]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/fpu-internal.h
x86, fpu: use non-lazy fpu restore for processors supporting xsave
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / fpu-internal.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24
25 #ifdef CONFIG_X86_64
26 # include <asm/sigcontext32.h>
27 # include <asm/user32.h>
28 int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
29 compat_sigset_t *set, struct pt_regs *regs);
30 int ia32_setup_frame(int sig, struct k_sigaction *ka,
31 compat_sigset_t *set, struct pt_regs *regs);
32 #else
33 # define user_i387_ia32_struct user_i387_struct
34 # define user32_fxsr_struct user_fxsr_struct
35 # define ia32_setup_frame __setup_frame
36 # define ia32_setup_rt_frame __setup_rt_frame
37 #endif
38
39 extern unsigned int mxcsr_feature_mask;
40 extern void fpu_init(void);
41
42 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
43
44 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
45 struct task_struct *tsk);
46 extern void convert_to_fxsr(struct task_struct *tsk,
47 const struct user_i387_ia32_struct *env);
48
49 extern user_regset_active_fn fpregs_active, xfpregs_active;
50 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
51 xstateregs_get;
52 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
53 xstateregs_set;
54
55 /*
56 * xstateregs_active == fpregs_active. Please refer to the comment
57 * at the definition of fpregs_active.
58 */
59 #define xstateregs_active fpregs_active
60
61 #ifdef CONFIG_MATH_EMULATION
62 # define HAVE_HWFP (boot_cpu_data.hard_math)
63 extern void finit_soft_fpu(struct i387_soft_struct *soft);
64 #else
65 # define HAVE_HWFP 1
66 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
67 #endif
68
69 static inline int is_ia32_compat_frame(void)
70 {
71 return config_enabled(CONFIG_IA32_EMULATION) &&
72 test_thread_flag(TIF_IA32);
73 }
74
75 static inline int is_ia32_frame(void)
76 {
77 return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
78 }
79
80 static inline int is_x32_frame(void)
81 {
82 return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
83 }
84
85 #define X87_FSW_ES (1 << 7) /* Exception Summary */
86
87 static __always_inline __pure bool use_xsaveopt(void)
88 {
89 return static_cpu_has(X86_FEATURE_XSAVEOPT);
90 }
91
92 static __always_inline __pure bool use_xsave(void)
93 {
94 return static_cpu_has(X86_FEATURE_XSAVE);
95 }
96
97 static __always_inline __pure bool use_fxsr(void)
98 {
99 return static_cpu_has(X86_FEATURE_FXSR);
100 }
101
102 extern void __sanitize_i387_state(struct task_struct *);
103
104 static inline void sanitize_i387_state(struct task_struct *tsk)
105 {
106 if (!use_xsaveopt())
107 return;
108 __sanitize_i387_state(tsk);
109 }
110
111 #define check_insn(insn, output, input...) \
112 ({ \
113 int err; \
114 asm volatile("1:" #insn "\n\t" \
115 "2:\n" \
116 ".section .fixup,\"ax\"\n" \
117 "3: movl $-1,%[err]\n" \
118 " jmp 2b\n" \
119 ".previous\n" \
120 _ASM_EXTABLE(1b, 3b) \
121 : [err] "=r" (err), output \
122 : "0"(0), input); \
123 err; \
124 })
125
126 static inline int fsave_user(struct i387_fsave_struct __user *fx)
127 {
128 return check_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
129 }
130
131 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
132 {
133 if (config_enabled(CONFIG_X86_32))
134 return check_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
135 else if (config_enabled(CONFIG_AS_FXSAVEQ))
136 return check_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
137
138 /* See comment in fpu_fxsave() below. */
139 return check_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
140 }
141
142 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
143 {
144 if (config_enabled(CONFIG_X86_32))
145 return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
146 else if (config_enabled(CONFIG_AS_FXSAVEQ))
147 return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
148
149 /* See comment in fpu_fxsave() below. */
150 return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
151 "m" (*fx));
152 }
153
154 static inline int frstor_checking(struct i387_fsave_struct *fx)
155 {
156 return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
157 }
158
159 static inline void fpu_fxsave(struct fpu *fpu)
160 {
161 if (config_enabled(CONFIG_X86_32))
162 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
163 else if (config_enabled(CONFIG_AS_FXSAVEQ))
164 asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
165 else {
166 /* Using "rex64; fxsave %0" is broken because, if the memory
167 * operand uses any extended registers for addressing, a second
168 * REX prefix will be generated (to the assembler, rex64
169 * followed by semicolon is a separate instruction), and hence
170 * the 64-bitness is lost.
