]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/events/intel/ds.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10
11 #include "../perf_event.h"
12
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
15
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE 24
18
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
20
21 /*
22 * pebs_record_32 for p4 and core not supported
23
24 struct pebs_record_32 {
25 u32 flags, ip;
26 u32 ax, bc, cx, dx;
27 u32 si, di, bp, sp;
28 };
29
30 */
31
32 union intel_x86_pebs_dse {
33 u64 val;
34 struct {
35 unsigned int ld_dse:4;
36 unsigned int ld_stlb_miss:1;
37 unsigned int ld_locked:1;
38 unsigned int ld_reserved:26;
39 };
40 struct {
41 unsigned int st_l1d_hit:1;
42 unsigned int st_reserved1:3;
43 unsigned int st_stlb_miss:1;
44 unsigned int st_locked:1;
45 unsigned int st_reserved2:26;
46 };
47 };
48
49
50 /*
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
53 */
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
59
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source[] = {
62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 };
79
80 /* Patch up minor differences in the bits */
81 void __init intel_pmu_pebs_data_source_nhm(void)
82 {
83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86 }
87
88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
89 {
90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
91
92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 }
98
99 static u64 precise_store_data(u64 status)
100 {
101 union intel_x86_pebs_dse dse;
102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
103
104 dse.val = status;
105
106 /*
107 * bit 4: TLB access
108 * 1 = stored missed 2nd level TLB
109 *
110 * so it either hit the walker or the OS
111 * otherwise hit 2nd level TLB
112 */
113 if (dse.st_stlb_miss)
114 val |= P(TLB, MISS);
115 else
116 val |= P(TLB, HIT);
117
118 /*
119 * bit 0: hit L1 data cache
120 * if not set, then all we know is that
121 * it missed L1D
122 */
123 if (dse.st_l1d_hit)
124 val |= P(LVL, HIT);
125 else
126 val |= P(LVL, MISS);
127
128 /*
129 * bit 5: Locked prefix
130 */
131 if (dse.st_locked)
132 val |= P(LOCK, LOCKED);
133
134 return val;
135 }
136
137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 {
139 union perf_mem_data_src dse;
140
141 dse.val = PERF_MEM_NA;
142
143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
144 dse.mem_op = PERF_MEM_OP_STORE;
145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
146 dse.mem_op = PERF_MEM_OP_LOAD;
147
148 /*
149 * L1 info only valid for following events:
150 *
151 * MEM_UOPS_RETIRED.STLB_MISS_STORES
152 * MEM_UOPS_RETIRED.LOCK_STORES
153 * MEM_UOPS_RETIRED.SPLIT_STORES
154 * MEM_UOPS_RETIRED.ALL_STORES
155 */
156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
157 if (status & 1)
158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
159 else
160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
161 }
162 return dse.val;
163 }
164
165 static u64 load_latency_data(u64 status)
166 {
167 union intel_x86_pebs_dse dse;
168 u64 val;
169
170 dse.val = status;
171
172 /*
173 * use the mapping table for bit 0-3
174 */
175 val = pebs_data_source[dse.ld_dse];
176
177 /*
178 * Nehalem models do not support TLB, Lock infos
179 */
180 if (x86_pmu.pebs_no_tlb) {
181 val |= P(TLB, NA) | P(LOCK, NA);
182 return val;
183 }
184 /*
185 * bit 4: TLB access
186 * 0 = did not miss 2nd level TLB
187 * 1 = missed 2nd level TLB
188 */
189 if (dse.ld_stlb_miss)
190 val |= P(TLB, MISS) | P(TLB, L2);
191 else
192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
193
194 /*
195 * bit 5: locked prefix
196 */
197 if (dse.ld_locked)
198 val |= P(LOCK, LOCKED);
199
200 return val;
201 }
202
203 struct pebs_record_core {
204 u64 flags, ip;
205 u64 ax, bx, cx, dx;
206 u64 si, di, bp, sp;
207 u64 r8, r9, r10, r11;
208 u64 r12, r13, r14, r15;
209 };
210
211 struct pebs_record_nhm {
212 u64 flags, ip;
213 u64 ax, bx, cx, dx;
214 u64 si, di, bp, sp;
215 u64 r8, r9, r10, r11;
216 u64 r12, r13, r14, r15;
217 u64 status, dla, dse, lat;
218 };
219
220 /*
221 * Same as pebs_record_nhm, with two additional fields.
