2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
22 * High level FPU state handling functions:
24 extern void fpu__activate_curr(struct fpu
*fpu
);
25 extern void fpu__activate_fpstate_read(struct fpu
*fpu
);
26 extern void fpu__activate_fpstate_write(struct fpu
*fpu
);
27 extern void fpu__save(struct fpu
*fpu
);
28 extern void fpu__restore(struct fpu
*fpu
);
29 extern int fpu__restore_sig(void __user
*buf
, int ia32_frame
);
30 extern void fpu__drop(struct fpu
*fpu
);
31 extern int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
);
32 extern void fpu__clear(struct fpu
*fpu
);
33 extern int fpu__exception_code(struct fpu
*fpu
, int trap_nr
);
34 extern int dump_fpu(struct pt_regs
*ptregs
, struct user_i387_struct
*fpstate
);
37 * Boot time FPU initialization functions:
39 extern void fpu__init_cpu(void);
40 extern void fpu__init_system_xstate(void);
41 extern void fpu__init_cpu_xstate(void);
42 extern void fpu__init_system(struct cpuinfo_x86
*c
);
43 extern void fpu__init_check_bugs(void);
44 extern void fpu__resume_cpu(void);
49 #ifdef CONFIG_X86_DEBUG_FPU
50 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
52 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
56 * FPU related CPU feature flag helper routines:
58 static __always_inline __pure
bool use_eager_fpu(void)
60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU
);
63 static __always_inline __pure
bool use_xsaveopt(void)
65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT
);
68 static __always_inline __pure
bool use_xsave(void)
70 return static_cpu_has_safe(X86_FEATURE_XSAVE
);
73 static __always_inline __pure
bool use_fxsr(void)
75 return static_cpu_has_safe(X86_FEATURE_FXSR
);
79 * fpstate handling functions:
82 extern union fpregs_state init_fpstate
;
84 extern void fpstate_init(union fpregs_state
*state
);
85 #ifdef CONFIG_MATH_EMULATION
86 extern void fpstate_init_soft(struct swregs_state
*soft
);
88 static inline void fpstate_init_soft(struct swregs_state
*soft
) {}
90 static inline void fpstate_init_fxstate(struct fxregs_state
*fx
)
93 fx
->mxcsr
= MXCSR_DEFAULT
;
95 extern void fpstate_sanitize_xstate(struct fpu
*fpu
);
97 #define user_insn(insn, output, input...) \
100 asm volatile(ASM_STAC "\n" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
113 #define check_insn(insn, output, input...) \
116 asm volatile("1:" #insn "\n\t" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
128 static inline int copy_fregs_to_user(struct fregs_state __user
*fx
)
130 return user_insn(fnsave
%[fx
]; fwait
, [fx
] "=m" (*fx
), "m" (*fx
));
133 static inline int copy_fxregs_to_user(struct fxregs_state __user
*fx
)
135 if (config_enabled(CONFIG_X86_32
))
136 return user_insn(fxsave
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
137 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
138 return user_insn(fxsaveq
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
140 /* See comment in copy_fxregs_to_kernel() below. */
141 return user_insn(rex64
/fxsave (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
));
144 static inline void copy_kernel_to_fxregs(struct fxregs_state
*fx
)
148 if (config_enabled(CONFIG_X86_32
)) {
149 err
= check_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
151 if (config_enabled(CONFIG_AS_FXSAVEQ
)) {
152 err
= check_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err
= check_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
), "m" (*fx
));
158 /* Copying from a kernel buffer to FPU registers should never fail: */
162 static inline int copy_user_to_fxregs(struct fxregs_state __user
*fx
)
164 if (config_enabled(CONFIG_X86_32
))
165 return user_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
167 return user_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
169 /* See comment in copy_fxregs_to_kernel() below. */
170 return user_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
),
174 static inline void copy_kernel_to_fregs(struct fregs_state
*fx
)
176 int err
= check_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
181 static inline int copy_user_to_fregs(struct fregs_state __user
*fx
)
183 return user_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
186 static inline void copy_fxregs_to_kernel(struct fpu
*fpu
)
188 if (config_enabled(CONFIG_X86_32
))
189 asm volatile( "fxsave %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
190 else if (config_enabled(CONFIG_AS_FXSAVEQ
))
191 asm volatile("fxsaveq %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
214 asm volatile( "rex64/fxsave (%[fx])"
215 : "=m" (fpu
->state
.fxsave
)
216 : [fx
] "R" (&fpu
->state
.fxsave
));
220 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
221 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
227 #define XSTATE_OP(op, st, lmask, hmask, err) \
228 asm volatile("1:" op "\n\t" \
229 "xor %[err], %[err]\n" \
231 ".pushsection .fixup,\"ax\"\n\t" \
232 "3: movl $-2,%[err]\n\t" \
235 _ASM_EXTABLE(1b, 3b) \
237 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
241 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
242 * format and supervisor states in addition to modified optimization in
245 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
246 * supports modified optimization which is not supported by XSAVE.
