]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/fpu/internal.h
Merge tag 'hsi-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / fpu / internal.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
12
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16
17 #include <asm/user.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
20
21 /*
22 * High level FPU state handling functions:
23 */
24 extern void fpu__activate_curr(struct fpu *fpu);
25 extern void fpu__activate_fpstate_read(struct fpu *fpu);
26 extern void fpu__activate_fpstate_write(struct fpu *fpu);
27 extern void fpu__save(struct fpu *fpu);
28 extern void fpu__restore(struct fpu *fpu);
29 extern int fpu__restore_sig(void __user *buf, int ia32_frame);
30 extern void fpu__drop(struct fpu *fpu);
31 extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
32 extern void fpu__clear(struct fpu *fpu);
33 extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
34 extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
35
36 /*
37 * Boot time FPU initialization functions:
38 */
39 extern void fpu__init_cpu(void);
40 extern void fpu__init_system_xstate(void);
41 extern void fpu__init_cpu_xstate(void);
42 extern void fpu__init_system(struct cpuinfo_x86 *c);
43 extern void fpu__init_check_bugs(void);
44 extern void fpu__resume_cpu(void);
45
46 /*
47 * Debugging facility:
48 */
49 #ifdef CONFIG_X86_DEBUG_FPU
50 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
51 #else
52 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
53 #endif
54
55 /*
56 * FPU related CPU feature flag helper routines:
57 */
58 static __always_inline __pure bool use_eager_fpu(void)
59 {
60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
61 }
62
63 static __always_inline __pure bool use_xsaveopt(void)
64 {
65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
66 }
67
68 static __always_inline __pure bool use_xsave(void)
69 {
70 return static_cpu_has_safe(X86_FEATURE_XSAVE);
71 }
72
73 static __always_inline __pure bool use_fxsr(void)
74 {
75 return static_cpu_has_safe(X86_FEATURE_FXSR);
76 }
77
78 /*
79 * fpstate handling functions:
80 */
81
82 extern union fpregs_state init_fpstate;
83
84 extern void fpstate_init(union fpregs_state *state);
85 #ifdef CONFIG_MATH_EMULATION
86 extern void fpstate_init_soft(struct swregs_state *soft);
87 #else
88 static inline void fpstate_init_soft(struct swregs_state *soft) {}
89 #endif
90 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
91 {
92 fx->cwd = 0x37f;
93 fx->mxcsr = MXCSR_DEFAULT;
94 }
95 extern void fpstate_sanitize_xstate(struct fpu *fpu);
96
97 #define user_insn(insn, output, input...) \
98 ({ \
99 int err; \
100 asm volatile(ASM_STAC "\n" \
101 "1:" #insn "\n\t" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
105 " jmp 2b\n" \
106 ".previous\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
109 : "0"(0), input); \
110 err; \
111 })
112
113 #define check_insn(insn, output, input...) \
114 ({ \
115 int err; \
116 asm volatile("1:" #insn "\n\t" \
117 "2:\n" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
120 " jmp 2b\n" \
121 ".previous\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
124 : "0"(0), input); \
125 err; \
126 })
127
128 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129 {
130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
131 }
132
133 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134 {
135 if (config_enabled(CONFIG_X86_32))
136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137 else if (config_enabled(CONFIG_AS_FXSAVEQ))
138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139
140 /* See comment in copy_fxregs_to_kernel() below. */
141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 }
143
144 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145 {
146 int err;
147
148 if (config_enabled(CONFIG_X86_32)) {
149 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 } else {
151 if (config_enabled(CONFIG_AS_FXSAVEQ)) {
152 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
153 } else {
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
156 }
157 }
158 /* Copying from a kernel buffer to FPU registers should never fail: */
159 WARN_ON_FPU(err);
160 }
161
162 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
163 {
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168
169 /* See comment in copy_fxregs_to_kernel() below. */
170 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
171 "m" (*fx));
172 }
173
174 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
175 {
176 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177
178 WARN_ON_FPU(err);
179 }
180
181 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
182 {
183 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
184 }
185
186 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
187 {
188 if (config_enabled(CONFIG_X86_32))
189 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
190 else if (config_enabled(CONFIG_AS_FXSAVEQ))
191 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
192 else {
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
198 *
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
201 *
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
207 *
208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
209 *
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
212 * registers.