222 */
223 struct pebs_record_hsw {
224 u64 flags, ip;
225 u64 ax, bx, cx, dx;
226 u64 si, di, bp, sp;
227 u64 r8, r9, r10, r11;
228 u64 r12, r13, r14, r15;
229 u64 status, dla, dse, lat;
230 u64 real_ip, tsx_tuning;
231 };
232
233 union hsw_tsx_tuning {
234 struct {
235 u32 cycles_last_block : 32,
236 hle_abort : 1,
237 rtm_abort : 1,
238 instruction_abort : 1,
239 non_instruction_abort : 1,
240 retry : 1,
241 data_conflict : 1,
242 capacity_writes : 1,
243 capacity_reads : 1;
244 };
245 u64 value;
246 };
247
248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
249
250 /* Same as HSW, plus TSC */
251
252 struct pebs_record_skl {
253 u64 flags, ip;
254 u64 ax, bx, cx, dx;
255 u64 si, di, bp, sp;
256 u64 r8, r9, r10, r11;
257 u64 r12, r13, r14, r15;
258 u64 status, dla, dse, lat;
259 u64 real_ip, tsx_tuning;
260 u64 tsc;
261 };
262
263 void init_debug_store_on_cpu(int cpu)
264 {
265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
266
267 if (!ds)
268 return;
269
270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
271 (u32)((u64)(unsigned long)ds),
272 (u32)((u64)(unsigned long)ds >> 32));
273 }
274
275 void fini_debug_store_on_cpu(int cpu)
276 {
277 if (!per_cpu(cpu_hw_events, cpu).ds)
278 return;
279
280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
281 }
282
283 static DEFINE_PER_CPU(void *, insn_buffer);
284
285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286 {
287 unsigned long start = (unsigned long)cea;
288 phys_addr_t pa;
289 size_t msz = 0;
290
291 pa = virt_to_phys(addr);
292
293 preempt_disable();
294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
295 cea_set_pte(cea, pa, prot);
296
297 /*
298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299 * all TLB entries for it.
300 */
301 flush_tlb_kernel_range(start, start + size);
302 preempt_enable();
303 }
304
305 static void ds_clear_cea(void *cea, size_t size)
306 {
307 unsigned long start = (unsigned long)cea;
308 size_t msz = 0;
309
310 preempt_disable();
311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
312 cea_set_pte(cea, 0, PAGE_NONE);
313
314 flush_tlb_kernel_range(start, start + size);
315 preempt_enable();
316 }
317
318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
319 {
320 unsigned int order = get_order(size);
321 int node = cpu_to_node(cpu);
322 struct page *page;
323
324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
325 return page ? page_address(page) : NULL;
326 }
327
328 static void dsfree_pages(const void *buffer, size_t size)
329 {
330 if (buffer)
331 free_pages((unsigned long)buffer, get_order(size));
332 }
333
334 static int alloc_pebs_buffer(int cpu)
335 {
336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
337 struct debug_store *ds = hwev->ds;
338 size_t bsiz = x86_pmu.pebs_buffer_size;
339 int max, node = cpu_to_node(cpu);
340 void *buffer, *ibuffer, *cea;
341
342 if (!x86_pmu.pebs)
343 return 0;
344
345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 if (unlikely(!buffer))
347 return -ENOMEM;
348
349 /*
350 * HSW+ already provides us the eventing ip; no need to allocate this
351 * buffer then.
352 */
353 if (x86_pmu.intel_cap.pebs_format < 2) {
354 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
355 if (!ibuffer) {
356 dsfree_pages(buffer, bsiz);
357 return -ENOMEM;
358 }
359 per_cpu(insn_buffer, cpu) = ibuffer;
360 }
361 hwev->ds_pebs_vaddr = buffer;
362 /* Update the cpu entry area mapping */
363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
364 ds->pebs_buffer_base = (unsigned long) cea;
365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366 ds->pebs_index = ds->pebs_buffer_base;
367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 return 0;
370 }
371
372 static void release_pebs_buffer(int cpu)
373 {
374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
375 struct debug_store *ds = hwev->ds;
376 void *cea;
377
378 if (!ds || !x86_pmu.pebs)
379 return;
380
381 kfree(per_cpu(insn_buffer, cpu));
382 per_cpu(insn_buffer, cpu) = NULL;
383
384 /* Clear the fixmap */
385 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
386 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
387 ds->pebs_buffer_base = 0;
388 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
389 hwev->ds_pebs_vaddr = NULL;
390 }
391
392 static int alloc_bts_buffer(int cpu)
393 {
394 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
395 struct debug_store *ds = hwev->ds;
396 void *buffer, *cea;
397 int max;
398
399 if (!x86_pmu.bts)
400 return 0;
401
402 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
403 if (unlikely(!buffer)) {
404 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
405 return -ENOMEM;
406 }
407 hwev->ds_bts_vaddr = buffer;
408 /* Update the fixmap */
409 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
410 ds->bts_buffer_base = (unsigned long) cea;
411 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
412 ds->bts_index = ds->bts_buffer_base;