171 *
172 * Using "fxsaveq %0" would be the ideal choice, but is only
173 * supported starting with gas 2.16.
174 *
175 * Using, as a workaround, the properly prefixed form below
176 * isn't accepted by any binutils version so far released,
177 * complaining that the same type of prefix is used twice if
178 * an extended register is needed for addressing (fix submitted
179 * to mainline 2005-11-21).
180 *
181 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
182 *
183 * This, however, we can work around by forcing the compiler to
184 * select an addressing mode that doesn't require extended
185 * registers.
186 */
187 asm volatile( "rex64/fxsave (%[fx])"
188 : "=m" (fpu->state->fxsave)
189 : [fx] "R" (&fpu->state->fxsave));
190 }
191 }
192
193 /*
194 * These must be called with preempt disabled. Returns
195 * 'true' if the FPU state is still intact.
196 */
197 static inline int fpu_save_init(struct fpu *fpu)
198 {
199 if (use_xsave()) {
200 fpu_xsave(fpu);
201
202 /*
203 * xsave header may indicate the init state of the FP.
204 */
205 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
206 return 1;
207 } else if (use_fxsr()) {
208 fpu_fxsave(fpu);
209 } else {
210 asm volatile("fnsave %[fx]; fwait"
211 : [fx] "=m" (fpu->state->fsave));
212 return 0;
213 }
214
215 /*
216 * If exceptions are pending, we need to clear them so
217 * that we don't randomly get exceptions later.
218 *
219 * FIXME! Is this perhaps only true for the old-style
220 * irq13 case? Maybe we could leave the x87 state
221 * intact otherwise?
222 */
223 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
224 asm volatile("fnclex");
225 return 0;
226 }
227 return 1;
228 }
229
230 static inline int __save_init_fpu(struct task_struct *tsk)
231 {
232 return fpu_save_init(&tsk->thread.fpu);
233 }
234
235 static inline int fpu_restore_checking(struct fpu *fpu)
236 {
237 if (use_xsave())
238 return fpu_xrstor_checking(&fpu->state->xsave);
239 else if (use_fxsr())
240 return fxrstor_checking(&fpu->state->fxsave);
241 else
242 return frstor_checking(&fpu->state->fsave);
243 }
244
245 static inline int restore_fpu_checking(struct task_struct *tsk)
246 {
247 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
248 is pending. Clear the x87 state here by setting it to fixed
249 values. "m" is a random variable that should be in L1 */
250 alternative_input(
251 ASM_NOP8 ASM_NOP2,
252 "emms\n\t" /* clear stack tags */
253 "fildl %P[addr]", /* set F?P to defined value */
254 X86_FEATURE_FXSAVE_LEAK,
255 [addr] "m" (tsk->thread.fpu.has_fpu));
256
257 return fpu_restore_checking(&tsk->thread.fpu);
258 }
259
260 /*
261 * Software FPU state helpers. Careful: these need to
262 * be preemption protection *and* they need to be
263 * properly paired with the CR0.TS changes!
264 */
265 static inline int __thread_has_fpu(struct task_struct *tsk)
266 {
267 return tsk->thread.fpu.has_fpu;
268 }
269
270 /* Must be paired with an 'stts' after! */
271 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
272 {
273 tsk->thread.fpu.has_fpu = 0;
274 this_cpu_write(fpu_owner_task, NULL);
275 }
276
277 /* Must be paired with a 'clts' before! */
278 static inline void __thread_set_has_fpu(struct task_struct *tsk)
279 {
280 tsk->thread.fpu.has_fpu = 1;
281 this_cpu_write(fpu_owner_task, tsk);
282 }
283
284 /*
285 * Encapsulate the CR0.TS handling together with the
286 * software flag.
