]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/i387.h
Merge tag 'asoc-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / i387.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern void __math_state_restore(struct task_struct *);
33 extern void math_state_restore(void);
34 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
35
36 extern user_regset_active_fn fpregs_active, xfpregs_active;
37 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 xstateregs_get;
39 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
40 xstateregs_set;
41
42 /*
43 * xstateregs_active == fpregs_active. Please refer to the comment
44 * at the definition of fpregs_active.
45 */
46 #define xstateregs_active fpregs_active
47
48 extern struct _fpx_sw_bytes fx_sw_reserved;
49 #ifdef CONFIG_IA32_EMULATION
50 extern unsigned int sig_xstate_ia32_size;
51 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
52 struct _fpstate_ia32;
53 struct _xstate_ia32;
54 extern int save_i387_xstate_ia32(void __user *buf);
55 extern int restore_i387_xstate_ia32(void __user *buf);
56 #endif
57
58 #ifdef CONFIG_MATH_EMULATION
59 extern void finit_soft_fpu(struct i387_soft_struct *soft);
60 #else
61 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
62 #endif
63
64 #define X87_FSW_ES (1 << 7) /* Exception Summary */
65
66 static __always_inline __pure bool use_xsaveopt(void)
67 {
68 return static_cpu_has(X86_FEATURE_XSAVEOPT);
69 }
70
71 static __always_inline __pure bool use_xsave(void)
72 {
73 return static_cpu_has(X86_FEATURE_XSAVE);
74 }
75
76 static __always_inline __pure bool use_fxsr(void)
77 {
78 return static_cpu_has(X86_FEATURE_FXSR);
79 }
80
81 extern void __sanitize_i387_state(struct task_struct *);
82
83 static inline void sanitize_i387_state(struct task_struct *tsk)
84 {
85 if (!use_xsaveopt())
86 return;
87 __sanitize_i387_state(tsk);
88 }
89
90 #ifdef CONFIG_X86_64
91 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
92 {
93 int err;
94
95 /* See comment in fxsave() below. */
96 #ifdef CONFIG_AS_FXSAVEQ
97 asm volatile("1: fxrstorq %[fx]\n\t"
98 "2:\n"
99 ".section .fixup,\"ax\"\n"
100 "3: movl $-1,%[err]\n"
101 " jmp 2b\n"
102 ".previous\n"
103 _ASM_EXTABLE(1b, 3b)
104 : [err] "=r" (err)
105 : [fx] "m" (*fx), "0" (0));
106 #else
107 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
108 "2:\n"
109 ".section .fixup,\"ax\"\n"
110 "3: movl $-1,%[err]\n"
111 " jmp 2b\n"
112 ".previous\n"
113 _ASM_EXTABLE(1b, 3b)
114 : [err] "=r" (err)
115 : [fx] "R" (fx), "m" (*fx), "0" (0));
116 #endif
117 return err;
118 }
119
120 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
121 {
122 int err;
123
124 /*
125 * Clear the bytes not touched by the fxsave and reserved
126 * for the SW usage.
127 */
128 err = __clear_user(&fx->sw_reserved,
129 sizeof(struct _fpx_sw_bytes));
130 if (unlikely(err))
131 return -EFAULT;
132
133 /* See comment in fxsave() below. */
134 #ifdef CONFIG_AS_FXSAVEQ
135 asm volatile("1: fxsaveq %[fx]\n\t"
136 "2:\n"
137 ".section .fixup,\"ax\"\n"
138 "3: movl $-1,%[err]\n"
139 " jmp 2b\n"
140 ".previous\n"
141 _ASM_EXTABLE(1b, 3b)
142 : [err] "=r" (err), [fx] "=m" (*fx)
143 : "0" (0));
144 #else
145 asm volatile("1: rex64/fxsave (%[fx])\n\t"
146 "2:\n"
147 ".section .fixup,\"ax\"\n"
148 "3: movl $-1,%[err]\n"
149 " jmp 2b\n"
150 ".previous\n"
151 _ASM_EXTABLE(1b, 3b)
152 : [err] "=r" (err), "=m" (*fx)
153 : [fx] "R" (fx), "0" (0));
154 #endif
155 if (unlikely(err) &&
156 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
157 err = -EFAULT;
158 /* No need to clear here because the caller clears USED_MATH */
159 return err;
160 }
161
162 static inline void fpu_fxsave(struct fpu *fpu)
163 {
164 /* Using "rex64; fxsave %0" is broken because, if the memory operand
165 uses any extended registers for addressing, a second REX prefix
166 will be generated (to the assembler, rex64 followed by semicolon
167 is a separate instruction), and hence the 64-bitness is lost. */
168
169 #ifdef CONFIG_AS_FXSAVEQ
170 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
171 starting with gas 2.16. */
172 __asm__ __volatile__("fxsaveq %0"
173 : "=m" (fpu->state->fxsave));
174 #else
175 /* Using, as a workaround, the properly prefixed form below isn't
176 accepted by any binutils version so far released, complaining that
177 the same type of prefix is used twice if an extended register is
178 needed for addressing (fix submitted to mainline 2005-11-21).