413 max = BTS_RECORD_SIZE * (BTS_BUFFER_SIZE / BTS_RECORD_SIZE);
414 ds->bts_absolute_maximum = ds->bts_buffer_base + max;
415 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - (max / 16);
416 return 0;
417 }
418
419 static void release_bts_buffer(int cpu)
420 {
421 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
422 struct debug_store *ds = hwev->ds;
423 void *cea;
424
425 if (!ds || !x86_pmu.bts)
426 return;
427
428 /* Clear the fixmap */
429 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
430 ds_clear_cea(cea, BTS_BUFFER_SIZE);
431 ds->bts_buffer_base = 0;
432 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
433 hwev->ds_bts_vaddr = NULL;
434 }
435
436 static int alloc_ds_buffer(int cpu)
437 {
438 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
439
440 memset(ds, 0, sizeof(*ds));
441 per_cpu(cpu_hw_events, cpu).ds = ds;
442 return 0;
443 }
444
445 static void release_ds_buffer(int cpu)
446 {
447 per_cpu(cpu_hw_events, cpu).ds = NULL;
448 }
449
450 void release_ds_buffers(void)
451 {
452 int cpu;
453
454 if (!x86_pmu.bts && !x86_pmu.pebs)
455 return;
456
457 get_online_cpus();
458 for_each_online_cpu(cpu)
459 fini_debug_store_on_cpu(cpu);
460
461 for_each_possible_cpu(cpu) {
462 release_pebs_buffer(cpu);
463 release_bts_buffer(cpu);
464 release_ds_buffer(cpu);
465 }
466 put_online_cpus();
467 }
468
469 void reserve_ds_buffers(void)
470 {
471 int bts_err = 0, pebs_err = 0;
472 int cpu;
473
474 x86_pmu.bts_active = 0;
475 x86_pmu.pebs_active = 0;
476
477 if (!x86_pmu.bts && !x86_pmu.pebs)
478 return;
479
480 if (!x86_pmu.bts)
481 bts_err = 1;
482
483 if (!x86_pmu.pebs)
484 pebs_err = 1;
485
486 get_online_cpus();
487
488 for_each_possible_cpu(cpu) {
489 if (alloc_ds_buffer(cpu)) {
490 bts_err = 1;
491 pebs_err = 1;
492 }
493
494 if (!bts_err && alloc_bts_buffer(cpu))
495 bts_err = 1;
496
497 if (!pebs_err && alloc_pebs_buffer(cpu))
498 pebs_err = 1;
499
500 if (bts_err && pebs_err)
501 break;
502 }
503
504 if (bts_err) {
505 for_each_possible_cpu(cpu)
506 release_bts_buffer(cpu);
507 }
508
509 if (pebs_err) {
510 for_each_possible_cpu(cpu)
511 release_pebs_buffer(cpu);
512 }
513
514 if (bts_err && pebs_err) {
515 for_each_possible_cpu(cpu)
516 release_ds_buffer(cpu);
517 } else {
518 if (x86_pmu.bts && !bts_err)
519 x86_pmu.bts_active = 1;
520
521 if (x86_pmu.pebs && !pebs_err)
522 x86_pmu.pebs_active = 1;
523
524 for_each_online_cpu(cpu)
525 init_debug_store_on_cpu(cpu);
526 }
527
528 put_online_cpus();
529 }
530
531 /*
532 * BTS
533 */
534
535 struct event_constraint bts_constraint =
536 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
537
538 void intel_pmu_enable_bts(u64 config)
539 {
540 unsigned long debugctlmsr;
541
542 debugctlmsr = get_debugctlmsr();
543
544 debugctlmsr |= DEBUGCTLMSR_TR;
545 debugctlmsr |= DEBUGCTLMSR_BTS;
546 if (config & ARCH_PERFMON_EVENTSEL_INT)
547 debugctlmsr |= DEBUGCTLMSR_BTINT;
548
549 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
550 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
551
552 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
553 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
554
555 update_debugctlmsr(debugctlmsr);
556 }
557
558 void intel_pmu_disable_bts(void)
559 {
560 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
561 unsigned long debugctlmsr;
562
563 if (!cpuc->ds)
564 return;
565
566 debugctlmsr = get_debugctlmsr();
567
568 debugctlmsr &=
569 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
570 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
571
572 update_debugctlmsr(debugctlmsr);
573 }
574
575 int intel_pmu_drain_bts_buffer(void)
576 {
577 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
578 struct debug_store *ds = cpuc->ds;
579 struct bts_record {
580 u64 from;
581 u64 to;
582 u64 flags;
583 };
584 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
585 struct bts_record *at, *base, *top;
586 struct perf_output_handle handle;
587 struct perf_event_header header;
588 struct perf_sample_data data;
589 unsigned long skip = 0;
590 struct pt_regs regs;
591
592 if (!event)
593 return 0;
594
595 if (!x86_pmu.bts_active)
596 return 0;
597
598 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
599 top = (struct bts_record *)(unsigned long)ds->bts_index;
600
601 if (top <= base)
602 return 0;
603
604 memset(&regs, 0, sizeof(regs));
605
606 ds->bts_index = ds->bts_buffer_base;
607
608 perf_sample_data_init(&data, 0, event->hw.last_period);
609
610 /*
611 * BTS leaks kernel addresses in branches across the cpl boundary,
612 * such as traps or system calls, so unless the user is asking for
613 * kernel tracing (and right now it's not possible), we'd need to
614 * filter them out. But first we need to count how many of those we
615 * have in the current batch. This is an extra O(n) pass, however,
616 * it's much faster than the other one especially considering that
617 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
618 * alloc_bts_buffer()).
