]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/fpu/internal.h
x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / fpu / internal.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
12
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16
17 #include <asm/user.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
20 #include <asm/cpufeature.h>
21 #include <asm/trace/fpu.h>
22
23 /*
24 * High level FPU state handling functions:
25 */
26 extern void fpu__activate_curr(struct fpu *fpu);
27 extern void fpu__activate_fpstate_read(struct fpu *fpu);
28 extern void fpu__activate_fpstate_write(struct fpu *fpu);
29 extern void fpu__current_fpstate_write_begin(void);
30 extern void fpu__current_fpstate_write_end(void);
31 extern void fpu__save(struct fpu *fpu);
32 extern void fpu__restore(struct fpu *fpu);
33 extern int fpu__restore_sig(void __user *buf, int ia32_frame);
34 extern void fpu__drop(struct fpu *fpu);
35 extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
36 extern void fpu__clear(struct fpu *fpu);
37 extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
38 extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
39
40 /*
41 * Boot time FPU initialization functions:
42 */
43 extern void fpu__init_cpu(void);
44 extern void fpu__init_system_xstate(void);
45 extern void fpu__init_cpu_xstate(void);
46 extern void fpu__init_system(struct cpuinfo_x86 *c);
47 extern void fpu__init_check_bugs(void);
48 extern void fpu__resume_cpu(void);
49 extern u64 fpu__get_supported_xfeatures_mask(void);
50
51 /*
52 * Debugging facility:
53 */
54 #ifdef CONFIG_X86_DEBUG_FPU
55 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
56 #else
57 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
58 #endif
59
60 /*
61 * FPU related CPU feature flag helper routines:
62 */
63 static __always_inline __pure bool use_xsaveopt(void)
64 {
65 return static_cpu_has(X86_FEATURE_XSAVEOPT);
66 }
67
68 static __always_inline __pure bool use_xsave(void)
69 {
70 return static_cpu_has(X86_FEATURE_XSAVE);
71 }
72
73 static __always_inline __pure bool use_fxsr(void)
74 {
75 return static_cpu_has(X86_FEATURE_FXSR);
76 }
77
78 /*
79 * fpstate handling functions:
80 */
81
82 extern union fpregs_state init_fpstate;
83
84 extern void fpstate_init(union fpregs_state *state);
85 #ifdef CONFIG_MATH_EMULATION
86 extern void fpstate_init_soft(struct swregs_state *soft);
87 #else
88 static inline void fpstate_init_soft(struct swregs_state *soft) {}
89 #endif
90
91 static inline void fpstate_init_xstate(struct xregs_state *xsave)
92 {
93 /*
94 * XRSTORS requires these bits set in xcomp_bv, or it will
95 * trigger #GP:
96 */
97 xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
98 }
99
100 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
101 {
102 fx->cwd = 0x37f;
103 fx->mxcsr = MXCSR_DEFAULT;
104 }
105 extern void fpstate_sanitize_xstate(struct fpu *fpu);
106
107 #define user_insn(insn, output, input...) \
108 ({ \
109 int err; \
110 asm volatile(ASM_STAC "\n" \
111 "1:" #insn "\n\t" \
112 "2: " ASM_CLAC "\n" \
113 ".section .fixup,\"ax\"\n" \
114 "3: movl $-1,%[err]\n" \
115 " jmp 2b\n" \
116 ".previous\n" \
117 _ASM_EXTABLE(1b, 3b) \
118 : [err] "=r" (err), output \
119 : "0"(0), input); \
120 err; \
121 })
122
123 #define check_insn(insn, output, input...) \
124 ({ \
125 int err; \
126 asm volatile("1:" #insn "\n\t" \
127 "2:\n" \
128 ".section .fixup,\"ax\"\n" \
129 "3: movl $-1,%[err]\n" \
130 " jmp 2b\n" \
131 ".previous\n" \
132 _ASM_EXTABLE(1b, 3b) \
133 : [err] "=r" (err), output \
134 : "0"(0), input); \
135 err; \
136 })
137
138 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
139 {
140 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
141 }
142
143 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
144 {
145 if (IS_ENABLED(CONFIG_X86_32))
146 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
147 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
148 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
149
150 /* See comment in copy_fxregs_to_kernel() below. */
151 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
152 }
153
154 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
155 {
156 int err;
157
158 if (IS_ENABLED(CONFIG_X86_32)) {
159 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
160 } else {
161 if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
162 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
163 } else {
164 /* See comment in copy_fxregs_to_kernel() below. */
165 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
166 }
167 }
168 /* Copying from a kernel buffer to FPU registers should never fail: */
169 WARN_ON_FPU(err);
170 }
171
172 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
173 {
174 if (IS_ENABLED(CONFIG_X86_32))
175 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
176 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
177 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
178
179 /* See comment in copy_fxregs_to_kernel() below. */
180 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
181 "m" (*fx));
182 }
183
184 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
185 {
186 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
187
188 WARN_ON_FPU(err);
189 }
190
191 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
192 {
193 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
194 }
195
196 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
197 {
198 if (IS_ENABLED(CONFIG_X86_32))
199 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
200 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
201 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
202 else {
203 /* Using "rex64; fxsave %0" is broken because, if the memory
204 * operand uses any extended registers for addressing, a second
205 * REX prefix will be generated (to the assembler, rex64
206 * followed by semicolon is a separate instruction), and hence
207 * the 64-bitness is lost.
