2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
22 * High level FPU state handling functions:
24 extern void fpu__activate_curr(struct fpu
*fpu
);
25 extern void fpu__activate_fpstate_read(struct fpu
*fpu
);
26 extern void fpu__activate_fpstate_write(struct fpu
*fpu
);
27 extern void fpu__save(struct fpu
*fpu
);
28 extern void fpu__restore(struct fpu
*fpu
);
29 extern int fpu__restore_sig(void __user
*buf
, int ia32_frame
);
30 extern void fpu__drop(struct fpu
*fpu
);
31 extern int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
);
32 extern void fpu__clear(struct fpu
*fpu
);
33 extern int fpu__exception_code(struct fpu
*fpu
, int trap_nr
);
34 extern int dump_fpu(struct pt_regs
*ptregs
, struct user_i387_struct
*fpstate
);
37 * Boot time FPU initialization functions:
39 extern void fpu__init_cpu(void);
40 extern void fpu__init_system_xstate(void);
41 extern void fpu__init_cpu_xstate(void);
42 extern void fpu__init_system(struct cpuinfo_x86
*c
);
43 extern void fpu__init_check_bugs(void);
44 extern void fpu__resume_cpu(void);
45 extern u64
fpu__get_supported_xfeatures_mask(void);
50 #ifdef CONFIG_X86_DEBUG_FPU
51 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
53 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 * FPU related CPU feature flag helper routines:
59 static __always_inline __pure
bool use_eager_fpu(void)
61 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU
);
64 static __always_inline __pure
bool use_xsaveopt(void)
66 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT
);
69 static __always_inline __pure
bool use_xsave(void)
71 return static_cpu_has_safe(X86_FEATURE_XSAVE
);
74 static __always_inline __pure
bool use_fxsr(void)
76 return static_cpu_has_safe(X86_FEATURE_FXSR
);
80 * fpstate handling functions:
83 extern union fpregs_state init_fpstate
;
85 extern void fpstate_init(union fpregs_state
*state
);
86 #ifdef CONFIG_MATH_EMULATION
87 extern void fpstate_init_soft(struct swregs_state
*soft
);
89 static inline void fpstate_init_soft(struct swregs_state
*soft
) {}
91 static inline void fpstate_init_fxstate(struct fxregs_state
*fx
)
94 fx
->mxcsr
= MXCSR_DEFAULT
;
96 extern void fpstate_sanitize_xstate(struct fpu
*fpu
);
98 #define user_insn(insn, output, input...) \
101 asm volatile(ASM_STAC "\n" \
103 "2: " ASM_CLAC "\n" \
104 ".section .fixup,\"ax\"\n" \
105 "3: movl $-1,%[err]\n" \
108 _ASM_EXTABLE(1b, 3b) \
109 : [err] "=r" (err), output \
114 #define check_insn(insn, output, input...) \
117 asm volatile("1:" #insn "\n\t" \
119 ".section .fixup,\"ax\"\n" \
120 "3: movl $-1,%[err]\n" \
123 _ASM_EXTABLE(1b, 3b) \
124 : [err] "=r" (err), output \
129 static inline int copy_fregs_to_user(struct fregs_state __user
*fx
)
131 return user_insn(fnsave
%[fx
]; fwait
, [fx
] "=m" (*fx
), "m" (*fx
));
134 static inline int copy_fxregs_to_user(struct fxregs_state __user
*fx
)
136 if (config_enabled(CONFIG_X86_32
))
137 return user_insn(fxsave
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
138 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
139 return user_insn(fxsaveq
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
141 /* See comment in copy_fxregs_to_kernel() below. */
142 return user_insn(rex64
/fxsave (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
));
145 static inline void copy_kernel_to_fxregs(struct fxregs_state
*fx
)
149 if (config_enabled(CONFIG_X86_32
)) {
150 err
= check_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
152 if (config_enabled(CONFIG_AS_FXSAVEQ
)) {
153 err
= check_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
155 /* See comment in copy_fxregs_to_kernel() below. */
156 err
= check_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
), "m" (*fx
));
159 /* Copying from a kernel buffer to FPU registers should never fail: */
163 static inline int copy_user_to_fxregs(struct fxregs_state __user
*fx
)
165 if (config_enabled(CONFIG_X86_32
))
166 return user_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
167 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
168 return user_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
170 /* See comment in copy_fxregs_to_kernel() below. */
171 return user_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
),
175 static inline void copy_kernel_to_fregs(struct fregs_state
*fx
)
177 int err
= check_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
182 static inline int copy_user_to_fregs(struct fregs_state __user
*fx
)
184 return user_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
187 static inline void copy_fxregs_to_kernel(struct fpu
*fpu
)
189 if (config_enabled(CONFIG_X86_32
))
190 asm volatile( "fxsave %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
191 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
192 asm volatile("fxsaveq %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
194 /* Using "rex64; fxsave %0" is broken because, if the memory
195 * operand uses any extended registers for addressing, a second
196 * REX prefix will be generated (to the assembler, rex64
197 * followed by semicolon is a separate instruction), and hence
198 * the 64-bitness is lost.