287 *
288 * These generally need preemption protection to work,
289 * do try to avoid using these on their own.
290 */
291 static inline void __thread_fpu_end(struct task_struct *tsk)
292 {
293 __thread_clear_has_fpu(tsk);
294 if (!use_xsave())
295 stts();
296 }
297
298 static inline void __thread_fpu_begin(struct task_struct *tsk)
299 {
300 if (!use_xsave())
301 clts();
302 __thread_set_has_fpu(tsk);
303 }
304
305 static inline void __drop_fpu(struct task_struct *tsk)
306 {
307 if (__thread_has_fpu(tsk)) {
308 /* Ignore delayed exceptions from user space */
309 asm volatile("1: fwait\n"
310 "2:\n"
311 _ASM_EXTABLE(1b, 2b));
312 __thread_fpu_end(tsk);
313 }
314 }
315
316 static inline void drop_fpu(struct task_struct *tsk)
317 {
318 /*
319 * Forget coprocessor state..
320 */
321 preempt_disable();
322 tsk->fpu_counter = 0;
323 __drop_fpu(tsk);
324 clear_used_math();
325 preempt_enable();
326 }
327
328 static inline void drop_init_fpu(struct task_struct *tsk)
329 {
330 if (!use_xsave())
331 drop_fpu(tsk);
332 else
333 xrstor_state(init_xstate_buf, -1);
334 }
335
336 /*
337 * FPU state switching for scheduling.
338 *
339 * This is a two-stage process:
340 *
341 * - switch_fpu_prepare() saves the old state and
342 * sets the new state of the CR0.TS bit. This is
343 * done within the context of the old process.
344 *
345 * - switch_fpu_finish() restores the new state as
346 * necessary.
347 */
348 typedef struct { int preload; } fpu_switch_t;
349
350 /*
351 * FIXME! We could do a totally lazy restore, but we need to
352 * add a per-cpu "this was the task that last touched the FPU
353 * on this CPU" variable, and the task needs to have a "I last
354 * touched the FPU on this CPU" and check them.
355 *
356 * We don't do that yet, so "fpu_lazy_restore()" always returns
357 * false, but some day..
358 */
359 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
360 {
361 return new == this_cpu_read_stable(fpu_owner_task) &&
362 cpu == new->thread.fpu.last_cpu;
363 }
364
365 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
366 {
367 fpu_switch_t fpu;
368
369 /*
370 * If the task has used the math, pre-load the FPU on xsave processors
371 * or if the past 5 consecutive context-switches used math.
372 */
373 fpu.preload = tsk_used_math(new) && (use_xsave() ||
374 new->fpu_counter > 5);
375 if (__thread_has_fpu(old)) {
376 if (!__save_init_fpu(old))
377 cpu = ~0;
378 old->thread.fpu.last_cpu = cpu;
379 old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
380
381 /* Don't change CR0.TS if we just switch! */
382 if (fpu.preload) {
383 new->fpu_counter++;
384 __thread_set_has_fpu(new);
385 prefetch(new->thread.fpu.state);
386 } else if (!use_xsave())
387 stts();
388 } else {
389 old->fpu_counter = 0;
390 old->thread.fpu.last_cpu = ~0;
391 if (fpu.preload) {
392 new->fpu_counter++;
393 if (!use_xsave() && fpu_lazy_restore(new, cpu))
394 fpu.preload = 0;
395 else
396 prefetch(new->thread.fpu.state);
397 __thread_fpu_begin(new);
398 }
399 }
400 return fpu;
401 }
402
403 /*
404 * By the time this gets called, we've already cleared CR0.TS and
405 * given the process the FPU if we are going to preload the FPU
406 * state - all we need to do is to conditionally restore the register
407 * state itself.
