]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/events/intel/pt.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / intel / pt.c
1 /*
2 * Intel(R) Processor Trace PMU driver for perf
3 * Copyright (c) 2013-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15 * Programming Reference:
16 * http://software.intel.com/en-us/intel-isa-extensions
17 */
18
19 #undef DEBUG
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31
32 #include "../perf_event.h"
33 #include "pt.h"
34
35 static DEFINE_PER_CPU(struct pt, pt_ctx);
36
37 static struct pt_pmu pt_pmu;
38
39 enum cpuid_regs {
40 CR_EAX = 0,
41 CR_ECX,
42 CR_EDX,
43 CR_EBX
44 };
45
46 /*
47 * Capabilities of Intel PT hardware, such as number of address bits or
48 * supported output schemes, are cached and exported to userspace as "caps"
49 * attribute group of pt pmu device
50 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
51 * relevant bits together with intel_pt traces.
52 *
53 * These are necessary for both trace decoding (payloads_lip, contains address
54 * width encoded in IP-related packets), and event configuration (bitmasks with
55 * permitted values for certain bit fields).
56 */
57 #define PT_CAP(_n, _l, _r, _m) \
58 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \
59 .reg = _r, .mask = _m }
60
61 static struct pt_cap_desc {
62 const char *name;
63 u32 leaf;
64 u8 reg;
65 u32 mask;
66 } pt_caps[] = {
67 PT_CAP(max_subleaf, 0, CR_EAX, 0xffffffff),
68 PT_CAP(cr3_filtering, 0, CR_EBX, BIT(0)),
69 PT_CAP(psb_cyc, 0, CR_EBX, BIT(1)),
70 PT_CAP(ip_filtering, 0, CR_EBX, BIT(2)),
71 PT_CAP(mtc, 0, CR_EBX, BIT(3)),
72 PT_CAP(topa_output, 0, CR_ECX, BIT(0)),
73 PT_CAP(topa_multiple_entries, 0, CR_ECX, BIT(1)),
74 PT_CAP(single_range_output, 0, CR_ECX, BIT(2)),
75 PT_CAP(payloads_lip, 0, CR_ECX, BIT(31)),
76 PT_CAP(num_address_ranges, 1, CR_EAX, 0x3),
77 PT_CAP(mtc_periods, 1, CR_EAX, 0xffff0000),
78 PT_CAP(cycle_thresholds, 1, CR_EBX, 0xffff),
79 PT_CAP(psb_periods, 1, CR_EBX, 0xffff0000),
80 };
81
82 static u32 pt_cap_get(enum pt_capabilities cap)
83 {
84 struct pt_cap_desc *cd = &pt_caps[cap];
85 u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
86 unsigned int shift = __ffs(cd->mask);
87
88 return (c & cd->mask) >> shift;
89 }
90
91 static ssize_t pt_cap_show(struct device *cdev,
92 struct device_attribute *attr,
93 char *buf)
94 {
95 struct dev_ext_attribute *ea =
96 container_of(attr, struct dev_ext_attribute, attr);
97 enum pt_capabilities cap = (long)ea->var;
98
99 return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
100 }
101
102 static struct attribute_group pt_cap_group = {
103 .name = "caps",
104 };
105
106 PMU_FORMAT_ATTR(cyc, "config:1" );
107 PMU_FORMAT_ATTR(mtc, "config:9" );
108 PMU_FORMAT_ATTR(tsc, "config:10" );
109 PMU_FORMAT_ATTR(noretcomp, "config:11" );
110 PMU_FORMAT_ATTR(mtc_period, "config:14-17" );
111 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" );
112 PMU_FORMAT_ATTR(psb_period, "config:24-27" );
113
114 static struct attribute *pt_formats_attr[] = {
115 &format_attr_cyc.attr,
116 &format_attr_mtc.attr,
117 &format_attr_tsc.attr,
118 &format_attr_noretcomp.attr,
119 &format_attr_mtc_period.attr,
120 &format_attr_cyc_thresh.attr,
121 &format_attr_psb_period.attr,
122 NULL,
123 };
124
125 static struct attribute_group pt_format_group = {
126 .name = "format",
127 .attrs = pt_formats_attr,
128 };
129
130 static ssize_t
131 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
132 char *page)
133 {
134 struct perf_pmu_events_attr *pmu_attr =
135 container_of(attr, struct perf_pmu_events_attr, attr);
136
137 switch (pmu_attr->id) {
138 case 0:
139 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
140 case 1:
141 return sprintf(page, "%u:%u\n",
142 pt_pmu.tsc_art_num,
143 pt_pmu.tsc_art_den);
144 default:
145 break;
146 }
147
148 return -EINVAL;
149 }
150
151 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
152 pt_timing_attr_show);
153 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
154 pt_timing_attr_show);
155
156 static struct attribute *pt_timing_attr[] = {
157 &timing_attr_max_nonturbo_ratio.attr.attr,
158 &timing_attr_tsc_art_ratio.attr.attr,
159 NULL,
160 };
161
162 static struct attribute_group pt_timing_group = {
163 .attrs = pt_timing_attr,
164 };
165
166 static const struct attribute_group *pt_attr_groups[] = {
167 &pt_cap_group,
168 &pt_format_group,
169 &pt_timing_group,
170 NULL,
171 };
172
173 static int __init pt_pmu_hw_init(void)
174 {
175 struct dev_ext_attribute *de_attrs;
176 struct attribute **attrs;
177 size_t size;
178 u64 reg;
179 int ret;
180 long i;
181
182 rdmsrl(MSR_PLATFORM_INFO, reg);
183 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
184
185 /*
186 * if available, read in TSC to core crystal clock ratio,
187 * otherwise, zero for numerator stands for "not enumerated"
188 * as per SDM
189 */
190 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
191 u32 eax, ebx, ecx, edx;
192
193 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
194
195 pt_pmu.tsc_art_num = ebx;
196 pt_pmu.tsc_art_den = eax;
197 }
198
199 if (boot_cpu_has(X86_FEATURE_VMX)) {
200 /*
201 * Intel SDM, 36.5 "Tracing post-VMXON" says that
202 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
203 * post-VMXON.