179 asm volatile("rex64/fxsave %0"
180 : "=m" (fpu->state->fxsave));
181 This, however, we can work around by forcing the compiler to select
182 an addressing mode that doesn't require extended registers. */
183 asm volatile("rex64/fxsave (%[fx])"
184 : "=m" (fpu->state->fxsave)
185 : [fx] "R" (&fpu->state->fxsave));
186 #endif
187 }
188
189 #else /* CONFIG_X86_32 */
190
191 /* perform fxrstor iff the processor has extended states, otherwise frstor */
192 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
193 {
194 /*
195 * The "nop" is needed to make the instructions the same
196 * length.
197 */
198 alternative_input(
199 "nop ; frstor %1",
200 "fxrstor %1",
201 X86_FEATURE_FXSR,
202 "m" (*fx));
203
204 return 0;
205 }
206
207 static inline void fpu_fxsave(struct fpu *fpu)
208 {
209 asm volatile("fxsave %[fx]"
210 : [fx] "=m" (fpu->state->fxsave));
211 }
212
213 #endif /* CONFIG_X86_64 */
214
215 /*
216 * These must be called with preempt disabled. Returns
217 * 'true' if the FPU state is still intact.
218 */
219 static inline int fpu_save_init(struct fpu *fpu)
220 {
221 if (use_xsave()) {
222 fpu_xsave(fpu);
223
224 /*
225 * xsave header may indicate the init state of the FP.
226 */
227 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
228 return 1;
229 } else if (use_fxsr()) {
230 fpu_fxsave(fpu);
231 } else {
232 asm volatile("fnsave %[fx]; fwait"
233 : [fx] "=m" (fpu->state->fsave));
234 return 0;
235 }
236
237 /*
238 * If exceptions are pending, we need to clear them so
239 * that we don't randomly get exceptions later.
240 *
241 * FIXME! Is this perhaps only true for the old-style
242 * irq13 case? Maybe we could leave the x87 state
243 * intact otherwise?
244 */
245 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
246 asm volatile("fnclex");
247 return 0;
248 }
249 return 1;
250 }
251
252 static inline int __save_init_fpu(struct task_struct *tsk)
253 {
254 return fpu_save_init(&tsk->thread.fpu);
255 }
256
257 static inline int fpu_fxrstor_checking(struct fpu *fpu)
258 {
259 return fxrstor_checking(&fpu->state->fxsave);
260 }
261
262 static inline int fpu_restore_checking(struct fpu *fpu)
263 {
264 if (use_xsave())
265 return fpu_xrstor_checking(fpu);
266 else
267 return fpu_fxrstor_checking(fpu);
268 }
269
270 static inline int restore_fpu_checking(struct task_struct *tsk)
271 {
272 return fpu_restore_checking(&tsk->thread.fpu);
273 }
274
275 /*
276 * Software FPU state helpers. Careful: these need to
277 * be preemption protection *and* they need to be
278 * properly paired with the CR0.TS changes!
279 */
280 static inline int __thread_has_fpu(struct task_struct *tsk)
281 {
282 return tsk->thread.has_fpu;
283 }
284
285 /* Must be paired with an 'stts' after! */
286 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
287 {
288 tsk->thread.has_fpu = 0;
289 }
290
291 /* Must be paired with a 'clts' before! */
292 static inline void __thread_set_has_fpu(struct task_struct *tsk)
293 {
294 tsk->thread.has_fpu = 1;
295 }
296
297 /*
298 * Encapsulate the CR0.TS handling together with the
299 * software flag.
