]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/i387.h
i387: move TS_USEDFPU clearing out of __save_init_fpu and into callers
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / i387.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern void math_state_restore(void);
33 extern void __math_state_restore(void);
34 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
35
36 extern user_regset_active_fn fpregs_active, xfpregs_active;
37 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 xstateregs_get;
39 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
40 xstateregs_set;
41
42 /*
43 * xstateregs_active == fpregs_active. Please refer to the comment
44 * at the definition of fpregs_active.
45 */
46 #define xstateregs_active fpregs_active
47
48 extern struct _fpx_sw_bytes fx_sw_reserved;
49 #ifdef CONFIG_IA32_EMULATION
50 extern unsigned int sig_xstate_ia32_size;
51 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
52 struct _fpstate_ia32;
53 struct _xstate_ia32;
54 extern int save_i387_xstate_ia32(void __user *buf);
55 extern int restore_i387_xstate_ia32(void __user *buf);
56 #endif
57
58 #ifdef CONFIG_MATH_EMULATION
59 extern void finit_soft_fpu(struct i387_soft_struct *soft);
60 #else
61 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
62 #endif
63
64 #define X87_FSW_ES (1 << 7) /* Exception Summary */
65
66 static __always_inline __pure bool use_xsaveopt(void)
67 {
68 return static_cpu_has(X86_FEATURE_XSAVEOPT);
69 }
70
71 static __always_inline __pure bool use_xsave(void)
72 {
73 return static_cpu_has(X86_FEATURE_XSAVE);
74 }
75
76 static __always_inline __pure bool use_fxsr(void)
77 {
78 return static_cpu_has(X86_FEATURE_FXSR);
79 }
80
81 extern void __sanitize_i387_state(struct task_struct *);
82
83 static inline void sanitize_i387_state(struct task_struct *tsk)
84 {
85 if (!use_xsaveopt())
86 return;
87 __sanitize_i387_state(tsk);
88 }
89
90 #ifdef CONFIG_X86_64
91 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
92 {
93 int err;
94
95 /* See comment in fxsave() below. */
96 #ifdef CONFIG_AS_FXSAVEQ
97 asm volatile("1: fxrstorq %[fx]\n\t"
98 "2:\n"
99 ".section .fixup,\"ax\"\n"
100 "3: movl $-1,%[err]\n"
101 " jmp 2b\n"
102 ".previous\n"
103 _ASM_EXTABLE(1b, 3b)
104 : [err] "=r" (err)
105 : [fx] "m" (*fx), "0" (0));
106 #else
107 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
108 "2:\n"
109 ".section .fixup,\"ax\"\n"
110 "3: movl $-1,%[err]\n"
111 " jmp 2b\n"
112 ".previous\n"
113 _ASM_EXTABLE(1b, 3b)
114 : [err] "=r" (err)
115 : [fx] "R" (fx), "m" (*fx), "0" (0));
116 #endif
117 return err;
118 }
119
120 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
121 {
122 int err;
123
124 /*
125 * Clear the bytes not touched by the fxsave and reserved
126 * for the SW usage.