204 */
205 rdmsrl(MSR_IA32_VMX_MISC, reg);
206 if (reg & BIT(14))
207 pt_pmu.vmx = true;
208 }
209
210 attrs = NULL;
211
212 for (i = 0; i < PT_CPUID_LEAVES; i++) {
213 cpuid_count(20, i,
214 &pt_pmu.caps[CR_EAX + i*PT_CPUID_REGS_NUM],
215 &pt_pmu.caps[CR_EBX + i*PT_CPUID_REGS_NUM],
216 &pt_pmu.caps[CR_ECX + i*PT_CPUID_REGS_NUM],
217 &pt_pmu.caps[CR_EDX + i*PT_CPUID_REGS_NUM]);
218 }
219
220 ret = -ENOMEM;
221 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
222 attrs = kzalloc(size, GFP_KERNEL);
223 if (!attrs)
224 goto fail;
225
226 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
227 de_attrs = kzalloc(size, GFP_KERNEL);
228 if (!de_attrs)
229 goto fail;
230
231 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
232 struct dev_ext_attribute *de_attr = de_attrs + i;
233
234 de_attr->attr.attr.name = pt_caps[i].name;
235
236 sysfs_attr_init(&de_attr->attr.attr);
237
238 de_attr->attr.attr.mode = S_IRUGO;
239 de_attr->attr.show = pt_cap_show;
240 de_attr->var = (void *)i;
241
242 attrs[i] = &de_attr->attr.attr;
243 }
244
245 pt_cap_group.attrs = attrs;
246
247 return 0;
248
249 fail:
250 kfree(attrs);
251
252 return ret;
253 }
254
255 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \
256 RTIT_CTL_CYC_THRESH | \
257 RTIT_CTL_PSB_FREQ)
258
259 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \
260 RTIT_CTL_MTC_RANGE)
261
262 #define PT_CONFIG_MASK (RTIT_CTL_TSC_EN | \
263 RTIT_CTL_DISRETC | \
264 RTIT_CTL_CYC_PSB | \
265 RTIT_CTL_MTC)
266
267 static bool pt_event_valid(struct perf_event *event)
268 {
269 u64 config = event->attr.config;
270 u64 allowed, requested;
271
272 if ((config & PT_CONFIG_MASK) != config)
273 return false;
274
275 if (config & RTIT_CTL_CYC_PSB) {
276 if (!pt_cap_get(PT_CAP_psb_cyc))
277 return false;
278
279 allowed = pt_cap_get(PT_CAP_psb_periods);
280 requested = (config & RTIT_CTL_PSB_FREQ) >>
281 RTIT_CTL_PSB_FREQ_OFFSET;
282 if (requested && (!(allowed & BIT(requested))))
283 return false;
284
285 allowed = pt_cap_get(PT_CAP_cycle_thresholds);
286 requested = (config & RTIT_CTL_CYC_THRESH) >>
287 RTIT_CTL_CYC_THRESH_OFFSET;
288 if (requested && (!(allowed & BIT(requested))))
289 return false;
290 }
291
292 if (config & RTIT_CTL_MTC) {
293 /*
294 * In the unlikely case that CPUID lists valid mtc periods,
295 * but not the mtc capability, drop out here.
296 *
297 * Spec says that setting mtc period bits while mtc bit in
298 * CPUID is 0 will #GP, so better safe than sorry.