208 *
209 * Using "fxsaveq %0" would be the ideal choice, but is only
210 * supported starting with gas 2.16.
211 *
212 * Using, as a workaround, the properly prefixed form below
213 * isn't accepted by any binutils version so far released,
214 * complaining that the same type of prefix is used twice if
215 * an extended register is needed for addressing (fix submitted
216 * to mainline 2005-11-21).
217 *
218 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
219 *
220 * This, however, we can work around by forcing the compiler to
221 * select an addressing mode that doesn't require extended
222 * registers.
223 */
224 asm volatile( "rex64/fxsave (%[fx])"
225 : "=m" (fpu->state.fxsave)
226 : [fx] "R" (&fpu->state.fxsave));
227 }
228 }
229
230 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
231 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
232 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
233 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
234 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
235 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
236
237 #define XSTATE_OP(op, st, lmask, hmask, err) \
238 asm volatile("1:" op "\n\t" \
239 "xor %[err], %[err]\n" \
240 "2:\n\t" \
241 ".pushsection .fixup,\"ax\"\n\t" \
242 "3: movl $-2,%[err]\n\t" \
243 "jmp 2b\n\t" \
244 ".popsection\n\t" \
245 _ASM_EXTABLE(1b, 3b) \
246 : [err] "=r" (err) \
247 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
248 : "memory")
249
250 /*
251 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
252 * format and supervisor states in addition to modified optimization in
253 * XSAVEOPT.
254 *
255 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
256 * supports modified optimization which is not supported by XSAVE.
257 *
258 * We use XSAVE as a fallback.
259 *
260 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
261 * original instruction which gets replaced. We need to use it here as the
262 * address of the instruction where we might get an exception at.
263 */
264 #define XSTATE_XSAVE(st, lmask, hmask, err) \
265 asm volatile(ALTERNATIVE_2(XSAVE, \
266 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
267 XSAVES, X86_FEATURE_XSAVES) \
268 "\n" \
269 "xor %[err], %[err]\n" \
270 "3:\n" \
271 ".pushsection .fixup,\"ax\"\n" \
272 "4: movl $-2, %[err]\n" \
273 "jmp 3b\n" \
274 ".popsection\n" \
275 _ASM_EXTABLE(661b, 4b) \
276 : [err] "=r" (err) \
277 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
278 : "memory")
279
280 /*
281 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
282 * XSAVE area format.
283 */
284 #define XSTATE_XRESTORE(st, lmask, hmask, err) \
285 asm volatile(ALTERNATIVE(XRSTOR, \
286 XRSTORS, X86_FEATURE_XSAVES) \
287 "\n" \
288 "xor %[err], %[err]\n" \
289 "3:\n" \
290 ".pushsection .fixup,\"ax\"\n" \
291 "4: movl $-2, %[err]\n" \
292 "jmp 3b\n" \
293 ".popsection\n" \
294 _ASM_EXTABLE(661b, 4b) \
295 : [err] "=r" (err) \
296 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
297 : "memory")
298
299 /*
300 * This function is called only during boot time when x86 caps are not set
301 * up and alternative can not be used yet.