619 */
620 for (at = base; at < top; at++) {
621 /*
622 * Note that right now *this* BTS code only works if
623 * attr::exclude_kernel is set, but let's keep this extra
624 * check here in case that changes.
625 */
626 if (event->attr.exclude_kernel &&
627 (kernel_ip(at->from) || kernel_ip(at->to)))
628 skip++;
629 }
630
631 /*
632 * Prepare a generic sample, i.e. fill in the invariant fields.
633 * We will overwrite the from and to address before we output
634 * the sample.
635 */
636 rcu_read_lock();
637 perf_prepare_sample(&header, &data, event, &regs);
638
639 if (perf_output_begin(&handle, event, header.size *
640 (top - base - skip)))
641 goto unlock;
642
643 for (at = base; at < top; at++) {
644 /* Filter out any records that contain kernel addresses. */
645 if (event->attr.exclude_kernel &&
646 (kernel_ip(at->from) || kernel_ip(at->to)))
647 continue;
648
649 data.ip = at->from;
650 data.addr = at->to;
651
652 perf_output_sample(&handle, &header, &data, event);
653 }
654
655 perf_output_end(&handle);
656
657 /* There's new data available. */
658 event->hw.interrupts++;
659 event->pending_kill = POLL_IN;
660 unlock:
661 rcu_read_unlock();
662 return 1;
663 }
664
665 static inline void intel_pmu_drain_pebs_buffer(void)
666 {
667 struct pt_regs regs;
668
669 x86_pmu.drain_pebs(&regs);
670 }
671
672 /*
673 * PEBS
674 */
675 struct event_constraint intel_core2_pebs_event_constraints[] = {
676 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
677 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
678 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
679 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
680 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
681 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
682 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
683 EVENT_CONSTRAINT_END
684 };
685
686 struct event_constraint intel_atom_pebs_event_constraints[] = {
687 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
688 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
689 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
690 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
691 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
692 /* Allow all events as PEBS with no flags */
693 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
694 EVENT_CONSTRAINT_END
695 };
696
697 struct event_constraint intel_slm_pebs_event_constraints[] = {
698 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
699 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
700 /* Allow all events as PEBS with no flags */
701 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
702 EVENT_CONSTRAINT_END
703 };
704
705 struct event_constraint intel_glm_pebs_event_constraints[] = {
706 /* Allow all events as PEBS with no flags */
707 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708 EVENT_CONSTRAINT_END
709 };
710
711 struct event_constraint intel_glp_pebs_event_constraints[] = {
712 /* Allow all events as PEBS with no flags */
713 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
714 EVENT_CONSTRAINT_END
715 };
716
717 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
719 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
720 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
721 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
722 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
723 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
724 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
725 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
726 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
727 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
728 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
729 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
731 EVENT_CONSTRAINT_END
732 };
733
734 struct event_constraint intel_westmere_pebs_event_constraints[] = {
735 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
736 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
737 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
738 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
739 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
742 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
743 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
745 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
746 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
748 EVENT_CONSTRAINT_END
749 };
750
751 struct event_constraint intel_snb_pebs_event_constraints[] = {
752 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
755 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
757 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
758 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
759 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
760 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761 /* Allow all events as PEBS with no flags */
762 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763 EVENT_CONSTRAINT_END
764 };
765
766 struct event_constraint intel_ivb_pebs_event_constraints[] = {
767 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
770 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
772 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
774 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
775 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
776 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
777 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778 /* Allow all events as PEBS with no flags */
779 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780 EVENT_CONSTRAINT_END
781 };
782
783 struct event_constraint intel_hsw_pebs_event_constraints[] = {
784 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
786 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
788 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
797 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
800 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801 /* Allow all events as PEBS with no flags */
802 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
803 EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_bdw_pebs_event_constraints[] = {
807 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
808 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
809 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
811 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
820 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
823 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
824 /* Allow all events as PEBS with no flags */
825 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
826 EVENT_CONSTRAINT_END
827 };
828
829
830 struct event_constraint intel_skl_pebs_event_constraints[] = {
831 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
832 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
834 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
836 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
844 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
847 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
848 /* Allow all events as PEBS with no flags */
849 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850 EVENT_CONSTRAINT_END
851 };
852
853 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
854 {
855 struct event_constraint *c;
856
857 if (!event->attr.precise_ip)
858 return NULL;
859
860 if (x86_pmu.pebs_constraints) {
861 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
862 if ((event->hw.config & c->cmask) == c->code) {
863 event->hw.flags |= c->flags;
864 return c;
865 }
866 }
867 }
868
869 return &emptyconstraint;
870 }
871
872 /*
873 * We need the sched_task callback even for per-cpu events when we use
874 * the large interrupt threshold, such that we can provide PID and TID
875 * to PEBS samples.