127 */
128 err = __clear_user(&fx->sw_reserved,
129 sizeof(struct _fpx_sw_bytes));
130 if (unlikely(err))
131 return -EFAULT;
132
133 /* See comment in fxsave() below. */
134 #ifdef CONFIG_AS_FXSAVEQ
135 asm volatile("1: fxsaveq %[fx]\n\t"
136 "2:\n"
137 ".section .fixup,\"ax\"\n"
138 "3: movl $-1,%[err]\n"
139 " jmp 2b\n"
140 ".previous\n"
141 _ASM_EXTABLE(1b, 3b)
142 : [err] "=r" (err), [fx] "=m" (*fx)
143 : "0" (0));
144 #else
145 asm volatile("1: rex64/fxsave (%[fx])\n\t"
146 "2:\n"
147 ".section .fixup,\"ax\"\n"
148 "3: movl $-1,%[err]\n"
149 " jmp 2b\n"
150 ".previous\n"
151 _ASM_EXTABLE(1b, 3b)
152 : [err] "=r" (err), "=m" (*fx)
153 : [fx] "R" (fx), "0" (0));
154 #endif
155 if (unlikely(err) &&
156 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
157 err = -EFAULT;
158 /* No need to clear here because the caller clears USED_MATH */
159 return err;
160 }
161
162 static inline void fpu_fxsave(struct fpu *fpu)
163 {
164 /* Using "rex64; fxsave %0" is broken because, if the memory operand
165 uses any extended registers for addressing, a second REX prefix
166 will be generated (to the assembler, rex64 followed by semicolon
167 is a separate instruction), and hence the 64-bitness is lost. */
168
169 #ifdef CONFIG_AS_FXSAVEQ
170 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
171 starting with gas 2.16. */
172 __asm__ __volatile__("fxsaveq %0"
173 : "=m" (fpu->state->fxsave));
174 #else
175 /* Using, as a workaround, the properly prefixed form below isn't
176 accepted by any binutils version so far released, complaining that
177 the same type of prefix is used twice if an extended register is
178 needed for addressing (fix submitted to mainline 2005-11-21).
179 asm volatile("rex64/fxsave %0"
180 : "=m" (fpu->state->fxsave));
181 This, however, we can work around by forcing the compiler to select
182 an addressing mode that doesn't require extended registers. */
183 asm volatile("rex64/fxsave (%[fx])"
184 : "=m" (fpu->state->fxsave)
185 : [fx] "R" (&fpu->state->fxsave));
186 #endif
187 }
188
189 #else /* CONFIG_X86_32 */
190
191 /* perform fxrstor iff the processor has extended states, otherwise frstor */
192 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
193 {
194 /*
195 * The "nop" is needed to make the instructions the same
196 * length.
197 */
198 alternative_input(
199 "nop ; frstor %1",
200 "fxrstor %1",
201 X86_FEATURE_FXSR,
202 "m" (*fx));
203
204 return 0;
205 }
206
207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 asm volatile("fxsave %[fx]"
210 : [fx] "=m" (fpu->state->fxsave));
211 }
212
213 #endif /* CONFIG_X86_64 */
214
215 /* We need a safe address that is cheap to find and that is already
216 in L1 during context switch. The best choices are unfortunately
217 different for UP and SMP */
218 #ifdef CONFIG_SMP
219 #define safe_address (__per_cpu_offset[0])
220 #else
221 #define safe_address (__get_cpu_var(kernel_cpustat).cpustat[CPUTIME_USER])
222 #endif
223
224 /*
225 * These must be called with preempt disabled
226 */
227 static inline void fpu_save_init(struct fpu *fpu)
228 {
229 if (use_xsave()) {
230 fpu_xsave(fpu);
231
232 /*
233 * xsave header may indicate the init state of the FP.
234 */
235 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
236 return;
237 } else if (use_fxsr()) {
238 fpu_fxsave(fpu);
239 } else {
240 asm volatile("fnsave %[fx]; fwait"
241 : [fx] "=m" (fpu->state->fsave));
242 return;
243 }
244
245 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES))
246 asm volatile("fnclex");
247
248 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
249 is pending. Clear the x87 state here by setting it to fixed
250 values. safe_address is a random variable that should be in L1 */
251 alternative_input(
252 ASM_NOP8 ASM_NOP2,
253 "emms\n\t" /* clear stack tags */
254 "fildl %P[addr]", /* set F?P to defined value */
255 X86_FEATURE_FXSAVE_LEAK,
256 [addr] "m" (safe_address));
257 }
258
259 static inline void __save_init_fpu(struct task_struct *tsk)
260 {
261 fpu_save_init(&tsk->thread.fpu);
262 }
263
264 static inline int fpu_fxrstor_checking(struct fpu *fpu)
265 {
266 return fxrstor_checking(&fpu->state->fxsave);
267 }
268
269 static inline int fpu_restore_checking(struct fpu *fpu)
270 {
271 if (use_xsave())
272 return fpu_xrstor_checking(fpu);
273 else
274 return fpu_fxrstor_checking(fpu);
275 }
276
277 static inline int restore_fpu_checking(struct task_struct *tsk)
278 {
279 return fpu_restore_checking(&tsk->thread.fpu);
280 }
281
282 /*
283 * Signal frame handlers...