299 */
300 if (!pt_cap_get(PT_CAP_mtc))
301 return false;
302
303 allowed = pt_cap_get(PT_CAP_mtc_periods);
304 if (!allowed)
305 return false;
306
307 requested = (config & RTIT_CTL_MTC_RANGE) >>
308 RTIT_CTL_MTC_RANGE_OFFSET;
309
310 if (!(allowed & BIT(requested)))
311 return false;
312 }
313
314 return true;
315 }
316
317 /*
318 * PT configuration helpers
319 * These all are cpu affine and operate on a local PT
320 */
321
322 /* Address ranges and their corresponding msr configuration registers */
323 static const struct pt_address_range {
324 unsigned long msr_a;
325 unsigned long msr_b;
326 unsigned int reg_off;
327 } pt_address_ranges[] = {
328 {
329 .msr_a = MSR_IA32_RTIT_ADDR0_A,
330 .msr_b = MSR_IA32_RTIT_ADDR0_B,
331 .reg_off = RTIT_CTL_ADDR0_OFFSET,
332 },
333 {
334 .msr_a = MSR_IA32_RTIT_ADDR1_A,
335 .msr_b = MSR_IA32_RTIT_ADDR1_B,
336 .reg_off = RTIT_CTL_ADDR1_OFFSET,
337 },
338 {
339 .msr_a = MSR_IA32_RTIT_ADDR2_A,
340 .msr_b = MSR_IA32_RTIT_ADDR2_B,
341 .reg_off = RTIT_CTL_ADDR2_OFFSET,
342 },
343 {
344 .msr_a = MSR_IA32_RTIT_ADDR3_A,
345 .msr_b = MSR_IA32_RTIT_ADDR3_B,
346 .reg_off = RTIT_CTL_ADDR3_OFFSET,
347 }
348 };
349
350 static u64 pt_config_filters(struct perf_event *event)
351 {
352 struct pt_filters *filters = event->hw.addr_filters;
353 struct pt *pt = this_cpu_ptr(&pt_ctx);
354 unsigned int range = 0;
355 u64 rtit_ctl = 0;
356
357 if (!filters)
358 return 0;
359
360 perf_event_addr_filters_sync(event);
361
362 for (range = 0; range < filters->nr_filters; range++) {
363 struct pt_filter *filter = &filters->filter[range];
364
365 /*
366 * Note, if the range has zero start/end addresses due
367 * to its dynamic object not being loaded yet, we just
368 * go ahead and program zeroed range, which will simply
369 * produce no data. Note^2: if executable code at 0x0
370 * is a concern, we can set up an "invalid" configuration
371 * such as msr_b < msr_a.
372 */
373
374 /* avoid redundant msr writes */
375 if (pt->filters.filter[range].msr_a != filter->msr_a) {
376 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
377 pt->filters.filter[range].msr_a = filter->msr_a;
378 }
379
380 if (pt->filters.filter[range].msr_b != filter->msr_b) {
381 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
382 pt->filters.filter[range].msr_b = filter->msr_b;
383 }
384
385 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
386 }
387
388 return rtit_ctl;
389 }
390
391 static void pt_config(struct perf_event *event)
392 {
393 u64 reg;
394
395 if (!event->hw.itrace_started) {
396 event->hw.itrace_started = 1;
397 wrmsrl(MSR_IA32_RTIT_STATUS, 0);
398 }
399
400 reg = pt_config_filters(event);
401 reg |= RTIT_CTL_TOPA | RTIT_CTL_BRANCH_EN | RTIT_CTL_TRACEEN;
402
403 if (!event->attr.exclude_kernel)
404 reg |= RTIT_CTL_OS;
405 if (!event->attr.exclude_user)
406 reg |= RTIT_CTL_USR;
407
408 reg |= (event->attr.config & PT_CONFIG_MASK);
409
410 event->hw.config = reg;
411 wrmsrl(MSR_IA32_RTIT_CTL, reg);
412 }
413
414 static void pt_config_stop(struct perf_event *event)
415 {
416 u64 ctl = READ_ONCE(event->hw.config);
417
418 /* may be already stopped by a PMI */
419 if (!(ctl & RTIT_CTL_TRACEEN))
420 return;
421
422 ctl &= ~RTIT_CTL_TRACEEN;
423 wrmsrl(MSR_IA32_RTIT_CTL, ctl);
424
425 WRITE_ONCE(event->hw.config, ctl);
426
427 /*
428 * A wrmsr that disables trace generation serializes other PT
429 * registers and causes all data packets to be written to memory,
430 * but a fence is required for the data to become globally visible.
431 *
432 * The below WMB, separating data store and aux_head store matches
433 * the consumer's RMB that separates aux_head load and data load.
434 */
435 wmb();
436 }
437
438 static void pt_config_buffer(void *buf, unsigned int topa_idx,
439 unsigned int output_off)
440 {
441 u64 reg;
442
443 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
444
445 reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
446
447 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
448 }
449
450 /*
451 * Keep ToPA table-related metadata on the same page as the actual table,
452 * taking up a few words from the top
453 */
454
455 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
456
457 /**
458 * struct topa - page-sized ToPA table with metadata at the top
459 * @table: actual ToPA table entries, as understood by PT hardware
460 * @list: linkage to struct pt_buffer's list of tables
461 * @phys: physical address of this page
462 * @offset: offset of the first entry in this table in the buffer
463 * @size: total size of all entries in this table
464 * @last: index of the last initialized entry in this table
465 */
466 struct topa {
467 struct topa_entry table[TENTS_PER_PAGE];
468 struct list_head list;
469 u64 phys;
470 u64 offset;
471 size_t size;
472 int last;
473 };
474
475 /* make -1 stand for the last table entry */
476 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
477
478 /**
479 * topa_alloc() - allocate page-sized ToPA table
480 * @cpu: CPU on which to allocate.
481 * @gfp: Allocation flags.
482 *
483 * Return: On success, return the pointer to ToPA table page.
484 */
485 static struct topa *topa_alloc(int cpu, gfp_t gfp)
486 {
487 int node = cpu_to_node(cpu);
488 struct topa *topa;
489 struct page *p;
490
491 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
492 if (!p)
493 return NULL;
494
495 topa = page_address(p);
496 topa->last = 0;
497 topa->phys = page_to_phys(p);
498
499 /*
500 * In case of singe-entry ToPA, always put the self-referencing END
501 * link as the 2nd entry in the table
502 */
503 if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
504 TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
505 TOPA_ENTRY(topa, 1)->end = 1;
506 }
507
508 return topa;
509 }
510
511 /**
512 * topa_free() - free a page-sized ToPA table
513 * @topa: Table to deallocate.
