]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/fpu-internal.h
x86/fpu: Move xsave.h to fpu/xsave.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / fpu-internal.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12
13 #include <linux/regset.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16
17 #include <asm/user.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xsave.h>
20
21 #ifdef CONFIG_X86_64
22 # include <asm/sigcontext32.h>
23 # include <asm/user32.h>
24 struct ksignal;
25 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
26 compat_sigset_t *set, struct pt_regs *regs);
27 int ia32_setup_frame(int sig, struct ksignal *ksig,
28 compat_sigset_t *set, struct pt_regs *regs);
29 #else
30 # define user_i387_ia32_struct user_i387_struct
31 # define user32_fxsr_struct user_fxsr_struct
32 # define ia32_setup_frame __setup_frame
33 # define ia32_setup_rt_frame __setup_rt_frame
34 #endif
35
36 extern unsigned int mxcsr_feature_mask;
37 extern void fpu__cpu_init(void);
38 extern void eager_fpu_init(void);
39
40 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
41
42 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
43 struct task_struct *tsk);
44 extern void convert_to_fxsr(struct task_struct *tsk,
45 const struct user_i387_ia32_struct *env);
46
47 extern user_regset_active_fn fpregs_active, xfpregs_active;
48 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
49 xstateregs_get;
50 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
51 xstateregs_set;
52
53 /*
54 * xstateregs_active == fpregs_active. Please refer to the comment
55 * at the definition of fpregs_active.
56 */
57 #define xstateregs_active fpregs_active
58
59 #ifdef CONFIG_MATH_EMULATION
60 extern void finit_soft_fpu(struct i387_soft_struct *soft);
61 #else
62 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
63 #endif
64
65 /*
66 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
67 * on this CPU.
68 *
69 * This will disable any lazy FPU state restore of the current FPU state,
70 * but if the current thread owns the FPU, it will still be saved by.
71 */
72 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
73 {
74 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
75 }
76
77 static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
78 {
79 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
80 }
81
82 static inline int is_ia32_compat_frame(void)
83 {
84 return config_enabled(CONFIG_IA32_EMULATION) &&
85 test_thread_flag(TIF_IA32);
86 }
87
88 static inline int is_ia32_frame(void)
89 {
90 return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
91 }
92
93 static inline int is_x32_frame(void)
94 {
95 return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
96 }
97
98 #define X87_FSW_ES (1 << 7) /* Exception Summary */
99
100 static __always_inline __pure bool use_eager_fpu(void)
101 {
102 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
103 }
104
105 static __always_inline __pure bool use_xsaveopt(void)
106 {
107 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
108 }
109
110 static __always_inline __pure bool use_xsave(void)
111 {
112 return static_cpu_has_safe(X86_FEATURE_XSAVE);
113 }
114
115 static __always_inline __pure bool use_fxsr(void)
116 {
117 return static_cpu_has_safe(X86_FEATURE_FXSR);
118 }
119
120 static inline void fx_finit(struct i387_fxsave_struct *fx)
121 {
122 fx->cwd = 0x37f;
123 fx->mxcsr = MXCSR_DEFAULT;
124 }
125
126 extern void __sanitize_i387_state(struct task_struct *);
127
128 static inline void sanitize_i387_state(struct task_struct *tsk)
129 {
130 if (!use_xsaveopt())
131 return;
132 __sanitize_i387_state(tsk);
133 }
134
135 #define user_insn(insn, output, input...) \
136 ({ \
137 int err; \
138 asm volatile(ASM_STAC "\n" \
139 "1:" #insn "\n\t" \
140 "2: " ASM_CLAC "\n" \
141 ".section .fixup,\"ax\"\n" \
142 "3: movl $-1,%[err]\n" \
143 " jmp 2b\n" \
144 ".previous\n" \
145 _ASM_EXTABLE(1b, 3b) \
146 : [err] "=r" (err), output \
147 : "0"(0), input); \
148 err; \
149 })
150
151 #define check_insn(insn, output, input...) \
152 ({ \
153 int err; \
154 asm volatile("1:" #insn "\n\t" \
155 "2:\n" \
156 ".section .fixup,\"ax\"\n" \
157 "3: movl $-1,%[err]\n" \
158 " jmp 2b\n" \
159 ".previous\n" \
160 _ASM_EXTABLE(1b, 3b) \
161 : [err] "=r" (err), output \
162 : "0"(0), input); \
163 err; \
164 })
165
166 static inline int fsave_user(struct i387_fsave_struct __user *fx)
167 {
168 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
169 }
170
171 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
172 {
173 if (config_enabled(CONFIG_X86_32))
174 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
175 else if (config_enabled(CONFIG_AS_FXSAVEQ))
176 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
177
178 /* See comment in fpu_fxsave() below. */
179 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
180 }
181
182 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
183 {
184 if (config_enabled(CONFIG_X86_32))
185 return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
186 else if (config_enabled(CONFIG_AS_FXSAVEQ))
187 return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
188
189 /* See comment in fpu_fxsave() below. */
190 return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
191 "m" (*fx));
192 }
193
194 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
195 {
196 if (config_enabled(CONFIG_X86_32))
197 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
198 else if (config_enabled(CONFIG_AS_FXSAVEQ))
199 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
200
201 /* See comment in fpu_fxsave() below. */
202 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
203 "m" (*fx));
204 }
205
206 static inline int frstor_checking(struct i387_fsave_struct *fx)
207 {
208 return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
209 }
210
211 static inline int frstor_user(struct i387_fsave_struct __user *fx)
212 {
213 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
214 }
215
216 static inline void fpu_fxsave(struct fpu *fpu)
217 {
218 if (config_enabled(CONFIG_X86_32))
219 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
220 else if (config_enabled(CONFIG_AS_FXSAVEQ))
221 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave));
222 else {
223 /* Using "rex64; fxsave %0" is broken because, if the memory
224 * operand uses any extended registers for addressing, a second
225 * REX prefix will be generated (to the assembler, rex64
226 * followed by semicolon is a separate instruction), and hence
227 * the 64-bitness is lost.
