 {
968 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
969 unsigned long from = cpuc->lbr_entries[0].from;
970 unsigned long old_to, to = cpuc->lbr_entries[0].to;
971 unsigned long ip = regs->ip;
972 int is_64bit = 0;
973 void *kaddr;
974 int size;
975
976 /*
977 * We don't need to fixup if the PEBS assist is fault like
978 */
979 if (!x86_pmu.intel_cap.pebs_trap)
980 return 1;
981
982 /*
983 * No LBR entry, no basic block, no rewinding
984 */
985 if (!cpuc->lbr_stack.nr || !from || !to)
986 return 0;
987
988 /*
989 * Basic blocks should never cross user/kernel boundaries
990 */
991 if (kernel_ip(ip) != kernel_ip(to))
992 return 0;
993
994 /*
995 * unsigned math, either ip is before the start (impossible) or
996 * the basic block is larger than 1 page (sanity)
997 */
998 if ((ip - to) > PEBS_FIXUP_SIZE)
999 return 0;
1000
1001 /*
1002 * We sampled a branch insn, rewind using the LBR stack
1003 */
1004 if (ip == to) {
1005 set_linear_ip(regs, from);
1006 return 1;
1007 }
1008
1009 size = ip - to;
1010 if (!kernel_ip(ip)) {
1011 int bytes;
1012 u8 *buf = this_cpu_read(insn_buffer);
1013
1014 /* 'size' must fit our buffer, see above */
1015 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1016 if (bytes != 0)
1017 return 0;
1018
1019 kaddr = buf;
1020 } else {
1021 kaddr = (void *)to;
1022 }
1023
1024 do {
1025 struct insn insn;
1026
1027 old_to = to;
1028
1029 #ifdef CONFIG_X86_64
1030 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1031 #endif
1032 insn_init(&insn, kaddr, size, is_64bit);
1033 insn_get_length(&insn);
1034 /*
1035 * Make sure there was not a problem decoding the
1036 * instruction and getting the length. This is
1037 * doubly important because we have an infinite
1038 * loop if insn.length=0.
1039 */
1040 if (!insn.length)
1041 break;
1042
1043 to += insn.length;
1044 kaddr += insn.length;
1045 size -= insn.length;
1046 } while (to < ip);
1047
1048 if (to == ip) {
1049 set_linear_ip(regs, old_to);
1050 return 1;
1051 }
1052
1053 /*
1054 * Even though we decoded the basic block, the instruction stream
1055 * never matched the given IP, either the TO or the IP got corrupted.
1056 */
1057 return 0;
1058 }
1059
1060 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1061 {
1062 if (pebs->tsx_tuning) {
1063 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1064 return tsx.cycles_last_block;
1065 }
1066 return 0;
1067 }
1068
1069 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1070 {
1071 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1072
1073 /* For RTM XABORTs also log the abort code from AX */
1074 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1075 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1076 return txn;
1077 }
1078
1079 static void setup_pebs_sample_data(struct perf_event *event,
1080 struct pt_regs *iregs, void *__pebs,
1081 struct perf_sample_data *data,
1082 struct pt_regs *regs)
1083 {
1084 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1085 (PERF_X86_EVENT_PEBS_ST_HSW | \
1086 PERF_X86_EVENT_PEBS_LD_HSW | \
1087 PERF_X86_EVENT_PEBS_NA_HSW)
1088 /*
1089 * We cast to the biggest pebs_record but are careful not to
1090 * unconditionally access the 'extra' entries.
1091 */
1092 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1093 struct pebs_record_skl *pebs = __pebs;
1094 u64 sample_type;
1095 int fll, fst, dsrc;
1096 int fl = event->hw.flags;
1097
1098 if (pebs == NULL)
1099 return;
1100
1101 sample_type = event->attr.sample_type;
1102 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1103
1104 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1105 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1106
1107 perf_sample_data_init(data, 0, event->hw.last_period);
1108
1109 data->period = event->hw.last_period;
1110
1111 /*
1112 * Use latency for weight (only avail with PEBS-LL)
1113 */
1114 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1115 data->weight = pebs->lat;
1116
1117 /*
1118 * data.data_src encodes the data source
1119 */
1120 if (dsrc) {
1121 u64 val = PERF_MEM_NA;
1122 if (fll)
1123 val = load_latency_data(pebs->dse);
1124 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1125 val = precise_datala_hsw(event, pebs->dse);
1126 else if (fst)
1127 val = precise_store_data(pebs->dse);
1128 data->data_src.val = val;
1129 }
1130
1131 /*
1132 * We use the interrupt regs as a base because the PEBS record does not
1133 * contain a full regs set, specifically it seems to lack segment
1134 * descriptors, which get used by things like user_mode().
1135 *
1136 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1137 *
1138 * We must however always use BP,SP from iregs for the unwinder to stay
1139 * sane; the record BP,SP can point into thin air when the record is
1140 * from a previous PMI context or an (I)RET happend between the record
1141 * and PMI.