514 */
515 static void topa_free(struct topa *topa)
516 {
517 free_page((unsigned long)topa);
518 }
519
520 /**
521 * topa_insert_table() - insert a ToPA table into a buffer
522 * @buf: PT buffer that's being extended.
523 * @topa: New topa table to be inserted.
524 *
525 * If it's the first table in this buffer, set up buffer's pointers
526 * accordingly; otherwise, add a END=1 link entry to @topa to the current
527 * "last" table and adjust the last table pointer to @topa.
528 */
529 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
530 {
531 struct topa *last = buf->last;
532
533 list_add_tail(&topa->list, &buf->tables);
534
535 if (!buf->first) {
536 buf->first = buf->last = buf->cur = topa;
537 return;
538 }
539
540 topa->offset = last->offset + last->size;
541 buf->last = topa;
542
543 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
544 return;
545
546 BUG_ON(last->last != TENTS_PER_PAGE - 1);
547
548 TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
549 TOPA_ENTRY(last, -1)->end = 1;
550 }
551
552 /**
553 * topa_table_full() - check if a ToPA table is filled up
554 * @topa: ToPA table.
555 */
556 static bool topa_table_full(struct topa *topa)
557 {
558 /* single-entry ToPA is a special case */
559 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
560 return !!topa->last;
561
562 return topa->last == TENTS_PER_PAGE - 1;
563 }
564
565 /**
566 * topa_insert_pages() - create a list of ToPA tables
567 * @buf: PT buffer being initialized.
568 * @gfp: Allocation flags.
569 *
570 * This initializes a list of ToPA tables with entries from
571 * the data_pages provided by rb_alloc_aux().
572 *
573 * Return: 0 on success or error code.
574 */
575 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
576 {
577 struct topa *topa = buf->last;
578 int order = 0;
579 struct page *p;
580
581 p = virt_to_page(buf->data_pages[buf->nr_pages]);
582 if (PagePrivate(p))
583 order = page_private(p);
584
585 if (topa_table_full(topa)) {
586 topa = topa_alloc(buf->cpu, gfp);
587 if (!topa)
588 return -ENOMEM;
589
590 topa_insert_table(buf, topa);
591 }
592
593 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
594 TOPA_ENTRY(topa, -1)->size = order;
595 if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
596 TOPA_ENTRY(topa, -1)->intr = 1;
597 TOPA_ENTRY(topa, -1)->stop = 1;
598 }
599
600 topa->last++;
601 topa->size += sizes(order);
602
603 buf->nr_pages += 1ul << order;
604
605 return 0;
606 }
607
608 /**
609 * pt_topa_dump() - print ToPA tables and their entries
610 * @buf: PT buffer.
611 */
612 static void pt_topa_dump(struct pt_buffer *buf)
613 {
614 struct topa *topa;
615
616 list_for_each_entry(topa, &buf->tables, list) {
617 int i;
618
619 pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
620 topa->phys, topa->offset, topa->size);
621 for (i = 0; i < TENTS_PER_PAGE; i++) {
622 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
623 &topa->table[i],
624 (unsigned long)topa->table[i].base << TOPA_SHIFT,
625 sizes(topa->table[i].size),
626 topa->table[i].end ? 'E' : ' ',
627 topa->table[i].intr ? 'I' : ' ',
628 topa->table[i].stop ? 'S' : ' ',
629 *(u64 *)&topa->table[i]);
630 if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
631 topa->table[i].stop) ||
632 topa->table[i].end)
633 break;
634 }
635 }
636 }
637
638 /**
639 * pt_buffer_advance() - advance to the next output region
640 * @buf: PT buffer.
641 *
642 * Advance the current pointers in the buffer to the next ToPA entry.
643 */
644 static void pt_buffer_advance(struct pt_buffer *buf)
645 {
646 buf->output_off = 0;
647 buf->cur_idx++;
648
649 if (buf->cur_idx == buf->cur->last) {
650 if (buf->cur == buf->last)
651 buf->cur = buf->first;
652 else
653 buf->cur = list_entry(buf->cur->list.next, struct topa,
654 list);
655 buf->cur_idx = 0;
656 }
657 }
658
659 /**
660 * pt_update_head() - calculate current offsets and sizes
661 * @pt: Per-cpu pt context.
662 *
663 * Update buffer's current write pointer position and data size.
664 */
665 static void pt_update_head(struct pt *pt)
666 {
667 struct pt_buffer *buf = perf_get_aux(&pt->handle);
668 u64 topa_idx, base, old;
669
670 /* offset of the first region in this table from the beginning of buf */
671 base = buf->cur->offset + buf->output_off;
672
673 /* offset of the current output region within this table */
674 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
675 base += sizes(buf->cur->table[topa_idx].size);
676
677 if (buf->snapshot) {
678 local_set(&buf->data_size, base);
679 } else {
680 old = (local64_xchg(&buf->head, base) &
681 ((buf->nr_pages << PAGE_SHIFT) - 1));
682 if (base < old)
683 base += buf->nr_pages << PAGE_SHIFT;
684
685 local_add(base - old, &buf->data_size);
686 }
687 }
688
689 /**
690 * pt_buffer_region() - obtain current output region's address
691 * @buf: PT buffer.