200 * Using "fxsaveq %0" would be the ideal choice, but is only
201 * supported starting with gas 2.16.
203 * Using, as a workaround, the properly prefixed form below
204 * isn't accepted by any binutils version so far released,
205 * complaining that the same type of prefix is used twice if
206 * an extended register is needed for addressing (fix submitted
207 * to mainline 2005-11-21).
209 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
211 * This, however, we can work around by forcing the compiler to
212 * select an addressing mode that doesn't require extended
215 asm volatile( "rex64/fxsave (%[fx])"
216 : "=m" (fpu
->state
.fxsave
)
217 : [fx
] "R" (&fpu
->state
.fxsave
));
221 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
222 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
223 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
224 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
225 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
226 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
228 #define XSTATE_OP(op, st, lmask, hmask, err) \
229 asm volatile("1:" op "\n\t" \
230 "xor %[err], %[err]\n" \
232 ".pushsection .fixup,\"ax\"\n\t" \
233 "3: movl $-2,%[err]\n\t" \
236 _ASM_EXTABLE(1b, 3b) \
238 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
242 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
243 * format and supervisor states in addition to modified optimization in
246 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
247 * supports modified optimization which is not supported by XSAVE.
249 * We use XSAVE as a fallback.
251 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
252 * original instruction which gets replaced. We need to use it here as the
253 * address of the instruction where we might get an exception at.
255 #define XSTATE_XSAVE(st, lmask, hmask, err) \
256 asm volatile(ALTERNATIVE_2(XSAVE, \
257 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
258 XSAVES, X86_FEATURE_XSAVES) \
260 "xor %[err], %[err]\n" \
262 ".pushsection .fixup,\"ax\"\n" \
263 "4: movl $-2, %[err]\n" \
266 _ASM_EXTABLE(661b, 4b) \
268 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
272 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
275 #define XSTATE_XRESTORE(st, lmask, hmask, err) \
276 asm volatile(ALTERNATIVE(XRSTOR, \
277 XRSTORS, X86_FEATURE_XSAVES) \
279 "xor %[err], %[err]\n" \
281 ".pushsection .fixup,\"ax\"\n" \
282 "4: movl $-2, %[err]\n" \
285 _ASM_EXTABLE(661b, 4b) \
287 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
291 * This function is called only during boot time when x86 caps are not set
292 * up and alternative can not be used yet.
294 static inline void copy_xregs_to_kernel_booting(struct xregs_state
*xstate
)
298 u32 hmask
= mask
>> 32;
301 WARN_ON(system_state
!= SYSTEM_BOOTING
);
303 if (static_cpu_has_safe(X86_FEATURE_XSAVES
))
304 XSTATE_OP(XSAVES
, xstate
, lmask
, hmask
, err
);
306 XSTATE_OP(XSAVE
, xstate
, lmask
, hmask
, err
);
308 /* We should never fault when copying to a kernel buffer: */
313 * This function is called only during boot time when x86 caps are not set
314 * up and alternative can not be used yet.
316 static inline void copy_kernel_to_xregs_booting(struct xregs_state
*xstate
)
320 u32 hmask
= mask
>> 32;
323 WARN_ON(system_state
!= SYSTEM_BOOTING
);
325 if (static_cpu_has_safe(X86_FEATURE_XSAVES
))
326 XSTATE_OP(XRSTORS
, xstate
, lmask
, hmask
, err
);
328 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
330 /* We should never fault when copying from a kernel buffer: */
335 * Save processor xstate to xsave area.