408 */
409 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
410 {
411 if (fpu.preload) {
412 if (unlikely(restore_fpu_checking(new)))
413 drop_init_fpu(new);
414 }
415 }
416
417 /*
418 * Signal frame handlers...
419 */
420 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
421 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
422
423 static inline int xstate_sigframe_size(void)
424 {
425 return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
426 }
427
428 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
429 {
430 void __user *buf_fx = buf;
431 int size = xstate_sigframe_size();
432
433 if (ia32_frame && use_fxsr()) {
434 buf_fx = buf + sizeof(struct i387_fsave_struct);
435 size += sizeof(struct i387_fsave_struct);
436 }
437
438 return __restore_xstate_sig(buf, buf_fx, size);
439 }
440
441 /*
442 * Need to be preemption-safe.
443 *
444 * NOTE! user_fpu_begin() must be used only immediately before restoring
445 * it. This function does not do any save/restore on their own.
446 */
447 static inline void user_fpu_begin(void)
448 {
449 preempt_disable();
450 if (!user_has_fpu())
451 __thread_fpu_begin(current);
452 preempt_enable();
453 }
454
455 /*
456 * These disable preemption on their own and are safe
457 */
458 static inline void save_init_fpu(struct task_struct *tsk)
459 {
460 WARN_ON_ONCE(!__thread_has_fpu(tsk));
461
462 if (use_xsave()) {
463 xsave_state(&tsk->thread.fpu.state->xsave, -1);
464 return;
465 }
466
467 preempt_disable();
468 __save_init_fpu(tsk);
469 __thread_fpu_end(tsk);
470 preempt_enable();
471 }
472
473 /*
474 * i387 state interaction
475 */
476 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
477 {
478 if (cpu_has_fxsr) {
479 return tsk->thread.fpu.state->fxsave.cwd;
480 } else {
481 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
482 }
483 }
484
485 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
486 {
487 if (cpu_has_fxsr) {
488 return tsk->thread.fpu.state->fxsave.swd;
489 } else {
490 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
491 }
492 }
493
494 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
495 {
496 if (cpu_has_xmm) {
497 return tsk->thread.fpu.state->fxsave.mxcsr;
498 } else {
499 return MXCSR_DEFAULT;
500 }
501 }
502
503 static bool fpu_allocated(struct fpu *fpu)
504 {
505 return fpu->state != NULL;
506 }
507
508 static inline int fpu_alloc(struct fpu *fpu)
509 {
510 if (fpu_allocated(fpu))
511 return 0;
512 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
513 if (!fpu->state)
514 return -ENOMEM;
515 WARN_ON((unsigned long)fpu->state & 15);
516 return 0;
517 }
518
519 static inline void fpu_free(struct fpu *fpu)
520 {
521 if (fpu->state) {
522 kmem_cache_free(task_xstate_cachep, fpu->state);
523 fpu->state = NULL;
524 }
525 }
526
527 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
528 {
529 if (use_xsave()) {
530 struct xsave_struct *xsave = &dst->thread.fpu.state->xsave;
531
532 memset(&xsave->xsave_hdr, 0, sizeof(struct xsave_hdr_struct));
533 xsave_state(xsave, -1);
534 } else {
535 struct fpu *dfpu = &dst->thread.fpu;
536 struct fpu *sfpu = &src->thread.fpu;
537
538 unlazy_fpu(src);
539 memcpy(dfpu->state, sfpu->state, xstate_size);
540 }
541 }
542
543 static inline unsigned long
544 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
545 unsigned long *size)
546 {
547 unsigned long frame_size = xstate_sigframe_size();
548
549 *buf_fx = sp = round_down(sp - frame_size, 64);
550 if (ia32_frame && use_fxsr()) {
551 frame_size += sizeof(struct i387_fsave_struct);
552 sp -= sizeof(struct i387_fsave_struct);
553 }
554
555 *size = frame_size;
556 return sp;
557 }
558
559 #endif