284 */
285 extern int save_i387_xstate(void __user *buf);
286 extern int restore_i387_xstate(void __user *buf);
287
288 static inline void __unlazy_fpu(struct task_struct *tsk)
289 {
290 if (task_thread_info(tsk)->status & TS_USEDFPU) {
291 __save_init_fpu(tsk);
292 task_thread_info(tsk)->status &= ~TS_USEDFPU;
293 stts();
294 } else
295 tsk->fpu_counter = 0;
296 }
297
298 static inline void __clear_fpu(struct task_struct *tsk)
299 {
300 if (task_thread_info(tsk)->status & TS_USEDFPU) {
301 /* Ignore delayed exceptions from user space */
302 asm volatile("1: fwait\n"
303 "2:\n"
304 _ASM_EXTABLE(1b, 2b));
305 task_thread_info(tsk)->status &= ~TS_USEDFPU;
306 stts();
307 }
308 }
309
310 /*
311 * Were we in an interrupt that interrupted kernel mode?
312 *
313 * We can do a kernel_fpu_begin/end() pair *ONLY* if that
314 * pair does nothing at all: TS_USEDFPU must be clear (so
315 * that we don't try to save the FPU state), and TS must
316 * be set (so that the clts/stts pair does nothing that is
317 * visible in the interrupted kernel thread).
318 */
319 static inline bool interrupted_kernel_fpu_idle(void)
320 {
321 return !(current_thread_info()->status & TS_USEDFPU) &&
322 (read_cr0() & X86_CR0_TS);
323 }
324
325 /*
326 * Were we in user mode (or vm86 mode) when we were
327 * interrupted?
328 *
329 * Doing kernel_fpu_begin/end() is ok if we are running
330 * in an interrupt context from user mode - we'll just
331 * save the FPU state as required.
332 */
333 static inline bool interrupted_user_mode(void)
334 {
335 struct pt_regs *regs = get_irq_regs();
336 return regs && user_mode_vm(regs);
337 }
338
339 /*
340 * Can we use the FPU in kernel mode with the
341 * whole "kernel_fpu_begin/end()" sequence?
342 *
343 * It's always ok in process context (ie "not interrupt")
344 * but it is sometimes ok even from an irq.
345 */
346 static inline bool irq_fpu_usable(void)
347 {
348 return !in_interrupt() ||
349 interrupted_user_mode() ||
350 interrupted_kernel_fpu_idle();
351 }
352
353 static inline void kernel_fpu_begin(void)
354 {
355 struct thread_info *me = current_thread_info();
356
357 WARN_ON_ONCE(!irq_fpu_usable());
358 preempt_disable();
359 if (me->status & TS_USEDFPU) {
360 __save_init_fpu(me->task);
361 me->status &= ~TS_USEDFPU;
362 /* We do 'stts()' in kernel_fpu_end() */
363 } else
364 clts();
365 }
366
367 static inline void kernel_fpu_end(void)
368 {
369 stts();
370 preempt_enable();
371 }
372
373 /*
374 * Some instructions like VIA's padlock instructions generate a spurious
375 * DNA fault but don't modify SSE registers. And these instructions
376 * get used from interrupt context as well. To prevent these kernel instructions
377 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
378 * should use them only in the context of irq_ts_save/restore()
379 */
380 static inline int irq_ts_save(void)
381 {
382 /*
383 * If in process context and not atomic, we can take a spurious DNA fault.