300 *
301 * These generally need preemption protection to work,
302 * do try to avoid using these on their own.
303 */
304 static inline void __thread_fpu_end(struct task_struct *tsk)
305 {
306 __thread_clear_has_fpu(tsk);
307 stts();
308 }
309
310 static inline void __thread_fpu_begin(struct task_struct *tsk)
311 {
312 clts();
313 __thread_set_has_fpu(tsk);
314 }
315
316 /*
317 * FPU state switching for scheduling.
318 *
319 * This is a two-stage process:
320 *
321 * - switch_fpu_prepare() saves the old state and
322 * sets the new state of the CR0.TS bit. This is
323 * done within the context of the old process.
324 *
325 * - switch_fpu_finish() restores the new state as
326 * necessary.
327 */
328 typedef struct { int preload; } fpu_switch_t;
329
330 /*
331 * FIXME! We could do a totally lazy restore, but we need to
332 * add a per-cpu "this was the task that last touched the FPU
333 * on this CPU" variable, and the task needs to have a "I last
334 * touched the FPU on this CPU" and check them.
335 *
336 * We don't do that yet, so "fpu_lazy_restore()" always returns
337 * false, but some day..
338 */
339 #define fpu_lazy_restore(tsk) (0)
340 #define fpu_lazy_state_intact(tsk) do { } while (0)
341
342 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new)
343 {
344 fpu_switch_t fpu;
345
346 fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
347 if (__thread_has_fpu(old)) {
348 if (__save_init_fpu(old))
349 fpu_lazy_state_intact(old);
350 __thread_clear_has_fpu(old);
351 old->fpu_counter++;
352
353 /* Don't change CR0.TS if we just switch! */
354 if (fpu.preload) {
355 __thread_set_has_fpu(new);
356 prefetch(new->thread.fpu.state);
357 } else
358 stts();
359 } else {
360 old->fpu_counter = 0;
361 if (fpu.preload) {
362 if (fpu_lazy_restore(new))
363 fpu.preload = 0;
364 else
365 prefetch(new->thread.fpu.state);
366 __thread_fpu_begin(new);
367 }
368 }
369 return fpu;
370 }
371
372 /*
373 * By the time this gets called, we've already cleared CR0.TS and
374 * given the process the FPU if we are going to preload the FPU
375 * state - all we need to do is to conditionally restore the register
376 * state itself.
377 */
378 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
379 {
380 if (fpu.preload)
381 __math_state_restore(new);
382 }
383
384 /*
385 * Signal frame handlers...
386 */
387 extern int save_i387_xstate(void __user *buf);
388 extern int restore_i387_xstate(void __user *buf);
389
390 static inline void __clear_fpu(struct task_struct *tsk)
391 {
392 if (__thread_has_fpu(tsk)) {
393 /* Ignore delayed exceptions from user space */
394 asm volatile("1: fwait\n"
395 "2:\n"
396 _ASM_EXTABLE(1b, 2b));
397 __thread_fpu_end(tsk);
398 }
399 }
400
401 /*
402 * Were we in an interrupt that interrupted kernel mode?
403 *
404 * We can do a kernel_fpu_begin/end() pair *ONLY* if that
405 * pair does nothing at all: the thread must not have fpu (so
406 * that we don't try to save the FPU state), and TS must
407 * be set (so that the clts/stts pair does nothing that is
408 * visible in the interrupted kernel thread).
409 */
410 static inline bool interrupted_kernel_fpu_idle(void)
411 {
412 return !__thread_has_fpu(current) &&
413 (read_cr0() & X86_CR0_TS);
414 }
415
416 /*
417 * Were we in user mode (or vm86 mode) when we were
418 * interrupted?
419 *
420 * Doing kernel_fpu_begin/end() is ok if we are running
421 * in an interrupt context from user mode - we'll just
422 * save the FPU state as required.
423 */
424 static inline bool interrupted_user_mode(void)
425 {
426 struct pt_regs *regs = get_irq_regs();
427 return regs && user_mode_vm(regs);
428 }
429
430 /*
431 * Can we use the FPU in kernel mode with the
432 * whole "kernel_fpu_begin/end()" sequence?
433 *
434 * It's always ok in process context (ie "not interrupt")
435 * but it is sometimes ok even from an irq.