337 static inline void copy_xregs_to_kernel(struct xregs_state
*xstate
)
341 u32 hmask
= mask
>> 32;
344 WARN_ON(!alternatives_patched
);
346 XSTATE_XSAVE(xstate
, lmask
, hmask
, err
);
348 /* We should never fault when copying to a kernel buffer: */
353 * Restore processor xstate from xsave area.
355 static inline void copy_kernel_to_xregs(struct xregs_state
*xstate
, u64 mask
)
358 u32 hmask
= mask
>> 32;
361 XSTATE_XRESTORE(xstate
, lmask
, hmask
, err
);
363 /* We should never fault when copying from a kernel buffer: */
368 * Save xstate to user space xsave area.
370 * We don't use modified optimization because xrstor/xrstors might track
371 * a different application.
373 * We don't use compacted format xsave area for
374 * backward compatibility for old applications which don't understand
375 * compacted format of xsave area.
377 static inline int copy_xregs_to_user(struct xregs_state __user
*buf
)
382 * Clear the xsave header first, so that reserved fields are
383 * initialized to zero.
385 err
= __clear_user(&buf
->header
, sizeof(buf
->header
));
390 XSTATE_OP(XSAVE
, buf
, -1, -1, err
);
397 * Restore xstate from user space xsave area.
399 static inline int copy_user_to_xregs(struct xregs_state __user
*buf
, u64 mask
)
401 struct xregs_state
*xstate
= ((__force
struct xregs_state
*)buf
);
403 u32 hmask
= mask
>> 32;
407 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
414 * These must be called with preempt disabled. Returns
415 * 'true' if the FPU state is still intact and we can
416 * keep registers active.
418 * The legacy FNSAVE instruction cleared all FPU state
419 * unconditionally, so registers are essentially destroyed.
420 * Modern FPU state can be kept in registers, if there are
421 * no pending FP exceptions.
423 static inline int copy_fpregs_to_fpstate(struct fpu
*fpu
)
425 if (likely(use_xsave())) {
426 copy_xregs_to_kernel(&fpu
->state
.xsave
);
430 if (likely(use_fxsr())) {
431 copy_fxregs_to_kernel(fpu
);
436 * Legacy FPU register saving, FNSAVE always clears FPU registers,
437 * so we have to mark them inactive:
439 asm volatile("fnsave %[fp]; fwait" : [fp
] "=m" (fpu
->state
.fsave
));
444 static inline void __copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
447 copy_kernel_to_xregs(&fpstate
->xsave
, -1);
450 copy_kernel_to_fxregs(&fpstate
->fxsave
);
452 copy_kernel_to_fregs(&fpstate
->fsave
);
456 static inline void copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
459 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
460 * pending. Clear the x87 state here by setting it to fixed values.
461 * "m" is a random variable that should be in L1.
463 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK
))) {
467 "fildl %P[addr]" /* set F?P to defined value */
468 : : [addr
] "m" (fpstate
));
471 __copy_kernel_to_fpregs(fpstate
);
474 extern int copy_fpstate_to_sigframe(void __user
*buf
, void __user
*fp
, int size
);
477 * FPU context switch related helper methods:
480 DECLARE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
483 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
486 * This will disable any lazy FPU state restore of the current FPU state,
487 * but if the current thread owns the FPU, it will still be saved by.
489 static inline void __cpu_disable_lazy_restore(unsigned int cpu
)
491 per_cpu(fpu_fpregs_owner_ctx
, cpu
) = NULL
;
494 static inline int fpu_want_lazy_restore(struct fpu
*fpu
, unsigned int cpu
)
496 return fpu
== this_cpu_read_stable(fpu_fpregs_owner_ctx
) && cpu
== fpu
->last_cpu
;
501 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
502 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
505 static inline void __fpregs_activate_hw(void)
507 if (!use_eager_fpu())
511 static inline void __fpregs_deactivate_hw(void)
513 if (!use_eager_fpu())
517 /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
518 static inline void __fpregs_deactivate(struct fpu
*fpu
)
520 WARN_ON_FPU(!fpu
->fpregs_active
);
522 fpu
->fpregs_active
= 0;
523 this_cpu_write(fpu_fpregs_owner_ctx
, NULL
);
526 /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
527 static inline void __fpregs_activate(struct fpu
*fpu
)
529 WARN_ON_FPU(fpu
->fpregs_active
);
531 fpu
->fpregs_active
= 1;
532 this_cpu_write(fpu_fpregs_owner_ctx
, fpu
);
536 * The question "does this thread have fpu access?"