248 * We use XSAVE as a fallback.
250 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
251 * original instruction which gets replaced. We need to use it here as the
252 * address of the instruction where we might get an exception at.
254 #define XSTATE_XSAVE(st, lmask, hmask, err) \
255 asm volatile(ALTERNATIVE_2(XSAVE, \
256 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
257 XSAVES, X86_FEATURE_XSAVES) \
259 "xor %[err], %[err]\n" \
261 ".pushsection .fixup,\"ax\"\n" \
262 "4: movl $-2, %[err]\n" \
265 _ASM_EXTABLE(661b, 4b) \
267 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
271 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
274 #define XSTATE_XRESTORE(st, lmask, hmask, err) \
275 asm volatile(ALTERNATIVE(XRSTOR, \
276 XRSTORS, X86_FEATURE_XSAVES) \
278 "xor %[err], %[err]\n" \
280 ".pushsection .fixup,\"ax\"\n" \
281 "4: movl $-2, %[err]\n" \
284 _ASM_EXTABLE(661b, 4b) \
286 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
290 * This function is called only during boot time when x86 caps are not set
291 * up and alternative can not be used yet.
293 static inline void copy_xregs_to_kernel_booting(struct xregs_state
*xstate
)
297 u32 hmask
= mask
>> 32;
300 WARN_ON(system_state
!= SYSTEM_BOOTING
);
302 if (static_cpu_has_safe(X86_FEATURE_XSAVES
))
303 XSTATE_OP(XSAVES
, xstate
, lmask
, hmask
, err
);
305 XSTATE_OP(XSAVE
, xstate
, lmask
, hmask
, err
);
307 /* We should never fault when copying to a kernel buffer: */
312 * This function is called only during boot time when x86 caps are not set
313 * up and alternative can not be used yet.
315 static inline void copy_kernel_to_xregs_booting(struct xregs_state
*xstate
)
319 u32 hmask
= mask
>> 32;
322 WARN_ON(system_state
!= SYSTEM_BOOTING
);
324 if (static_cpu_has_safe(X86_FEATURE_XSAVES
))
325 XSTATE_OP(XRSTORS
, xstate
, lmask
, hmask
, err
);
327 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
329 /* We should never fault when copying from a kernel buffer: */
334 * Save processor xstate to xsave area.
336 static inline void copy_xregs_to_kernel(struct xregs_state
*xstate
)
340 u32 hmask
= mask
>> 32;
343 WARN_ON(!alternatives_patched
);
345 XSTATE_XSAVE(xstate
, lmask
, hmask
, err
);
347 /* We should never fault when copying to a kernel buffer: */
352 * Restore processor xstate from xsave area.