692 */
693 static void *pt_buffer_region(struct pt_buffer *buf)
694 {
695 return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
696 }
697
698 /**
699 * pt_buffer_region_size() - obtain current output region's size
700 * @buf: PT buffer.
701 */
702 static size_t pt_buffer_region_size(struct pt_buffer *buf)
703 {
704 return sizes(buf->cur->table[buf->cur_idx].size);
705 }
706
707 /**
708 * pt_handle_status() - take care of possible status conditions
709 * @pt: Per-cpu pt context.
710 */
711 static void pt_handle_status(struct pt *pt)
712 {
713 struct pt_buffer *buf = perf_get_aux(&pt->handle);
714 int advance = 0;
715 u64 status;
716
717 rdmsrl(MSR_IA32_RTIT_STATUS, status);
718
719 if (status & RTIT_STATUS_ERROR) {
720 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
721 pt_topa_dump(buf);
722 status &= ~RTIT_STATUS_ERROR;
723 }
724
725 if (status & RTIT_STATUS_STOPPED) {
726 status &= ~RTIT_STATUS_STOPPED;
727
728 /*
729 * On systems that only do single-entry ToPA, hitting STOP
730 * means we are already losing data; need to let the decoder
731 * know.
732 */
733 if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
734 buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
735 local_inc(&buf->lost);
736 advance++;
737 }
738 }
739
740 /*
741 * Also on single-entry ToPA implementations, interrupt will come
742 * before the output reaches its output region's boundary.
743 */
744 if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
745 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
746 void *head = pt_buffer_region(buf);
747
748 /* everything within this margin needs to be zeroed out */
749 memset(head + buf->output_off, 0,
750 pt_buffer_region_size(buf) -
751 buf->output_off);
752 advance++;
753 }
754
755 if (advance)
756 pt_buffer_advance(buf);
757
758 wrmsrl(MSR_IA32_RTIT_STATUS, status);
759 }
760
761 /**
762 * pt_read_offset() - translate registers into buffer pointers
763 * @buf: PT buffer.
764 *
765 * Set buffer's output pointers from MSR values.
766 */
767 static void pt_read_offset(struct pt_buffer *buf)
768 {
769 u64 offset, base_topa;
770
771 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
772 buf->cur = phys_to_virt(base_topa);
773
774 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
775 /* offset within current output region */
776 buf->output_off = offset >> 32;
777 /* index of current output region within this table */
778 buf->cur_idx = (offset & 0xffffff80) >> 7;
779 }
780
781 /**
782 * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
783 * @buf: PT buffer.
784 * @pg: Page offset in the buffer.
785 *
786 * When advancing to the next output region (ToPA entry), given a page offset
787 * into the buffer, we need to find the offset of the first page in the next
788 * region.
789 */
790 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
791 {
792 struct topa_entry *te = buf->topa_index[pg];
793
794 /* one region */
795 if (buf->first == buf->last && buf->first->last == 1)
796 return pg;
797
798 do {
799 pg++;
800 pg &= buf->nr_pages - 1;
801 } while (buf->topa_index[pg] == te);
802
803 return pg;
804 }
805
806 /**
807 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
808 * @buf: PT buffer.
809 * @handle: Current output handle.
810 *
811 * Place INT and STOP marks to prevent overwriting old data that the consumer
812 * hasn't yet collected and waking up the consumer after a certain fraction of
813 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
814 *
815 * This obviously relies on buf::head to figure out buffer markers, so it has
816 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
817 * is enabled.
818 */
819 static int pt_buffer_reset_markers(struct pt_buffer *buf,
820 struct perf_output_handle *handle)
821
822 {
823 unsigned long head = local64_read(&buf->head);
824 unsigned long idx, npages, wakeup;
825
826 /* can't stop in the middle of an output region */
827 if (buf->output_off + handle->size + 1 <
828 sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size))
829 return -EINVAL;
830
831
832 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
833 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
834 return 0;
835
836 /* clear STOP and INT from current entry */
837 buf->topa_index[buf->stop_pos]->stop = 0;
838 buf->topa_index[buf->stop_pos]->intr = 0;
839 buf->topa_index[buf->intr_pos]->intr = 0;
840
841 /* how many pages till the STOP marker */
842 npages = handle->size >> PAGE_SHIFT;
843
844 /* if it's on a page boundary, fill up one more page */
845 if (!offset_in_page(head + handle->size + 1))
846 npages++;
847
848 idx = (head >> PAGE_SHIFT) + npages;
849 idx &= buf->nr_pages - 1;
850 buf->stop_pos = idx;
851
852 wakeup = handle->wakeup >> PAGE_SHIFT;
853
854 /* in the worst case, wake up the consumer one page before hard stop */
855 idx = (head >> PAGE_SHIFT) + npages - 1;
856 if (idx > wakeup)
857 idx = wakeup;
858
859 idx &= buf->nr_pages - 1;
860 buf->intr_pos = idx;
861
862 buf->topa_index[buf->stop_pos]->stop = 1;
863 buf->topa_index[buf->stop_pos]->intr = 1;
864 buf->topa_index[buf->intr_pos]->intr = 1;
865
866 return 0;
867 }
868
869 /**
870 * pt_buffer_setup_topa_index() - build topa_index[] table of regions
871 * @buf: PT buffer.
872 *
873 * topa_index[] references output regions indexed by offset into the
874 * buffer for purposes of quick reverse lookup.