302 */
303 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
304 {
305 u64 mask = -1;
306 u32 lmask = mask;
307 u32 hmask = mask >> 32;
308 int err;
309
310 WARN_ON(system_state != SYSTEM_BOOTING);
311
312 if (static_cpu_has(X86_FEATURE_XSAVES))
313 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
314 else
315 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
316
317 /* We should never fault when copying to a kernel buffer: */
318 WARN_ON_FPU(err);
319 }
320
321 /*
322 * This function is called only during boot time when x86 caps are not set
323 * up and alternative can not be used yet.
324 */
325 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
326 {
327 u64 mask = -1;
328 u32 lmask = mask;
329 u32 hmask = mask >> 32;
330 int err;
331
332 WARN_ON(system_state != SYSTEM_BOOTING);
333
334 if (static_cpu_has(X86_FEATURE_XSAVES))
335 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
336 else
337 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
338
339 /* We should never fault when copying from a kernel buffer: */
340 WARN_ON_FPU(err);
341 }
342
343 /*
344 * Save processor xstate to xsave area.
345 */
346 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
347 {
348 u64 mask = -1;
349 u32 lmask = mask;
350 u32 hmask = mask >> 32;
351 int err;
352
353 WARN_ON(!alternatives_patched);
354
355 XSTATE_XSAVE(xstate, lmask, hmask, err);
356
357 /* We should never fault when copying to a kernel buffer: */
358 WARN_ON_FPU(err);
359 }
360
361 /*
362 * Restore processor xstate from xsave area.
363 */
364 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
365 {
366 u32 lmask = mask;
367 u32 hmask = mask >> 32;
368 int err;
369
370 XSTATE_XRESTORE(xstate, lmask, hmask, err);
371
372 /* We should never fault when copying from a kernel buffer: */
373 WARN_ON_FPU(err);
374 }
375
376 /*
377 * Save xstate to user space xsave area.
378 *
379 * We don't use modified optimization because xrstor/xrstors might track
380 * a different application.
381 *
382 * We don't use compacted format xsave area for
383 * backward compatibility for old applications which don't understand
384 * compacted format of xsave area.
385 */
386 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
387 {
388 int err;
389
390 /*
391 * Clear the xsave header first, so that reserved fields are
392 * initialized to zero.
393 */
394 err = __clear_user(&buf->header, sizeof(buf->header));
395 if (unlikely(err))
396 return -EFAULT;
397
398 stac();
399 XSTATE_OP(XSAVE, buf, -1, -1, err);
400 clac();
401
402 return err;
403 }
404
405 /*
406 * Restore xstate from user space xsave area.
407 */
408 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
409 {
410 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
411 u32 lmask = mask;
412 u32 hmask = mask >> 32;
413 int err;
414
415 stac();
416 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
417 clac();
418
419 return err;
420 }
421
422 /*
423 * These must be called with preempt disabled. Returns
424 * 'true' if the FPU state is still intact and we can
425 * keep registers active.
426 *
427 * The legacy FNSAVE instruction cleared all FPU state
428 * unconditionally, so registers are essentially destroyed.
429 * Modern FPU state can be kept in registers, if there are
430 * no pending FP exceptions.
431 */
432 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
433 {
434 if (likely(use_xsave())) {
435 copy_xregs_to_kernel(&fpu->state.xsave);
436 return 1;
437 }
438
439 if (likely(use_fxsr())) {
440 copy_fxregs_to_kernel(fpu);
441 return 1;
442 }
443
444 /*
445 * Legacy FPU register saving, FNSAVE always clears FPU registers,
446 * so we have to mark them inactive:
447 */
448 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
449
450 return 0;
451 }
452
453 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
454 {
455 if (use_xsave()) {
456 copy_kernel_to_xregs(&fpstate->xsave, mask);
457 } else {
458 if (use_fxsr())
459 copy_kernel_to_fxregs(&fpstate->fxsave);
460 else
461 copy_kernel_to_fregs(&fpstate->fsave);
462 }
463 }
464
465 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
466 {
467 /*
468 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
469 * pending. Clear the x87 state here by setting it to fixed values.
470 * "m" is a random variable that should be in L1.
471 */
472 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
473 asm volatile(
474 "fnclex\n\t"
475 "emms\n\t"
476 "fildl %P[addr]" /* set F?P to defined value */
477 : : [addr] "m" (fpstate));
478 }
479
480 __copy_kernel_to_fpregs(fpstate, -1);
481 }
482
483 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
484
485 /*
486 * FPU context switch related helper methods:
487 */
488
489 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
490
491 /*
492 * The in-register FPU state for an FPU context on a CPU is assumed to be
493 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
494 * matches the FPU.