1142 */
1143 *regs = *iregs;
1144 regs->flags = pebs->flags;
1145 set_linear_ip(regs, pebs->ip);
1146
1147 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1148 regs->ax = pebs->ax;
1149 regs->bx = pebs->bx;
1150 regs->cx = pebs->cx;
1151 regs->dx = pebs->dx;
1152 regs->si = pebs->si;
1153 regs->di = pebs->di;
1154
1155 /*
1156 * Per the above; only set BP,SP if we don't need callchains.
1157 *
1158 * XXX: does this make sense?
1159 */
1160 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
1161 regs->bp = pebs->bp;
1162 regs->sp = pebs->sp;
1163 }
1164
1165 /*
1166 * Preserve PERF_EFLAGS_VM from set_linear_ip().
1167 */
1168 regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1169 #ifndef CONFIG_X86_32
1170 regs->r8 = pebs->r8;
1171 regs->r9 = pebs->r9;
1172 regs->r10 = pebs->r10;
1173 regs->r11 = pebs->r11;
1174 regs->r12 = pebs->r12;
1175 regs->r13 = pebs->r13;
1176 regs->r14 = pebs->r14;
1177 regs->r15 = pebs->r15;
1178 #endif
1179 }
1180
1181 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1182 regs->ip = pebs->real_ip;
1183 regs->flags |= PERF_EFLAGS_EXACT;
1184 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1185 regs->flags |= PERF_EFLAGS_EXACT;
1186 else
1187 regs->flags &= ~PERF_EFLAGS_EXACT;
1188
1189 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1190 x86_pmu.intel_cap.pebs_format >= 1)
1191 data->addr = pebs->dla;
1192
1193 if (x86_pmu.intel_cap.pebs_format >= 2) {
1194 /* Only set the TSX weight when no memory weight. */
1195 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1196 data->weight = intel_hsw_weight(pebs);
1197
1198 if (sample_type & PERF_SAMPLE_TRANSACTION)
1199 data->txn = intel_hsw_transaction(pebs);
1200 }
1201
1202 /*
1203 * v3 supplies an accurate time stamp, so we use that
1204 * for the time stamp.
1205 *
1206 * We can only do this for the default trace clock.
1207 */
1208 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1209 event->attr.use_clockid == 0)
1210 data->time = native_sched_clock_from_tsc(pebs->tsc);
1211
1212 if (has_branch_stack(event))
1213 data->br_stack = &cpuc->lbr_stack;
1214 }
1215
1216 static inline void *
1217 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1218 {
1219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1220 void *at;
1221 u64 pebs_status;
1222
1223 /*
1224 * fmt0 does not have a status bitfield (does not use
1225 * perf_record_nhm format)
1226 */
1227 if (x86_pmu.intel_cap.pebs_format < 1)
1228 return base;
1229
1230 if (base == NULL)
1231 return NULL;
1232
1233 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1234 struct pebs_record_nhm *p = at;
1235
1236 if (test_bit(bit, (unsigned long *)&p->status)) {
1237 /* PEBS v3 has accurate status bits */
1238 if (x86_pmu.intel_cap.pebs_format >= 3)
1239 return at;
1240
1241 if (p->status == (1 << bit))
1242 return at;
1243
1244 /* clear non-PEBS bit and re-check */
1245 pebs_status = p->status & cpuc->pebs_enabled;
1246 pebs_status &= PEBS_COUNTER_MASK;
1247 if (pebs_status == (1 << bit))
1248 return at;
1249 }
1250 }
1251 return NULL;
1252 }
1253
1254 static void __intel_pmu_pebs_event(struct perf_event *event,
1255 struct pt_regs *iregs,
1256 void *base, void *top,
1257 int bit, int count)
1258 {
1259 struct perf_sample_data data;
1260 struct pt_regs regs;
1261 void *at = get_next_pebs_record_by_bit(base, top, bit);
1262
1263 if (!intel_pmu_save_and_restart(event) &&
1264 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1265 return;
1266
1267 while (count > 1) {
1268 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1269 perf_event_output(event, &data, &regs);
1270 at += x86_pmu.pebs_record_size;
1271 at = get_next_pebs_record_by_bit(at, top, bit);
1272 count--;
1273 }
1274
1275 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1276
1277 /*
1278 * All but the last records are processed.
1279 * The last one is left to be able to call the overflow handler.