537 * is slightly racy, since preemption could come in
538 * and revoke it immediately after the test.
540 * However, even in that very unlikely scenario,
541 * we can just assume we have FPU access - typically
542 * to save the FP state - we'll just take a #NM
543 * fault and get the FPU access back.
545 static inline int fpregs_active(void)
547 return current
->thread
.fpu
.fpregs_active
;
551 * Encapsulate the CR0.TS handling together with the
554 * These generally need preemption protection to work,
555 * do try to avoid using these on their own.
557 static inline void fpregs_activate(struct fpu
*fpu
)
559 __fpregs_activate_hw();
560 __fpregs_activate(fpu
);
563 static inline void fpregs_deactivate(struct fpu
*fpu
)
565 __fpregs_deactivate(fpu
);
566 __fpregs_deactivate_hw();
570 * FPU state switching for scheduling.
572 * This is a two-stage process:
574 * - switch_fpu_prepare() saves the old state and
575 * sets the new state of the CR0.TS bit. This is
576 * done within the context of the old process.
578 * - switch_fpu_finish() restores the new state as
581 typedef struct { int preload
; } fpu_switch_t
;
583 static inline fpu_switch_t
584 switch_fpu_prepare(struct fpu
*old_fpu
, struct fpu
*new_fpu
, int cpu
)
589 * If the task has used the math, pre-load the FPU on xsave processors
590 * or if the past 5 consecutive context-switches used math.
592 fpu
.preload
= new_fpu
->fpstate_active
&&
593 (use_eager_fpu() || new_fpu
->counter
> 5);
595 if (old_fpu
->fpregs_active
) {
596 if (!copy_fpregs_to_fpstate(old_fpu
))
597 old_fpu
->last_cpu
= -1;
599 old_fpu
->last_cpu
= cpu
;
601 /* But leave fpu_fpregs_owner_ctx! */
602 old_fpu
->fpregs_active
= 0;
604 /* Don't change CR0.TS if we just switch! */
607 __fpregs_activate(new_fpu
);
608 prefetch(&new_fpu
->state
);
610 __fpregs_deactivate_hw();
613 old_fpu
->counter
= 0;
614 old_fpu
->last_cpu
= -1;
617 if (fpu_want_lazy_restore(new_fpu
, cpu
))
620 prefetch(&new_fpu
->state
);
621 fpregs_activate(new_fpu
);
628 * Misc helper functions:
632 * By the time this gets called, we've already cleared CR0.TS and
633 * given the process the FPU if we are going to preload the FPU
634 * state - all we need to do is to conditionally restore the register
637 static inline void switch_fpu_finish(struct fpu
*new_fpu
, fpu_switch_t fpu_switch
)
639 if (fpu_switch
.preload
)
640 copy_kernel_to_fpregs(&new_fpu
->state
);
644 * Needs to be preemption-safe.
646 * NOTE! user_fpu_begin() must be used only immediately before restoring
647 * the save state. It does not do any saving/restoring on its own. In
648 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
649 * the task can lose the FPU right after preempt_enable().
651 static inline void user_fpu_begin(void)
653 struct fpu
*fpu
= ¤t
->thread
.fpu
;
656 if (!fpregs_active())
657 fpregs_activate(fpu
);
662 * MXCSR and XCR definitions:
665 extern unsigned int mxcsr_feature_mask
;
667 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
669 static inline u64
xgetbv(u32 index
)
673 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
674 : "=a" (eax
), "=d" (edx
)
676 return eax
+ ((u64
)edx
<< 32);
679 static inline void xsetbv(u32 index
, u64 value
)
682 u32 edx
= value
>> 32;
684 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
685 : : "a" (eax
), "d" (edx
), "c" (index
));
688 #endif /* _ASM_X86_FPU_INTERNAL_H */