228 *
229 * Using "fxsaveq %0" would be the ideal choice, but is only
230 * supported starting with gas 2.16.
231 *
232 * Using, as a workaround, the properly prefixed form below
233 * isn't accepted by any binutils version so far released,
234 * complaining that the same type of prefix is used twice if
235 * an extended register is needed for addressing (fix submitted
236 * to mainline 2005-11-21).
237 *
238 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
239 *
240 * This, however, we can work around by forcing the compiler to
241 * select an addressing mode that doesn't require extended
242 * registers.
243 */
244 asm volatile( "rex64/fxsave (%[fx])"
245 : "=m" (fpu->state->fxsave)
246 : [fx] "R" (&fpu->state->fxsave));
247 }
248 }
249
250 /*
251 * These must be called with preempt disabled. Returns
252 * 'true' if the FPU state is still intact.
253 */
254 static inline int fpu_save_init(struct fpu *fpu)
255 {
256 if (use_xsave()) {
257 xsave_state(&fpu->state->xsave);
258
259 /*
260 * xsave header may indicate the init state of the FP.
261 */
262 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
263 return 1;
264 } else if (use_fxsr()) {
265 fpu_fxsave(fpu);
266 } else {
267 asm volatile("fnsave %[fx]; fwait"
268 : [fx] "=m" (fpu->state->fsave));
269 return 0;
270 }
271
272 /*
273 * If exceptions are pending, we need to clear them so
274 * that we don't randomly get exceptions later.
275 *
276 * FIXME! Is this perhaps only true for the old-style
277 * irq13 case? Maybe we could leave the x87 state
278 * intact otherwise?
279 */
280 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
281 asm volatile("fnclex");
282 return 0;
283 }
284 return 1;
285 }
286
287 static inline int fpu_restore_checking(struct fpu *fpu)
288 {
289 if (use_xsave())
290 return fpu_xrstor_checking(&fpu->state->xsave);
291 else if (use_fxsr())
292 return fxrstor_checking(&fpu->state->fxsave);
293 else
294 return frstor_checking(&fpu->state->fsave);
295 }
296
297 static inline int restore_fpu_checking(struct fpu *fpu)
298 {
299 /*
300 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
301 * pending. Clear the x87 state here by setting it to fixed values.
302 * "m" is a random variable that should be in L1.
303 */
304 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
305 asm volatile(
306 "fnclex\n\t"
307 "emms\n\t"
308 "fildl %P[addr]" /* set F?P to defined value */
309 : : [addr] "m" (fpu->has_fpu));
310 }
311
312 return fpu_restore_checking(fpu);
313 }
314
315 /* Must be paired with an 'stts' after! */
316 static inline void __thread_clear_has_fpu(struct fpu *fpu)
317 {
318 fpu->has_fpu = 0;
319 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
320 }
321
322 /* Must be paired with a 'clts' before! */
323 static inline void __thread_set_has_fpu(struct fpu *fpu)
324 {
325 fpu->has_fpu = 1;
326 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
327 }
328
329 /*
330 * Encapsulate the CR0.TS handling together with the
331 * software flag.
332 *
333 * These generally need preemption protection to work,
334 * do try to avoid using these on their own.
335 */
336 static inline void __thread_fpu_end(struct fpu *fpu)
337 {
338 __thread_clear_has_fpu(fpu);
339 if (!use_eager_fpu())
340 stts();
341 }
342
343 static inline void __thread_fpu_begin(struct fpu *fpu)
344 {
345 if (!use_eager_fpu())
346 clts();
347 __thread_set_has_fpu(fpu);
348 }
349
350 static inline void drop_fpu(struct fpu *fpu)
351 {
352 /*
353 * Forget coprocessor state..
354 */
355 preempt_disable();
356 fpu->counter = 0;
357
358 if (fpu->has_fpu) {
359 /* Ignore delayed exceptions from user space */
360 asm volatile("1: fwait\n"
361 "2:\n"
362 _ASM_EXTABLE(1b, 2b));
363 __thread_fpu_end(fpu);
364 }
365
366 fpu->fpstate_active = 0;
367
368 preempt_enable();
369 }
370
371 static inline void restore_init_xstate(void)
372 {
373 if (use_xsave())
374 xrstor_state(init_xstate_buf, -1);
375 else
376 fxrstor_checking(&init_xstate_buf->i387);
377 }
378
379 /*
380 * Reset the FPU state in the eager case and drop it in the lazy case (later use
381 * will reinit it).