354 static inline void copy_kernel_to_xregs(struct xregs_state
*xstate
, u64 mask
)
357 u32 hmask
= mask
>> 32;
360 XSTATE_XRESTORE(xstate
, lmask
, hmask
, err
);
362 /* We should never fault when copying from a kernel buffer: */
367 * Save xstate to user space xsave area.
369 * We don't use modified optimization because xrstor/xrstors might track
370 * a different application.
372 * We don't use compacted format xsave area for
373 * backward compatibility for old applications which don't understand
374 * compacted format of xsave area.
376 static inline int copy_xregs_to_user(struct xregs_state __user
*buf
)
381 * Clear the xsave header first, so that reserved fields are
382 * initialized to zero.
384 err
= __clear_user(&buf
->header
, sizeof(buf
->header
));
389 XSTATE_OP(XSAVE
, buf
, -1, -1, err
);
396 * Restore xstate from user space xsave area.
398 static inline int copy_user_to_xregs(struct xregs_state __user
*buf
, u64 mask
)
400 struct xregs_state
*xstate
= ((__force
struct xregs_state
*)buf
);
402 u32 hmask
= mask
>> 32;
406 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
413 * These must be called with preempt disabled. Returns
414 * 'true' if the FPU state is still intact and we can
415 * keep registers active.
417 * The legacy FNSAVE instruction cleared all FPU state
418 * unconditionally, so registers are essentially destroyed.
419 * Modern FPU state can be kept in registers, if there are
420 * no pending FP exceptions.
422 static inline int copy_fpregs_to_fpstate(struct fpu
*fpu
)
424 if (likely(use_xsave())) {
425 copy_xregs_to_kernel(&fpu
->state
.xsave
);
429 if (likely(use_fxsr())) {
430 copy_fxregs_to_kernel(fpu
);
435 * Legacy FPU register saving, FNSAVE always clears FPU registers,
436 * so we have to mark them inactive:
438 asm volatile("fnsave %[fp]; fwait" : [fp
] "=m" (fpu
->state
.fsave
));
443 static inline void __copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
446 copy_kernel_to_xregs(&fpstate
->xsave
, -1);
449 copy_kernel_to_fxregs(&fpstate
->fxsave
);
451 copy_kernel_to_fregs(&fpstate
->fsave
);
455 static inline void copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
458 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
459 * pending. Clear the x87 state here by setting it to fixed values.
460 * "m" is a random variable that should be in L1.
462 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK
))) {
466 "fildl %P[addr]" /* set F?P to defined value */
467 : : [addr
] "m" (fpstate
));
470 __copy_kernel_to_fpregs(fpstate
);
473 extern int copy_fpstate_to_sigframe(void __user
*buf
, void __user
*fp
, int size
);
476 * FPU context switch related helper methods:
479 DECLARE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
482 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
485 * This will disable any lazy FPU state restore of the current FPU state,
486 * but if the current thread owns the FPU, it will still be saved by.
488 static inline void __cpu_disable_lazy_restore(unsigned int cpu
)
490 per_cpu(fpu_fpregs_owner_ctx
, cpu
) = NULL
;
493 static inline int fpu_want_lazy_restore(struct fpu
*fpu
, unsigned int cpu
)
495 return fpu
== this_cpu_read_stable(fpu_fpregs_owner_ctx
) && cpu
== fpu
->last_cpu
;
500 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
501 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
504 static inline void __fpregs_activate_hw(void)
506 if (!use_eager_fpu())
510 static inline void __fpregs_deactivate_hw(void)
512 if (!use_eager_fpu())
516 /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
517 static inline void __fpregs_deactivate(struct fpu
*fpu
)
519 WARN_ON_FPU(!fpu
->fpregs_active
);
521 fpu
->fpregs_active
= 0;
522 this_cpu_write(fpu_fpregs_owner_ctx
, NULL
);
525 /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
526 static inline void __fpregs_activate(struct fpu
*fpu
)
528 WARN_ON_FPU(fpu
->fpregs_active
);
530 fpu
->fpregs_active
= 1;
531 this_cpu_write(fpu_fpregs_owner_ctx
, fpu
);
535 * The question "does this thread have fpu access?"