875 */
876 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
877 {
878 struct topa *cur = buf->first, *prev = buf->last;
879 struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
880 *te_prev = TOPA_ENTRY(prev, prev->last - 1);
881 int pg = 0, idx = 0;
882
883 while (pg < buf->nr_pages) {
884 int tidx;
885
886 /* pages within one topa entry */
887 for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
888 buf->topa_index[pg] = te_prev;
889
890 te_prev = te_cur;
891
892 if (idx == cur->last - 1) {
893 /* advance to next topa table */
894 idx = 0;
895 cur = list_entry(cur->list.next, struct topa, list);
896 } else {
897 idx++;
898 }
899 te_cur = TOPA_ENTRY(cur, idx);
900 }
901
902 }
903
904 /**
905 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
906 * @buf: PT buffer.
907 * @head: Write pointer (aux_head) from AUX buffer.
908 *
909 * Find the ToPA table and entry corresponding to given @head and set buffer's
910 * "current" pointers accordingly. This is done after we have obtained the
911 * current aux_head position from a successful call to perf_aux_output_begin()
912 * to make sure the hardware is writing to the right place.
913 *
914 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
915 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
916 * which are used to determine INT and STOP markers' locations by a subsequent
917 * call to pt_buffer_reset_markers().
918 */
919 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
920 {
921 int pg;
922
923 if (buf->snapshot)
924 head &= (buf->nr_pages << PAGE_SHIFT) - 1;
925
926 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
927 pg = pt_topa_next_entry(buf, pg);
928
929 buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
930 buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
931 (unsigned long)buf->cur) / sizeof(struct topa_entry);
932 buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
933
934 local64_set(&buf->head, head);
935 local_set(&buf->data_size, 0);
936 }
937
938 /**
939 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
940 * @buf: PT buffer.
941 */
942 static void pt_buffer_fini_topa(struct pt_buffer *buf)
943 {
944 struct topa *topa, *iter;
945
946 list_for_each_entry_safe(topa, iter, &buf->tables, list) {
947 /*
948 * right now, this is in free_aux() path only, so
949 * no need to unlink this table from the list
950 */
951 topa_free(topa);
952 }
953 }
954
955 /**
956 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
957 * @buf: PT buffer.
958 * @size: Total size of all regions within this ToPA.
959 * @gfp: Allocation flags.
960 */
961 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
962 gfp_t gfp)
963 {
964 struct topa *topa;
965 int err;
966
967 topa = topa_alloc(buf->cpu, gfp);
968 if (!topa)
969 return -ENOMEM;
970
971 topa_insert_table(buf, topa);
972
973 while (buf->nr_pages < nr_pages) {
974 err = topa_insert_pages(buf, gfp);
975 if (err) {
976 pt_buffer_fini_topa(buf);
977 return -ENOMEM;
978 }
979 }
980
981 pt_buffer_setup_topa_index(buf);
982
983 /* link last table to the first one, unless we're double buffering */
984 if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
985 TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
986 TOPA_ENTRY(buf->last, -1)->end = 1;
987 }
988
989 pt_topa_dump(buf);
990 return 0;
991 }
992
993 /**
994 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
995 * @cpu: Cpu on which to allocate, -1 means current.
996 * @pages: Array of pointers to buffer pages passed from perf core.
997 * @nr_pages: Number of pages in the buffer.
998 * @snapshot: If this is a snapshot/overwrite counter.
999 *
1000 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1001 * bookkeeping for an AUX buffer.
1002 *
1003 * Return: Our private PT buffer structure.
1004 */
1005 static void *
1006 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1007 {
1008 struct pt_buffer *buf;
1009 int node, ret;
1010
1011 if (!nr_pages)
1012 return NULL;
1013
1014 if (cpu == -1)
1015 cpu = raw_smp_processor_id();
1016 node = cpu_to_node(cpu);
1017
1018 buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1019 GFP_KERNEL, node);
1020 if (!buf)
1021 return NULL;
1022
1023 buf->cpu = cpu;
1024 buf->snapshot = snapshot;
1025 buf->data_pages = pages;
1026
1027 INIT_LIST_HEAD(&buf->tables);
1028
1029 ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1030 if (ret) {
1031 kfree(buf);
1032 return NULL;
1033 }
1034
1035 return buf;
1036 }
1037
1038 /**
1039 * pt_buffer_free_aux() - perf AUX deallocation path callback
1040 * @data: PT buffer.