384 * Otherwise, doing clts() in process context requires disabling preemption
385 * or some heavy lifting like kernel_fpu_begin()
386 */
387 if (!in_atomic())
388 return 0;
389
390 if (read_cr0() & X86_CR0_TS) {
391 clts();
392 return 1;
393 }
394
395 return 0;
396 }
397
398 static inline void irq_ts_restore(int TS_state)
399 {
400 if (TS_state)
401 stts();
402 }
403
404 /*
405 * The question "does this thread have fpu access?"
406 * is slightly racy, since preemption could come in
407 * and revoke it immediately after the test.
408 *
409 * However, even in that very unlikely scenario,
410 * we can just assume we have FPU access - typically
411 * to save the FP state - we'll just take a #NM
412 * fault and get the FPU access back.
413 *
414 * The actual user_fpu_begin/end() functions
415 * need to be preemption-safe, though.
416 *
417 * NOTE! user_fpu_end() must be used only after you
418 * have saved the FP state, and user_fpu_begin() must
419 * be used only immediately before restoring it.
420 * These functions do not do any save/restore on
421 * their own.
422 */
423 static inline int user_has_fpu(void)
424 {
425 return current_thread_info()->status & TS_USEDFPU;
426 }
427
428 static inline void user_fpu_end(void)
429 {
430 preempt_disable();
431 current_thread_info()->status &= ~TS_USEDFPU;
432 stts();
433 preempt_enable();
434 }
435
436 static inline void user_fpu_begin(void)
437 {
438 preempt_disable();
439 if (!user_has_fpu()) {
440 clts();
441 current_thread_info()->status |= TS_USEDFPU;
442 }
443 preempt_enable();
444 }
445
446 /*
447 * These disable preemption on their own and are safe
448 */
449 static inline void save_init_fpu(struct task_struct *tsk)
450 {
451 WARN_ON_ONCE(!(task_thread_info(tsk)->status & TS_USEDFPU));
452 preempt_disable();
453 __save_init_fpu(tsk);
454 task_thread_info(tsk)->status &= ~TS_USEDFPU;
455 stts();
456 preempt_enable();
457 }
458
459 static inline void unlazy_fpu(struct task_struct *tsk)
460 {
461 preempt_disable();
462 __unlazy_fpu(tsk);
463 preempt_enable();
464 }
465
466 static inline void clear_fpu(struct task_struct *tsk)
467 {
468 preempt_disable();
469 __clear_fpu(tsk);
470 preempt_enable();
471 }
472
473 /*
474 * i387 state interaction
475 */
476 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
477 {
478 if (cpu_has_fxsr) {
479 return tsk->thread.fpu.state->fxsave.cwd;
480 } else {
481 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
482 }
483 }
484
485 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
486 {
487 if (cpu_has_fxsr) {
488 return tsk->thread.fpu.state->fxsave.swd;
489 } else {
490 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
491 }
492 }
493
494 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
495 {
496 if (cpu_has_xmm) {
497 return tsk->thread.fpu.state->fxsave.mxcsr;
498 } else {
499 return MXCSR_DEFAULT;
500 }
501 }
502
503 static bool fpu_allocated(struct fpu *fpu)
504 {
505 return fpu->state != NULL;
506 }
507
508 static inline int fpu_alloc(struct fpu *fpu)
509 {
510 if (fpu_allocated(fpu))
511 return 0;
512 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
513 if (!fpu->state)
514 return -ENOMEM;
515 WARN_ON((unsigned long)fpu->state & 15);
516 return 0;
517 }
518
519 static inline void fpu_free(struct fpu *fpu)
520 {
521 if (fpu->state) {
522 kmem_cache_free(task_xstate_cachep, fpu->state);
523 fpu->state = NULL;
524 }
525 }
526
527 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
528 {
529 memcpy(dst->state, src->state, xstate_size);
530 }
531
532 extern void fpu_finit(struct fpu *fpu);
533
534 #endif /* __ASSEMBLY__ */
535
536 #endif /* _ASM_X86_I387_H */