876 */
877 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
878 {
879 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
880 }
881
882 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
883 {
884 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
885
886 if (!sched_in && pebs_needs_sched_cb(cpuc))
887 intel_pmu_drain_pebs_buffer();
888 }
889
890 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
891 {
892 struct debug_store *ds = cpuc->ds;
893 u64 threshold;
894
895 if (cpuc->n_pebs == cpuc->n_large_pebs) {
896 threshold = ds->pebs_absolute_maximum -
897 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
898 } else {
899 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
900 }
901
902 ds->pebs_interrupt_threshold = threshold;
903 }
904
905 static void
906 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
907 {
908 /*
909 * Make sure we get updated with the first PEBS
910 * event. It will trigger also during removal, but
911 * that does not hurt:
912 */
913 bool update = cpuc->n_pebs == 1;
914
915 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
916 if (!needed_cb)
917 perf_sched_cb_inc(pmu);
918 else
919 perf_sched_cb_dec(pmu);
920
921 update = true;
922 }
923
924 if (update)
925 pebs_update_threshold(cpuc);
926 }
927
928 void intel_pmu_pebs_add(struct perf_event *event)
929 {
930 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
931 struct hw_perf_event *hwc = &event->hw;
932 bool needed_cb = pebs_needs_sched_cb(cpuc);
933
934 cpuc->n_pebs++;
935 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
936 cpuc->n_large_pebs++;
937
938 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
939 }
940
941 void intel_pmu_pebs_enable(struct perf_event *event)
942 {
943 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
944 struct hw_perf_event *hwc = &event->hw;
945 struct debug_store *ds = cpuc->ds;
946
947 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
948
949 cpuc->pebs_enabled |= 1ULL << hwc->idx;
950
951 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
952 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
953 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
954 cpuc->pebs_enabled |= 1ULL << 63;
955
956 /*
957 * Use auto-reload if possible to save a MSR write in the PMI.
958 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
959 */
960 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
961 ds->pebs_event_reset[hwc->idx] =
962 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
963 } else {
964 ds->pebs_event_reset[hwc->idx] = 0;
965 }
966 }
967
968 void intel_pmu_pebs_del(struct perf_event *event)
969 {
970 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
971 struct hw_perf_event *hwc = &event->hw;
972 bool needed_cb = pebs_needs_sched_cb(cpuc);
973
974 cpuc->n_pebs--;
975 if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
976 cpuc->n_large_pebs--;
977
978 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
979 }
980
981 void intel_pmu_pebs_disable(struct perf_event *event)
982 {
983 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
984 struct hw_perf_event *hwc = &event->hw;
985
986 if (cpuc->n_pebs == cpuc->n_large_pebs)
987 intel_pmu_drain_pebs_buffer();
988
989 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
990
991 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
992 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
993 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
994 cpuc->pebs_enabled &= ~(1ULL << 63);
995
996 if (cpuc->enabled)
997 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
998
999 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1000 }
1001
1002 void intel_pmu_pebs_enable_all(void)
1003 {
1004 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1005
1006 if (cpuc->pebs_enabled)
1007 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1008 }
1009
1010 void intel_pmu_pebs_disable_all(void)
1011 {
1012 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1013
1014 if (cpuc->pebs_enabled)
1015 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1016 }
1017
1018 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1019 {
1020 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1021 unsigned long from = cpuc->lbr_entries[0].from;
1022 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1023 unsigned long ip = regs->ip;
1024 int is_64bit = 0;
1025 void *kaddr;
1026 int size;
1027
1028 /*
1029 * We don't need to fixup if the PEBS assist is fault like
1030 */
1031 if (!x86_pmu.intel_cap.pebs_trap)
1032 return 1;
1033
1034 /*
1035 * No LBR entry, no basic block, no rewinding
1036 */
1037 if (!cpuc->lbr_stack.nr || !from || !to)
1038 return 0;
1039
1040 /*
1041 * Basic blocks should never cross user/kernel boundaries
1042 */
1043 if (kernel_ip(ip) != kernel_ip(to))
1044 return 0;
1045
1046 /*
1047 * unsigned math, either ip is before the start (impossible) or
1048 * the basic block is larger than 1 page (sanity)
1049 */
1050 if ((ip - to) > PEBS_FIXUP_SIZE)
1051 return 0;
1052
1053 /*
1054 * We sampled a branch insn, rewind using the LBR stack
1055 */
1056 if (ip == to) {
1057 set_linear_ip(regs, from);
1058 return 1;
1059 }
1060
1061 size = ip - to;
1062 if (!kernel_ip(ip)) {
1063 int bytes;
1064 u8 *buf = this_cpu_read(insn_buffer);
1065
1066 /* 'size' must fit our buffer, see above */
1067 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1068 if (bytes != 0)
1069 return 0;
1070
1071 kaddr = buf;
1072 } else {
1073 kaddr = (void *)to;
1074 }
1075
1076 do {
1077 struct insn insn;
1078
1079 old_to = to;
1080
1081 #ifdef CONFIG_X86_64
1082 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1083 #endif
1084 insn_init(&insn, kaddr, size, is_64bit);
1085 insn_get_length(&insn);
1086 /*
1087 * Make sure there was not a problem decoding the
1088 * instruction and getting the length. This is
1089 * doubly important because we have an infinite
1090 * loop if insn.length=0.