382 */
383 static inline void fpu_reset_state(struct fpu *fpu)
384 {
385 if (!use_eager_fpu())
386 drop_fpu(fpu);
387 else
388 restore_init_xstate();
389 }
390
391 /*
392 * FPU state switching for scheduling.
393 *
394 * This is a two-stage process:
395 *
396 * - switch_fpu_prepare() saves the old state and
397 * sets the new state of the CR0.TS bit. This is
398 * done within the context of the old process.
399 *
400 * - switch_fpu_finish() restores the new state as
401 * necessary.
402 */
403 typedef struct { int preload; } fpu_switch_t;
404
405 static inline fpu_switch_t
406 switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
407 {
408 fpu_switch_t fpu;
409
410 /*
411 * If the task has used the math, pre-load the FPU on xsave processors
412 * or if the past 5 consecutive context-switches used math.
413 */
414 fpu.preload = new_fpu->fpstate_active &&
415 (use_eager_fpu() || new_fpu->counter > 5);
416
417 if (old_fpu->has_fpu) {
418 if (!fpu_save_init(old_fpu))
419 old_fpu->last_cpu = -1;
420 else
421 old_fpu->last_cpu = cpu;
422
423 /* But leave fpu_fpregs_owner_ctx! */
424 old_fpu->has_fpu = 0;
425
426 /* Don't change CR0.TS if we just switch! */
427 if (fpu.preload) {
428 new_fpu->counter++;
429 __thread_set_has_fpu(new_fpu);
430 prefetch(new_fpu->state);
431 } else if (!use_eager_fpu())
432 stts();
433 } else {
434 old_fpu->counter = 0;
435 old_fpu->last_cpu = -1;
436 if (fpu.preload) {
437 new_fpu->counter++;
438 if (fpu_want_lazy_restore(new_fpu, cpu))
439 fpu.preload = 0;
440 else
441 prefetch(new_fpu->state);
442 __thread_fpu_begin(new_fpu);
443 }
444 }
445 return fpu;
446 }
447
448 /*
449 * By the time this gets called, we've already cleared CR0.TS and
450 * given the process the FPU if we are going to preload the FPU
451 * state - all we need to do is to conditionally restore the register
452 * state itself.
453 */
454 static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
455 {
456 if (fpu_switch.preload) {
457 if (unlikely(restore_fpu_checking(new_fpu)))
458 fpu_reset_state(new_fpu);
459 }
460 }
461
462 /*
463 * Signal frame handlers...
464 */
465 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
466 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
467
468 static inline int xstate_sigframe_size(void)
469 {
470 return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
471 }
472
473 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
474 {
475 void __user *buf_fx = buf;
476 int size = xstate_sigframe_size();
477
478 if (ia32_frame && use_fxsr()) {
479 buf_fx = buf + sizeof(struct i387_fsave_struct);
480 size += sizeof(struct i387_fsave_struct);
481 }
482
483 return __restore_xstate_sig(buf, buf_fx, size);
484 }
485
486 /*
487 * Needs to be preemption-safe.
488 *
489 * NOTE! user_fpu_begin() must be used only immediately before restoring
490 * the save state. It does not do any saving/restoring on its own. In
491 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
492 * the task can lose the FPU right after preempt_enable().
493 */
494 static inline void user_fpu_begin(void)
495 {
496 struct fpu *fpu = &current->thread.fpu;
497
498 preempt_disable();
499 if (!user_has_fpu())
500 __thread_fpu_begin(fpu);
501 preempt_enable();
502 }
503
504 /*
505 * i387 state interaction
506 */
507 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
508 {
509 if (cpu_has_fxsr) {
510 return tsk->thread.fpu.state->fxsave.cwd;
511 } else {
512 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
513 }
514 }
515
516 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
517 {
518 if (cpu_has_fxsr) {
519 return tsk->thread.fpu.state->fxsave.swd;
520 } else {
521 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
522 }
523 }
524
525 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
526 {
527 if (cpu_has_xmm) {
528 return tsk->thread.fpu.state->fxsave.mxcsr;
529 } else {
530 return MXCSR_DEFAULT;
531 }
532 }
533
534 extern void fpstate_cache_init(void);
535
536 extern int fpstate_alloc(struct fpu *fpu);
537 extern void fpstate_free(struct fpu *fpu);
538 extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
539
540 static inline unsigned long
541 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
542 unsigned long *size)
543 {
544 unsigned long frame_size = xstate_sigframe_size();
545
546 *buf_fx = sp = round_down(sp - frame_size, 64);
547 if (ia32_frame && use_fxsr()) {
548 frame_size += sizeof(struct i387_fsave_struct);
549 sp -= sizeof(struct i387_fsave_struct);
550 }
551
552 *size = frame_size;
553 return sp;
554 }
555
556 #endif