213 */
214 asm volatile( "rex64/fxsave (%[fx])"
215 : "=m" (fpu->state.fxsave)
216 : [fx] "R" (&fpu->state.fxsave));
217 }
218 }
219
220 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
221 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
226
227 #define XSTATE_OP(op, st, lmask, hmask, err) \
228 asm volatile("1:" op "\n\t" \
229 "xor %[err], %[err]\n" \
230 "2:\n\t" \
231 ".pushsection .fixup,\"ax\"\n\t" \
232 "3: movl $-2,%[err]\n\t" \
233 "jmp 2b\n\t" \
234 ".popsection\n\t" \
235 _ASM_EXTABLE(1b, 3b) \
236 : [err] "=r" (err) \
237 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
238 : "memory")
239
240 /*
241 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
242 * format and supervisor states in addition to modified optimization in
243 * XSAVEOPT.
244 *
245 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
246 * supports modified optimization which is not supported by XSAVE.
247 *
248 * We use XSAVE as a fallback.
249 *
250 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
251 * original instruction which gets replaced. We need to use it here as the
252 * address of the instruction where we might get an exception at.
253 */
254 #define XSTATE_XSAVE(st, lmask, hmask, err) \
255 asm volatile(ALTERNATIVE_2(XSAVE, \
256 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
257 XSAVES, X86_FEATURE_XSAVES) \
258 "\n" \
259 "xor %[err], %[err]\n" \
260 "3:\n" \
261 ".pushsection .fixup,\"ax\"\n" \
262 "4: movl $-2, %[err]\n" \
263 "jmp 3b\n" \
264 ".popsection\n" \
265 _ASM_EXTABLE(661b, 4b) \
266 : [err] "=r" (err) \
267 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
268 : "memory")
269
270 /*
271 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
272 * XSAVE area format.
273 */
274 #define XSTATE_XRESTORE(st, lmask, hmask, err) \
275 asm volatile(ALTERNATIVE(XRSTOR, \
276 XRSTORS, X86_FEATURE_XSAVES) \
277 "\n" \
278 "xor %[err], %[err]\n" \
279 "3:\n" \
280 ".pushsection .fixup,\"ax\"\n" \
281 "4: movl $-2, %[err]\n" \
282 "jmp 3b\n" \
283 ".popsection\n" \
284 _ASM_EXTABLE(661b, 4b) \
285 : [err] "=r" (err) \
286 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
287 : "memory")
288
289 /*
290 * This function is called only during boot time when x86 caps are not set
291 * up and alternative can not be used yet.
292 */
293 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
294 {
295 u64 mask = -1;
296 u32 lmask = mask;
297 u32 hmask = mask >> 32;
298 int err;
299
300 WARN_ON(system_state != SYSTEM_BOOTING);
301
302 if (static_cpu_has_safe(X86_FEATURE_XSAVES))
303 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
304 else
305 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
306
307 /* We should never fault when copying to a kernel buffer: */
308 WARN_ON_FPU(err);
309 }
310
311 /*
312 * This function is called only during boot time when x86 caps are not set
313 * up and alternative can not be used yet.
314 */
315 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
316 {
317 u64 mask = -1;
318 u32 lmask = mask;
319 u32 hmask = mask >> 32;
320 int err;
321
322 WARN_ON(system_state != SYSTEM_BOOTING);
323
324 if (static_cpu_has_safe(X86_FEATURE_XSAVES))
325 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
326 else
327 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
328
329 /* We should never fault when copying from a kernel buffer: */
330 WARN_ON_FPU(err);
331 }
332
333 /*
334 * Save processor xstate to xsave area.
335 */
336 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
337 {
338 u64 mask = -1;
339 u32 lmask = mask;
340 u32 hmask = mask >> 32;
341 int err;
342
343 WARN_ON(!alternatives_patched);
344
345 XSTATE_XSAVE(xstate, lmask, hmask, err);
346
347 /* We should never fault when copying to a kernel buffer: */
348 WARN_ON_FPU(err);
349 }
350
351 /*
352 * Restore processor xstate from xsave area.