536 * is slightly racy, since preemption could come in
537 * and revoke it immediately after the test.
539 * However, even in that very unlikely scenario,
540 * we can just assume we have FPU access - typically
541 * to save the FP state - we'll just take a #NM
542 * fault and get the FPU access back.
544 static inline int fpregs_active(void)
546 return current
->thread
.fpu
.fpregs_active
;
550 * Encapsulate the CR0.TS handling together with the
553 * These generally need preemption protection to work,
554 * do try to avoid using these on their own.
556 static inline void fpregs_activate(struct fpu
*fpu
)
558 __fpregs_activate_hw();
559 __fpregs_activate(fpu
);
562 static inline void fpregs_deactivate(struct fpu
*fpu
)
564 __fpregs_deactivate(fpu
);
565 __fpregs_deactivate_hw();
569 * FPU state switching for scheduling.
571 * This is a two-stage process:
573 * - switch_fpu_prepare() saves the old state and
574 * sets the new state of the CR0.TS bit. This is
575 * done within the context of the old process.
577 * - switch_fpu_finish() restores the new state as
580 typedef struct { int preload
; } fpu_switch_t
;
582 static inline fpu_switch_t
583 switch_fpu_prepare(struct fpu
*old_fpu
, struct fpu
*new_fpu
, int cpu
)
588 * If the task has used the math, pre-load the FPU on xsave processors
589 * or if the past 5 consecutive context-switches used math.
591 fpu
.preload
= new_fpu
->fpstate_active
&&
592 (use_eager_fpu() || new_fpu
->counter
> 5);
594 if (old_fpu
->fpregs_active
) {
595 if (!copy_fpregs_to_fpstate(old_fpu
))
596 old_fpu
->last_cpu
= -1;
598 old_fpu
->last_cpu
= cpu
;
600 /* But leave fpu_fpregs_owner_ctx! */
601 old_fpu
->fpregs_active
= 0;
603 /* Don't change CR0.TS if we just switch! */
606 __fpregs_activate(new_fpu
);
607 prefetch(&new_fpu
->state
);
609 __fpregs_deactivate_hw();
612 old_fpu
->counter
= 0;
613 old_fpu
->last_cpu
= -1;
616 if (fpu_want_lazy_restore(new_fpu
, cpu
))
619 prefetch(&new_fpu
->state
);
620 fpregs_activate(new_fpu
);
627 * Misc helper functions:
631 * By the time this gets called, we've already cleared CR0.TS and
632 * given the process the FPU if we are going to preload the FPU
633 * state - all we need to do is to conditionally restore the register
636 static inline void switch_fpu_finish(struct fpu
*new_fpu
, fpu_switch_t fpu_switch
)
638 if (fpu_switch
.preload
)
639 copy_kernel_to_fpregs(&new_fpu
->state
);
643 * Needs to be preemption-safe.
645 * NOTE! user_fpu_begin() must be used only immediately before restoring
646 * the save state. It does not do any saving/restoring on its own. In
647 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
648 * the task can lose the FPU right after preempt_enable().
650 static inline void user_fpu_begin(void)
652 struct fpu
*fpu
= ¤t
->thread
.fpu
;
655 if (!fpregs_active())
656 fpregs_activate(fpu
);
661 * MXCSR and XCR definitions:
664 extern unsigned int mxcsr_feature_mask
;
666 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
668 static inline u64
xgetbv(u32 index
)
672 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
673 : "=a" (eax
), "=d" (edx
)
675 return eax
+ ((u64
)edx
<< 32);
678 static inline void xsetbv(u32 index
, u64 value
)
681 u32 edx
= value
>> 32;
683 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
684 : : "a" (eax
), "d" (edx
), "c" (index
));
687 #endif /* _ASM_X86_FPU_INTERNAL_H */