1091 */
1092 if (!insn.length)
1093 break;
1094
1095 to += insn.length;
1096 kaddr += insn.length;
1097 size -= insn.length;
1098 } while (to < ip);
1099
1100 if (to == ip) {
1101 set_linear_ip(regs, old_to);
1102 return 1;
1103 }
1104
1105 /*
1106 * Even though we decoded the basic block, the instruction stream
1107 * never matched the given IP, either the TO or the IP got corrupted.
1108 */
1109 return 0;
1110 }
1111
1112 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1113 {
1114 if (pebs->tsx_tuning) {
1115 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1116 return tsx.cycles_last_block;
1117 }
1118 return 0;
1119 }
1120
1121 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1122 {
1123 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1124
1125 /* For RTM XABORTs also log the abort code from AX */
1126 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1127 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1128 return txn;
1129 }
1130
1131 static void setup_pebs_sample_data(struct perf_event *event,
1132 struct pt_regs *iregs, void *__pebs,
1133 struct perf_sample_data *data,
1134 struct pt_regs *regs)
1135 {
1136 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1137 (PERF_X86_EVENT_PEBS_ST_HSW | \
1138 PERF_X86_EVENT_PEBS_LD_HSW | \
1139 PERF_X86_EVENT_PEBS_NA_HSW)
1140 /*
1141 * We cast to the biggest pebs_record but are careful not to
1142 * unconditionally access the 'extra' entries.
1143 */
1144 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1145 struct pebs_record_skl *pebs = __pebs;
1146 u64 sample_type;
1147 int fll, fst, dsrc;
1148 int fl = event->hw.flags;
1149
1150 if (pebs == NULL)
1151 return;
1152
1153 sample_type = event->attr.sample_type;
1154 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1155
1156 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1157 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1158
1159 perf_sample_data_init(data, 0, event->hw.last_period);
1160
1161 data->period = event->hw.last_period;
1162
1163 /*
1164 * Use latency for weight (only avail with PEBS-LL)
1165 */
1166 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1167 data->weight = pebs->lat;
1168
1169 /*
1170 * data.data_src encodes the data source
1171 */
1172 if (dsrc) {
1173 u64 val = PERF_MEM_NA;
1174 if (fll)
1175 val = load_latency_data(pebs->dse);
1176 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1177 val = precise_datala_hsw(event, pebs->dse);
1178 else if (fst)
1179 val = precise_store_data(pebs->dse);
1180 data->data_src.val = val;
1181 }
1182
1183 /*
1184 * We use the interrupt regs as a base because the PEBS record does not
1185 * contain a full regs set, specifically it seems to lack segment
1186 * descriptors, which get used by things like user_mode().
1187 *
1188 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1189 *
1190 * We must however always use BP,SP from iregs for the unwinder to stay
1191 * sane; the record BP,SP can point into thin air when the record is
1192 * from a previous PMI context or an (I)RET happend between the record
1193 * and PMI.
1194 */
1195 *regs = *iregs;
1196 regs->flags = pebs->flags;
1197 set_linear_ip(regs, pebs->ip);
1198
1199 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1200 regs->ax = pebs->ax;
1201 regs->bx = pebs->bx;
1202 regs->cx = pebs->cx;
1203 regs->dx = pebs->dx;
1204 regs->si = pebs->si;
1205 regs->di = pebs->di;
1206
1207 /*
1208 * Per the above; only set BP,SP if we don't need callchains.
1209 *
1210 * XXX: does this make sense?
1211 */
1212 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
1213 regs->bp = pebs->bp;
1214 regs->sp = pebs->sp;
1215 }
1216
1217 /*
1218 * Preserve PERF_EFLAGS_VM from set_linear_ip().