495 *
496 * If the FPU register state is valid, the kernel can skip restoring the
497 * FPU state from memory.
498 *
499 * Any code that clobbers the FPU registers or updates the in-memory
500 * FPU state for a task MUST let the rest of the kernel know that the
501 * FPU registers are no longer valid for this task.
502 *
503 * Either one of these invalidation functions is enough. Invalidate
504 * a resource you control: CPU if using the CPU for something else
505 * (with preemption disabled), FPU for the current task, or a task that
506 * is prevented from running by the current task.
507 */
508 static inline void __cpu_invalidate_fpregs_state(void)
509 {
510 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
511 }
512
513 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
514 {
515 fpu->last_cpu = -1;
516 }
517
518 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
519 {
520 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
521 }
522
523 /*
524 * These generally need preemption protection to work,
525 * do try to avoid using these on their own:
526 */
527 static inline void fpregs_deactivate(struct fpu *fpu)
528 {
529 WARN_ON_FPU(!fpu->fpregs_active);
530
531 fpu->fpregs_active = 0;
532 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
533 trace_x86_fpu_regs_deactivated(fpu);
534 }
535
536 static inline void fpregs_activate(struct fpu *fpu)
537 {
538 WARN_ON_FPU(fpu->fpregs_active);
539
540 fpu->fpregs_active = 1;
541 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
542 trace_x86_fpu_regs_activated(fpu);
543 }
544
545 /*
546 * FPU state switching for scheduling.
547 *
548 * This is a two-stage process:
549 *
550 * - switch_fpu_prepare() saves the old state.
551 * This is done within the context of the old process.
552 *
553 * - switch_fpu_finish() restores the new state as
554 * necessary.
555 */
556 static inline void
557 switch_fpu_prepare(struct fpu *old_fpu, int cpu)
558 {
559 WARN_ON_FPU(old_fpu->fpregs_active != old_fpu->fpstate_active);
560
561 if (old_fpu->fpstate_active) {
562 if (!copy_fpregs_to_fpstate(old_fpu))
563 old_fpu->last_cpu = -1;
564 else
565 old_fpu->last_cpu = cpu;
566
567 /* But leave fpu_fpregs_owner_ctx! */
568 old_fpu->fpregs_active = 0;
569 trace_x86_fpu_regs_deactivated(old_fpu);
570 } else
571 old_fpu->last_cpu = -1;
572 }
573
574 /*
575 * Misc helper functions:
576 */
577
578 /*
579 * Set up the userspace FPU context for the new task, if the task
580 * has used the FPU.
581 */
582 static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
583 {
584 bool preload = static_cpu_has(X86_FEATURE_FPU) &&
585 new_fpu->fpstate_active;
586
587 if (preload) {
588 if (!fpregs_state_valid(new_fpu, cpu))
589 copy_kernel_to_fpregs(&new_fpu->state);
590 fpregs_activate(new_fpu);
591 }
592 }
593
594 /*
595 * Needs to be preemption-safe.
596 *
597 * NOTE! user_fpu_begin() must be used only immediately before restoring
598 * the save state. It does not do any saving/restoring on its own. In
599 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
600 * the task can lose the FPU right after preempt_enable().
601 */
602 static inline void user_fpu_begin(void)
603 {
604 struct fpu *fpu = &current->thread.fpu;
605
606 preempt_disable();
607 if (!fpu->fpregs_active)
608 fpregs_activate(fpu);
609 preempt_enable();
610 }
611
612 /*
613 * MXCSR and XCR definitions:
614 */
615
616 extern unsigned int mxcsr_feature_mask;
617
618 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
619
620 static inline u64 xgetbv(u32 index)
621 {
622 u32 eax, edx;
623
624 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
625 : "=a" (eax), "=d" (edx)
626 : "c" (index));
627 return eax + ((u64)edx << 32);
628 }
629
630 static inline void xsetbv(u32 index, u64 value)
631 {
632 u32 eax = value;
633 u32 edx = value >> 32;
634
635 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
636 : : "a" (eax), "d" (edx), "c" (index));
637 }
638
639 #endif /* _ASM_X86_FPU_INTERNAL_H */