1280 */
1281 if (perf_event_overflow(event, &data, &regs)) {
1282 x86_pmu_stop(event, 0);
1283 return;
1284 }
1285
1286 }
1287
1288 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1289 {
1290 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1291 struct debug_store *ds = cpuc->ds;
1292 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1293 struct pebs_record_core *at, *top;
1294 int n;
1295
1296 if (!x86_pmu.pebs_active)
1297 return;
1298
1299 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1300 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1301
1302 /*
1303 * Whatever else happens, drain the thing
1304 */
1305 ds->pebs_index = ds->pebs_buffer_base;
1306
1307 if (!test_bit(0, cpuc->active_mask))
1308 return;
1309
1310 WARN_ON_ONCE(!event);
1311
1312 if (!event->attr.precise_ip)
1313 return;
1314
1315 n = top - at;
1316 if (n <= 0)
1317 return;
1318
1319 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1320 }
1321
1322 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1323 {
1324 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1325 struct debug_store *ds = cpuc->ds;
1326 struct perf_event *event;
1327 void *base, *at, *top;
1328 short counts[MAX_PEBS_EVENTS] = {};
1329 short error[MAX_PEBS_EVENTS] = {};
1330 int bit, i;
1331
1332 if (!x86_pmu.pebs_active)
1333 return;
1334
1335 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1336 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1337
1338 ds->pebs_index = ds->pebs_buffer_base;
1339
1340 if (unlikely(base >= top))
1341 return;
1342
1343 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1344 struct pebs_record_nhm *p = at;
1345 u64 pebs_status;
1346
1347 pebs_status = p->status & cpuc->pebs_enabled;
1348 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1349
1350 /* PEBS v3 has more accurate status bits */
1351 if (x86_pmu.intel_cap.pebs_format >= 3) {
1352 for_each_set_bit(bit, (unsigned long *)&pebs_status,
1353 x86_pmu.max_pebs_events)
1354 counts[bit]++;
1355
1356 continue;
1357 }
1358
1359 /*
1360 * On some CPUs the PEBS status can be zero when PEBS is
1361 * racing with clearing of GLOBAL_STATUS.
1362 *
1363 * Normally we would drop that record, but in the
1364 * case when there is only a single active PEBS event
1365 * we can assume it's for that event.
1366 */
1367 if (!pebs_status && cpuc->pebs_enabled &&
1368 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1369 pebs_status = cpuc->pebs_enabled;
1370
1371 bit = find_first_bit((unsigned long *)&pebs_status,
1372 x86_pmu.max_pebs_events);
1373 if (bit >= x86_pmu.max_pebs_events)
1374 continue;
1375
1376 /*
1377 * The PEBS hardware does not deal well with the situation
1378 * when events happen near to each other and multiple bits
1379 * are set. But it should happen rarely.
1380 *
1381 * If these events include one PEBS and multiple non-PEBS
1382 * events, it doesn't impact PEBS record. The record will
1383 * be handled normally. (slow path)
1384 *
1385 * If these events include two or more PEBS events, the
1386 * records for the events can be collapsed into a single
1387 * one, and it's not possible to reconstruct all events
1388 * that caused the PEBS record. It's called collision.
1389 * If collision happened, the record will be dropped.
1390 */
1391 if (p->status != (1ULL << bit)) {
1392 for_each_set_bit(i, (unsigned long *)&pebs_status,
1393 x86_pmu.max_pebs_events)
1394 error[i]++;
1395 continue;
1396 }
1397
1398 counts[bit]++;
1399 }
1400
1401 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1402 if ((counts[bit] == 0) && (error[bit] == 0))
1403 continue;
1404
1405 event = cpuc->events[bit];
1406 if (WARN_ON_ONCE(!event))
1407 continue;
1408
1409 if (WARN_ON_ONCE(!event->attr.precise_ip))
1410 continue;
1411
1412 /* log dropped samples number */
1413 if (error[bit]) {
1414 perf_log_lost_samples(event, error[bit]);
1415
1416 if (perf_event_account_interrupt(event))
1417 x86_pmu_stop(event, 0);
1418 }
1419
1420 if (counts[bit]) {
1421 __intel_pmu_pebs_event(event, iregs, base,
1422 top, bit, counts[bit]);
1423 }
1424 }
1425 }
1426
1427 /*
1428 * BTS, PEBS probe and setup
1429 */
1430
1431 void __init intel_ds_init(void)
1432 {
1433 /*
1434 * No support for 32bit formats
1435 */
1436 if (!boot_cpu_has(X86_FEATURE_DTES64))
1437 return;
1438
1439 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1440 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1441 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1442 if (x86_pmu.pebs) {
1443 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1444 int format = x86_pmu.intel_cap.pebs_format;
1445
1446 switch (format) {
1447 case 0:
1448 pr_cont("PEBS fmt0%c, ", pebs_type);
1449 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1450 /*
1451 * Using >PAGE_SIZE buffers makes the WRMSR to
1452 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1453 * mysteriously hang on Core2.
1454 *
1455 * As a workaround, we don't do this.
1456 */
1457 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1458 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1459 break;
1460
1461 case 1:
1462 pr_cont("PEBS fmt1%c, ", pebs_type);
1463 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1464 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1465 break;
1466
1467 case 2:
1468 pr_cont("PEBS fmt2%c, ", pebs_type);
1469 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1470 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1471 break;
1472
1473 case 3:
1474 pr_cont("PEBS fmt3%c, ", pebs_type);
1475 x86_pmu.pebs_record_size =
1476 sizeof(struct pebs_record_skl);
1477 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1478 x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1479 break;
1480
1481 default:
1482 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1483 x86_pmu.pebs = 0;
1484 }
1485 }
1486 }
1487
1488 void perf_restore_debug_store(void)
1489 {
1490 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1491
1492 if (!x86_pmu.bts && !x86_pmu.pebs)
1493 return;
1494
1495 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1496 }