1219 */
1220 regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1221 #ifndef CONFIG_X86_32
1222 regs->r8 = pebs->r8;
1223 regs->r9 = pebs->r9;
1224 regs->r10 = pebs->r10;
1225 regs->r11 = pebs->r11;
1226 regs->r12 = pebs->r12;
1227 regs->r13 = pebs->r13;
1228 regs->r14 = pebs->r14;
1229 regs->r15 = pebs->r15;
1230 #endif
1231 }
1232
1233 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1234 regs->ip = pebs->real_ip;
1235 regs->flags |= PERF_EFLAGS_EXACT;
1236 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1237 regs->flags |= PERF_EFLAGS_EXACT;
1238 else
1239 regs->flags &= ~PERF_EFLAGS_EXACT;
1240
1241 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1242 x86_pmu.intel_cap.pebs_format >= 1)
1243 data->addr = pebs->dla;
1244
1245 if (x86_pmu.intel_cap.pebs_format >= 2) {
1246 /* Only set the TSX weight when no memory weight. */
1247 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1248 data->weight = intel_hsw_weight(pebs);
1249
1250 if (sample_type & PERF_SAMPLE_TRANSACTION)
1251 data->txn = intel_hsw_transaction(pebs);
1252 }
1253
1254 /*
1255 * v3 supplies an accurate time stamp, so we use that
1256 * for the time stamp.
1257 *
1258 * We can only do this for the default trace clock.
1259 */
1260 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1261 event->attr.use_clockid == 0)
1262 data->time = native_sched_clock_from_tsc(pebs->tsc);
1263
1264 if (has_branch_stack(event))
1265 data->br_stack = &cpuc->lbr_stack;
1266 }
1267
1268 static inline void *
1269 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1270 {
1271 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272 void *at;
1273 u64 pebs_status;
1274
1275 /*
1276 * fmt0 does not have a status bitfield (does not use
1277 * perf_record_nhm format)
1278 */
1279 if (x86_pmu.intel_cap.pebs_format < 1)
1280 return base;
1281
1282 if (base == NULL)
1283 return NULL;
1284
1285 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1286 struct pebs_record_nhm *p = at;
1287
1288 if (test_bit(bit, (unsigned long *)&p->status)) {
1289 /* PEBS v3 has accurate status bits */
1290 if (x86_pmu.intel_cap.pebs_format >= 3)
1291 return at;
1292
1293 if (p->status == (1 << bit))
1294 return at;
1295
1296 /* clear non-PEBS bit and re-check */
1297 pebs_status = p->status & cpuc->pebs_enabled;
1298 pebs_status &= PEBS_COUNTER_MASK;
1299 if (pebs_status == (1 << bit))
1300 return at;
1301 }
1302 }
1303 return NULL;
1304 }
1305
1306 static void __intel_pmu_pebs_event(struct perf_event *event,
1307 struct pt_regs *iregs,
1308 void *base, void *top,
1309 int bit, int count)
1310 {
1311 struct perf_sample_data data;
1312 struct pt_regs regs;
1313 void *at = get_next_pebs_record_by_bit(base, top, bit);
1314
1315 if (!intel_pmu_save_and_restart(event) &&
1316 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1317 return;
1318
1319 while (count > 1) {
1320 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1321 perf_event_output(event, &data, &regs);
1322 at += x86_pmu.pebs_record_size;
1323 at = get_next_pebs_record_by_bit(at, top, bit);
1324 count--;
1325 }
1326
1327 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1328
1329 /*
1330 * All but the last records are processed.
1331 * The last one is left to be able to call the overflow handler.
1332 */
1333 if (perf_event_overflow(event, &data, &regs)) {
1334 x86_pmu_stop(event, 0);
1335 return;
1336 }
1337
1338 }
1339
1340 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1341 {
1342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343 struct debug_store *ds = cpuc->ds;
1344 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1345 struct pebs_record_core *at, *top;
1346 int n;
1347
1348 if (!x86_pmu.pebs_active)
1349 return;
1350
1351 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1352 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1353
1354 /*
1355 * Whatever else happens, drain the thing
1356 */
1357 ds->pebs_index = ds->pebs_buffer_base;
1358
1359 if (!test_bit(0, cpuc->active_mask))
1360 return;
1361
1362 WARN_ON_ONCE(!event);
1363
1364 if (!event->attr.precise_ip)
1365 return;
1366
1367 n = top - at;
1368 if (n <= 0)
1369 return;
1370
1371 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1372 }
1373
1374 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1375 {
1376 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1377 struct debug_store *ds = cpuc->ds;
1378 struct perf_event *event;
1379 void *base, *at, *top;
1380 short counts[MAX_PEBS_EVENTS] = {};
1381 short error[MAX_PEBS_EVENTS] = {};
1382 int bit, i;
1383
1384 if (!x86_pmu.pebs_active)
1385 return;
1386
1387 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1388 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1389
1390 ds->pebs_index = ds->pebs_buffer_base;
1391
1392 if (unlikely(base >= top))
1393 return;
1394
1395 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1396 struct pebs_record_nhm *p = at;
1397 u64 pebs_status;
1398
1399 pebs_status = p->status & cpuc->pebs_enabled;
1400 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1401
1402 /* PEBS v3 has more accurate status bits */
1403 if (x86_pmu.intel_cap.pebs_format >= 3) {
1404 for_each_set_bit(bit, (unsigned long *)&pebs_status,
1405 x86_pmu.max_pebs_events)
1406 counts[bit]++;
1407
1408 continue;
1409 }
1410
1411 /*
1412 * On some CPUs the PEBS status can be zero when PEBS is
1413 * racing with clearing of GLOBAL_STATUS.