1041 */
1042 static void pt_buffer_free_aux(void *data)
1043 {
1044 struct pt_buffer *buf = data;
1045
1046 pt_buffer_fini_topa(buf);
1047 kfree(buf);
1048 }
1049
1050 static int pt_addr_filters_init(struct perf_event *event)
1051 {
1052 struct pt_filters *filters;
1053 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1054
1055 if (!pt_cap_get(PT_CAP_num_address_ranges))
1056 return 0;
1057
1058 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1059 if (!filters)
1060 return -ENOMEM;
1061
1062 if (event->parent)
1063 memcpy(filters, event->parent->hw.addr_filters,
1064 sizeof(*filters));
1065
1066 event->hw.addr_filters = filters;
1067
1068 return 0;
1069 }
1070
1071 static void pt_addr_filters_fini(struct perf_event *event)
1072 {
1073 kfree(event->hw.addr_filters);
1074 event->hw.addr_filters = NULL;
1075 }
1076
1077 static int pt_event_addr_filters_validate(struct list_head *filters)
1078 {
1079 struct perf_addr_filter *filter;
1080 int range = 0;
1081
1082 list_for_each_entry(filter, filters, entry) {
1083 /* PT doesn't support single address triggers */
1084 if (!filter->range)
1085 return -EOPNOTSUPP;
1086
1087 if (!filter->inode && !kernel_ip(filter->offset))
1088 return -EINVAL;
1089
1090 if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1091 return -EOPNOTSUPP;
1092 }
1093
1094 return 0;
1095 }
1096
1097 static void pt_event_addr_filters_sync(struct perf_event *event)
1098 {
1099 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1100 unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1101 struct pt_filters *filters = event->hw.addr_filters;
1102 struct perf_addr_filter *filter;
1103 int range = 0;
1104
1105 if (!filters)
1106 return;
1107
1108 list_for_each_entry(filter, &head->list, entry) {
1109 if (filter->inode && !offs[range]) {
1110 msr_a = msr_b = 0;
1111 } else {
1112 /* apply the offset */
1113 msr_a = filter->offset + offs[range];
1114 msr_b = filter->size + msr_a;
1115 }
1116
1117 filters->filter[range].msr_a = msr_a;
1118 filters->filter[range].msr_b = msr_b;
1119 filters->filter[range].config = filter->filter ? 1 : 2;
1120 range++;
1121 }
1122
1123 filters->nr_filters = range;
1124 }
1125
1126 /**
1127 * intel_pt_interrupt() - PT PMI handler
1128 */
1129 void intel_pt_interrupt(void)
1130 {
1131 struct pt *pt = this_cpu_ptr(&pt_ctx);
1132 struct pt_buffer *buf;
1133 struct perf_event *event = pt->handle.event;
1134
1135 /*
1136 * There may be a dangling PT bit in the interrupt status register
1137 * after PT has been disabled by pt_event_stop(). Make sure we don't
1138 * do anything (particularly, re-enable) for this event here.
1139 */
1140 if (!READ_ONCE(pt->handle_nmi))
1141 return;
1142
1143 /*
1144 * If VMX is on and PT does not support it, don't touch anything.
1145 */
1146 if (READ_ONCE(pt->vmx_on))
1147 return;
1148
1149 if (!event)
1150 return;
1151
1152 pt_config_stop(event);
1153
1154 buf = perf_get_aux(&pt->handle);
1155 if (!buf)
1156 return;
1157
1158 pt_read_offset(buf);
1159
1160 pt_handle_status(pt);
1161
1162 pt_update_head(pt);
1163
1164 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1165 local_xchg(&buf->lost, 0));
1166
1167 if (!event->hw.state) {
1168 int ret;
1169
1170 buf = perf_aux_output_begin(&pt->handle, event);
1171 if (!buf) {
1172 event->hw.state = PERF_HES_STOPPED;
1173 return;
1174 }
1175
1176 pt_buffer_reset_offsets(buf, pt->handle.head);
1177 /* snapshot counters don't use PMI, so it's safe */
1178 ret = pt_buffer_reset_markers(buf, &pt->handle);
1179 if (ret) {
1180 perf_aux_output_end(&pt->handle, 0, true);
1181 return;
1182 }
1183
1184 pt_config_buffer(buf->cur->table, buf->cur_idx,
1185 buf->output_off);
1186 pt_config(event);
1187 }
1188 }
1189
1190 void intel_pt_handle_vmx(int on)
1191 {
1192 struct pt *pt = this_cpu_ptr(&pt_ctx);
1193 struct perf_event *event;
1194 unsigned long flags;
1195
1196 /* PT plays nice with VMX, do nothing */
1197 if (pt_pmu.vmx)
1198 return;
1199
1200 /*
1201 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1202 * sure to not try to set it while VMX is on. Disable
1203 * interrupts to avoid racing with pmu callbacks;
1204 * concurrent PMI should be handled fine.
1205 */
1206 local_irq_save(flags);
1207 WRITE_ONCE(pt->vmx_on, on);
1208
1209 if (on) {
1210 /* prevent pt_config_stop() from writing RTIT_CTL */
1211 event = pt->handle.event;
1212 if (event)
1213 event->hw.config = 0;
1214 }
1215 local_irq_restore(flags);
1216 }
1217 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1218
1219 /*
1220 * PMU callbacks
1221 */
1222
1223 static void pt_event_start(struct perf_event *event, int mode)
1224 {
1225 struct hw_perf_event *hwc = &event->hw;
1226 struct pt *pt = this_cpu_ptr(&pt_ctx);
1227 struct pt_buffer *buf;
1228
1229 if (READ_ONCE(pt->vmx_on))
1230 return;
1231
1232 buf = perf_aux_output_begin(&pt->handle, event);
1233 if (!buf)
1234 goto fail_stop;
1235
1236 pt_buffer_reset_offsets(buf, pt->handle.head);
1237 if (!buf->snapshot) {
1238 if (pt_buffer_reset_markers(buf, &pt->handle))
1239 goto fail_end_stop;
1240 }
1241
1242 WRITE_ONCE(pt->handle_nmi, 1);
1243 hwc->state = 0;
1244
1245 pt_config_buffer(buf->cur->table, buf->cur_idx,
1246 buf->output_off);
1247 pt_config(event);
1248
1249 return;
1250
1251 fail_end_stop:
1252 perf_aux_output_end(&pt->handle, 0, true);
1253 fail_stop:
1254 hwc->state = PERF_HES_STOPPED;
1255 }
1256
1257 static void pt_event_stop(struct perf_event *event, int mode)
1258 {
1259 struct pt *pt = this_cpu_ptr(&pt_ctx);
1260
1261 /*
1262 * Protect against the PMI racing with disabling wrmsr,
1263 * see comment in intel_pt_interrupt().