353 */
354 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
355 {
356 u32 lmask = mask;
357 u32 hmask = mask >> 32;
358 int err;
359
360 XSTATE_XRESTORE(xstate, lmask, hmask, err);
361
362 /* We should never fault when copying from a kernel buffer: */
363 WARN_ON_FPU(err);
364 }
365
366 /*
367 * Save xstate to user space xsave area.
368 *
369 * We don't use modified optimization because xrstor/xrstors might track
370 * a different application.
371 *
372 * We don't use compacted format xsave area for
373 * backward compatibility for old applications which don't understand
374 * compacted format of xsave area.
375 */
376 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
377 {
378 int err;
379
380 /*
381 * Clear the xsave header first, so that reserved fields are
382 * initialized to zero.
383 */
384 err = __clear_user(&buf->header, sizeof(buf->header));
385 if (unlikely(err))
386 return -EFAULT;
387
388 stac();
389 XSTATE_OP(XSAVE, buf, -1, -1, err);
390 clac();
391
392 return err;
393 }
394
395 /*
396 * Restore xstate from user space xsave area.
397 */
398 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
399 {
400 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
401 u32 lmask = mask;
402 u32 hmask = mask >> 32;
403 int err;
404
405 stac();
406 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
407 clac();
408
409 return err;
410 }
411
412 /*
413 * These must be called with preempt disabled. Returns
414 * 'true' if the FPU state is still intact and we can
415 * keep registers active.
416 *
417 * The legacy FNSAVE instruction cleared all FPU state
418 * unconditionally, so registers are essentially destroyed.
419 * Modern FPU state can be kept in registers, if there are
420 * no pending FP exceptions.
421 */
422 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
423 {
424 if (likely(use_xsave())) {
425 copy_xregs_to_kernel(&fpu->state.xsave);
426 return 1;
427 }
428
429 if (likely(use_fxsr())) {
430 copy_fxregs_to_kernel(fpu);
431 return 1;
432 }
433
434 /*
435 * Legacy FPU register saving, FNSAVE always clears FPU registers,
436 * so we have to mark them inactive:
437 */
438 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
439
440 return 0;
441 }
442
443 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
444 {
445 if (use_xsave()) {
446 copy_kernel_to_xregs(&fpstate->xsave, -1);
447 } else {
448 if (use_fxsr())
449 copy_kernel_to_fxregs(&fpstate->fxsave);
450 else
451 copy_kernel_to_fregs(&fpstate->fsave);
452 }
453 }
454
455 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
456 {
457 /*
458 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
459 * pending. Clear the x87 state here by setting it to fixed values.
460 * "m" is a random variable that should be in L1.
461 */
462 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
463 asm volatile(
464 "fnclex\n\t"
465 "emms\n\t"
466 "fildl %P[addr]" /* set F?P to defined value */
467 : : [addr] "m" (fpstate));
468 }
469
470 __copy_kernel_to_fpregs(fpstate);
471 }
472
473 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
474
475 /*
476 * FPU context switch related helper methods:
477 */
478
479 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
480
481 /*
482 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
483 * on this CPU.
484 *
485 * This will disable any lazy FPU state restore of the current FPU state,
486 * but if the current thread owns the FPU, it will still be saved by.
487 */
488 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
489 {
490 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
491 }
492
493 static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
494 {
495 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
496 }
497
498
499 /*
500 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
501 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
502 */
503
504 static inline void __fpregs_activate_hw(void)
505 {
506 if (!use_eager_fpu())
507 clts();
508 }
509
510 static inline void __fpregs_deactivate_hw(void)
511 {
512 if (!use_eager_fpu())
513 stts();
514 }
515
516 /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
517 static inline void __fpregs_deactivate(struct fpu *fpu)
518 {
519 WARN_ON_FPU(!fpu->fpregs_active);
520
521 fpu->fpregs_active = 0;
522 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
523 }
524
525 /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
526 static inline void __fpregs_activate(struct fpu *fpu)
527 {
528 WARN_ON_FPU(fpu->fpregs_active);
529
530 fpu->fpregs_active = 1;
531 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
532 }
533
534 /*
535 * The question "does this thread have fpu access?"
536 * is slightly racy, since preemption could come in
537 * and revoke it immediately after the test.