1414 *
1415 * Normally we would drop that record, but in the
1416 * case when there is only a single active PEBS event
1417 * we can assume it's for that event.
1418 */
1419 if (!pebs_status && cpuc->pebs_enabled &&
1420 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1421 pebs_status = cpuc->pebs_enabled;
1422
1423 bit = find_first_bit((unsigned long *)&pebs_status,
1424 x86_pmu.max_pebs_events);
1425 if (bit >= x86_pmu.max_pebs_events)
1426 continue;
1427
1428 /*
1429 * The PEBS hardware does not deal well with the situation
1430 * when events happen near to each other and multiple bits
1431 * are set. But it should happen rarely.
1432 *
1433 * If these events include one PEBS and multiple non-PEBS
1434 * events, it doesn't impact PEBS record. The record will
1435 * be handled normally. (slow path)
1436 *
1437 * If these events include two or more PEBS events, the
1438 * records for the events can be collapsed into a single
1439 * one, and it's not possible to reconstruct all events
1440 * that caused the PEBS record. It's called collision.
1441 * If collision happened, the record will be dropped.
1442 */
1443 if (p->status != (1ULL << bit)) {
1444 for_each_set_bit(i, (unsigned long *)&pebs_status,
1445 x86_pmu.max_pebs_events)
1446 error[i]++;
1447 continue;
1448 }
1449
1450 counts[bit]++;
1451 }
1452
1453 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1454 if ((counts[bit] == 0) && (error[bit] == 0))
1455 continue;
1456
1457 event = cpuc->events[bit];
1458 if (WARN_ON_ONCE(!event))
1459 continue;
1460
1461 if (WARN_ON_ONCE(!event->attr.precise_ip))
1462 continue;
1463
1464 /* log dropped samples number */
1465 if (error[bit]) {
1466 perf_log_lost_samples(event, error[bit]);
1467
1468 if (perf_event_account_interrupt(event))
1469 x86_pmu_stop(event, 0);
1470 }
1471
1472 if (counts[bit]) {
1473 __intel_pmu_pebs_event(event, iregs, base,
1474 top, bit, counts[bit]);
1475 }
1476 }
1477 }
1478
1479 /*
1480 * BTS, PEBS probe and setup
1481 */
1482
1483 void __init intel_ds_init(void)
1484 {
1485 /*
1486 * No support for 32bit formats
1487 */
1488 if (!boot_cpu_has(X86_FEATURE_DTES64))
1489 return;
1490
1491 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1492 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1493 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1494 if (x86_pmu.pebs) {
1495 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1496 int format = x86_pmu.intel_cap.pebs_format;
1497
1498 switch (format) {
1499 case 0:
1500 pr_cont("PEBS fmt0%c, ", pebs_type);
1501 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1502 /*
1503 * Using >PAGE_SIZE buffers makes the WRMSR to
1504 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1505 * mysteriously hang on Core2.
1506 *
1507 * As a workaround, we don't do this.
1508 */
1509 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1510 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1511 break;
1512
1513 case 1:
1514 pr_cont("PEBS fmt1%c, ", pebs_type);
1515 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1516 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1517 break;
1518
1519 case 2:
1520 pr_cont("PEBS fmt2%c, ", pebs_type);
1521 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1522 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1523 break;
1524
1525 case 3:
1526 pr_cont("PEBS fmt3%c, ", pebs_type);
1527 x86_pmu.pebs_record_size =
1528 sizeof(struct pebs_record_skl);
1529 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1530 x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1531 break;
1532
1533 default:
1534 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1535 x86_pmu.pebs = 0;
1536 }
1537 }
1538 }
1539
1540 void perf_restore_debug_store(void)
1541 {
1542 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1543
1544 if (!x86_pmu.bts && !x86_pmu.pebs)
1545 return;
1546
1547 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1548 }