1264 */
1265 WRITE_ONCE(pt->handle_nmi, 0);
1266
1267 pt_config_stop(event);
1268
1269 if (event->hw.state == PERF_HES_STOPPED)
1270 return;
1271
1272 event->hw.state = PERF_HES_STOPPED;
1273
1274 if (mode & PERF_EF_UPDATE) {
1275 struct pt_buffer *buf = perf_get_aux(&pt->handle);
1276
1277 if (!buf)
1278 return;
1279
1280 if (WARN_ON_ONCE(pt->handle.event != event))
1281 return;
1282
1283 pt_read_offset(buf);
1284
1285 pt_handle_status(pt);
1286
1287 pt_update_head(pt);
1288
1289 if (buf->snapshot)
1290 pt->handle.head =
1291 local_xchg(&buf->data_size,
1292 buf->nr_pages << PAGE_SHIFT);
1293 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1294 local_xchg(&buf->lost, 0));
1295 }
1296 }
1297
1298 static void pt_event_del(struct perf_event *event, int mode)
1299 {
1300 pt_event_stop(event, PERF_EF_UPDATE);
1301 }
1302
1303 static int pt_event_add(struct perf_event *event, int mode)
1304 {
1305 struct pt *pt = this_cpu_ptr(&pt_ctx);
1306 struct hw_perf_event *hwc = &event->hw;
1307 int ret = -EBUSY;
1308
1309 if (pt->handle.event)
1310 goto fail;
1311
1312 if (mode & PERF_EF_START) {
1313 pt_event_start(event, 0);
1314 ret = -EINVAL;
1315 if (hwc->state == PERF_HES_STOPPED)
1316 goto fail;
1317 } else {
1318 hwc->state = PERF_HES_STOPPED;
1319 }
1320
1321 ret = 0;
1322 fail:
1323
1324 return ret;
1325 }
1326
1327 static void pt_event_read(struct perf_event *event)
1328 {
1329 }
1330
1331 static void pt_event_destroy(struct perf_event *event)
1332 {
1333 pt_addr_filters_fini(event);
1334 x86_del_exclusive(x86_lbr_exclusive_pt);
1335 }
1336
1337 static int pt_event_init(struct perf_event *event)
1338 {
1339 if (event->attr.type != pt_pmu.pmu.type)
1340 return -ENOENT;
1341
1342 if (!pt_event_valid(event))
1343 return -EINVAL;
1344
1345 if (x86_add_exclusive(x86_lbr_exclusive_pt))
1346 return -EBUSY;
1347
1348 if (pt_addr_filters_init(event)) {
1349 x86_del_exclusive(x86_lbr_exclusive_pt);
1350 return -ENOMEM;
1351 }
1352
1353 event->destroy = pt_event_destroy;
1354
1355 return 0;
1356 }
1357
1358 void cpu_emergency_stop_pt(void)
1359 {
1360 struct pt *pt = this_cpu_ptr(&pt_ctx);
1361
1362 if (pt->handle.event)
1363 pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1364 }
1365
1366 static __init int pt_init(void)
1367 {
1368 int ret, cpu, prior_warn = 0;
1369
1370 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1371
1372 if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1373 return -ENODEV;
1374
1375 get_online_cpus();
1376 for_each_online_cpu(cpu) {
1377 u64 ctl;
1378
1379 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1380 if (!ret && (ctl & RTIT_CTL_TRACEEN))
1381 prior_warn++;
1382 }
1383 put_online_cpus();
1384
1385 if (prior_warn) {
1386 x86_add_exclusive(x86_lbr_exclusive_pt);
1387 pr_warn("PT is enabled at boot time, doing nothing\n");
1388
1389 return -EBUSY;
1390 }
1391
1392 ret = pt_pmu_hw_init();
1393 if (ret)
1394 return ret;
1395
1396 if (!pt_cap_get(PT_CAP_topa_output)) {
1397 pr_warn("ToPA output is not supported on this CPU\n");
1398 return -ENODEV;
1399 }
1400
1401 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1402 pt_pmu.pmu.capabilities =
1403 PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1404
1405 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1406 pt_pmu.pmu.attr_groups = pt_attr_groups;
1407 pt_pmu.pmu.task_ctx_nr = perf_sw_context;
1408 pt_pmu.pmu.event_init = pt_event_init;
1409 pt_pmu.pmu.add = pt_event_add;
1410 pt_pmu.pmu.del = pt_event_del;
1411 pt_pmu.pmu.start = pt_event_start;
1412 pt_pmu.pmu.stop = pt_event_stop;
1413 pt_pmu.pmu.read = pt_event_read;
1414 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux;
1415 pt_pmu.pmu.free_aux = pt_buffer_free_aux;
1416 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync;
1417 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1418 pt_pmu.pmu.nr_addr_filters =
1419 pt_cap_get(PT_CAP_num_address_ranges);
1420
1421 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1422
1423 return ret;
1424 }
1425 arch_initcall(pt_init);