538 *
539 * However, even in that very unlikely scenario,
540 * we can just assume we have FPU access - typically
541 * to save the FP state - we'll just take a #NM
542 * fault and get the FPU access back.
543 */
544 static inline int fpregs_active(void)
545 {
546 return current->thread.fpu.fpregs_active;
547 }
548
549 /*
550 * Encapsulate the CR0.TS handling together with the
551 * software flag.
552 *
553 * These generally need preemption protection to work,
554 * do try to avoid using these on their own.
555 */
556 static inline void fpregs_activate(struct fpu *fpu)
557 {
558 __fpregs_activate_hw();
559 __fpregs_activate(fpu);
560 }
561
562 static inline void fpregs_deactivate(struct fpu *fpu)
563 {
564 __fpregs_deactivate(fpu);
565 __fpregs_deactivate_hw();
566 }
567
568 /*
569 * FPU state switching for scheduling.
570 *
571 * This is a two-stage process:
572 *
573 * - switch_fpu_prepare() saves the old state and
574 * sets the new state of the CR0.TS bit. This is
575 * done within the context of the old process.
576 *
577 * - switch_fpu_finish() restores the new state as
578 * necessary.
579 */
580 typedef struct { int preload; } fpu_switch_t;
581
582 static inline fpu_switch_t
583 switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
584 {
585 fpu_switch_t fpu;
586
587 /*
588 * If the task has used the math, pre-load the FPU on xsave processors
589 * or if the past 5 consecutive context-switches used math.
590 */
591 fpu.preload = new_fpu->fpstate_active &&
592 (use_eager_fpu() || new_fpu->counter > 5);
593
594 if (old_fpu->fpregs_active) {
595 if (!copy_fpregs_to_fpstate(old_fpu))
596 old_fpu->last_cpu = -1;
597 else
598 old_fpu->last_cpu = cpu;
599
600 /* But leave fpu_fpregs_owner_ctx! */
601 old_fpu->fpregs_active = 0;
602
603 /* Don't change CR0.TS if we just switch! */
604 if (fpu.preload) {
605 new_fpu->counter++;
606 __fpregs_activate(new_fpu);
607 prefetch(&new_fpu->state);
608 } else {
609 __fpregs_deactivate_hw();
610 }
611 } else {
612 old_fpu->counter = 0;
613 old_fpu->last_cpu = -1;
614 if (fpu.preload) {
615 new_fpu->counter++;
616 if (fpu_want_lazy_restore(new_fpu, cpu))
617 fpu.preload = 0;
618 else
619 prefetch(&new_fpu->state);
620 fpregs_activate(new_fpu);
621 }
622 }
623 return fpu;
624 }
625
626 /*
627 * Misc helper functions:
628 */
629
630 /*
631 * By the time this gets called, we've already cleared CR0.TS and
632 * given the process the FPU if we are going to preload the FPU
633 * state - all we need to do is to conditionally restore the register
634 * state itself.
635 */
636 static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
637 {
638 if (fpu_switch.preload)
639 copy_kernel_to_fpregs(&new_fpu->state);
640 }
641
642 /*
643 * Needs to be preemption-safe.
644 *
645 * NOTE! user_fpu_begin() must be used only immediately before restoring
646 * the save state. It does not do any saving/restoring on its own. In
647 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
648 * the task can lose the FPU right after preempt_enable().
649 */
650 static inline void user_fpu_begin(void)
651 {
652 struct fpu *fpu = &current->thread.fpu;
653
654 preempt_disable();
655 if (!fpregs_active())
656 fpregs_activate(fpu);
657 preempt_enable();
658 }
659
660 /*
661 * MXCSR and XCR definitions:
662 */
663
664 extern unsigned int mxcsr_feature_mask;
665
666 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
667
668 static inline u64 xgetbv(u32 index)
669 {
670 u32 eax, edx;
671
672 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
673 : "=a" (eax), "=d" (edx)
674 : "c" (index));
675 return eax + ((u64)edx << 32);
676 }
677
678 static inline void xsetbv(u32 index, u64 value)
679 {
680 u32 eax = value;
681 u32 edx = value >> 32;
682
683 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
684 : : "a" (eax), "d" (edx), "c" (index));
685 }
686
687 #endif /* _ASM_X86_FPU_INTERNAL_H */