436 */
437 static inline bool irq_fpu_usable(void)
438 {
439 return !in_interrupt() ||
440 interrupted_user_mode() ||
441 interrupted_kernel_fpu_idle();
442 }
443
444 static inline void kernel_fpu_begin(void)
445 {
446 struct task_struct *me = current;
447
448 WARN_ON_ONCE(!irq_fpu_usable());
449 preempt_disable();
450 if (__thread_has_fpu(me)) {
451 __save_init_fpu(me);
452 __thread_clear_has_fpu(me);
453 /* We do 'stts()' in kernel_fpu_end() */
454 } else
455 clts();
456 }
457
458 static inline void kernel_fpu_end(void)
459 {
460 stts();
461 preempt_enable();
462 }
463
464 /*
465 * Some instructions like VIA's padlock instructions generate a spurious
466 * DNA fault but don't modify SSE registers. And these instructions
467 * get used from interrupt context as well. To prevent these kernel instructions
468 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
469 * should use them only in the context of irq_ts_save/restore()
470 */
471 static inline int irq_ts_save(void)
472 {
473 /*
474 * If in process context and not atomic, we can take a spurious DNA fault.
475 * Otherwise, doing clts() in process context requires disabling preemption
476 * or some heavy lifting like kernel_fpu_begin()
477 */
478 if (!in_atomic())
479 return 0;
480
481 if (read_cr0() & X86_CR0_TS) {
482 clts();
483 return 1;
484 }
485
486 return 0;
487 }
488
489 static inline void irq_ts_restore(int TS_state)
490 {
491 if (TS_state)
492 stts();
493 }
494
495 /*
496 * The question "does this thread have fpu access?"
497 * is slightly racy, since preemption could come in
498 * and revoke it immediately after the test.
499 *
500 * However, even in that very unlikely scenario,
501 * we can just assume we have FPU access - typically
502 * to save the FP state - we'll just take a #NM
503 * fault and get the FPU access back.
504 *
505 * The actual user_fpu_begin/end() functions
506 * need to be preemption-safe, though.
507 *
508 * NOTE! user_fpu_end() must be used only after you
509 * have saved the FP state, and user_fpu_begin() must
510 * be used only immediately before restoring it.
511 * These functions do not do any save/restore on
512 * their own.
513 */
514 static inline int user_has_fpu(void)
515 {
516 return __thread_has_fpu(current);
517 }
518
519 static inline void user_fpu_end(void)
520 {
521 preempt_disable();
522 __thread_fpu_end(current);
523 preempt_enable();
524 }
525
526 static inline void user_fpu_begin(void)
527 {
528 preempt_disable();
529 if (!user_has_fpu())
530 __thread_fpu_begin(current);
531 preempt_enable();
532 }
533
534 /*
535 * These disable preemption on their own and are safe
536 */
537 static inline void save_init_fpu(struct task_struct *tsk)
538 {
539 WARN_ON_ONCE(!__thread_has_fpu(tsk));
540 preempt_disable();
541 __save_init_fpu(tsk);
542 __thread_fpu_end(tsk);
543 preempt_enable();
544 }
545
546 static inline void unlazy_fpu(struct task_struct *tsk)
547 {
548 preempt_disable();
549 if (__thread_has_fpu(tsk)) {
550 __save_init_fpu(tsk);
551 __thread_fpu_end(tsk);
552 } else
553 tsk->fpu_counter = 0;
554 preempt_enable();
555 }
556
557 static inline void clear_fpu(struct task_struct *tsk)
558 {
559 preempt_disable();
560 __clear_fpu(tsk);
561 preempt_enable();
562 }
563
564 /*
565 * i387 state interaction
566 */
567 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
568 {
569 if (cpu_has_fxsr) {
570 return tsk->thread.fpu.state->fxsave.cwd;
571 } else {
572 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
573 }
574 }
575
576 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
577 {
578 if (cpu_has_fxsr) {
579 return tsk->thread.fpu.state->fxsave.swd;
580 } else {
581 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
582 }
583 }
584
585 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
586 {
587 if (cpu_has_xmm) {
588 return tsk->thread.fpu.state->fxsave.mxcsr;
589 } else {
590 return MXCSR_DEFAULT;
591 }
592 }
593
594 static bool fpu_allocated(struct fpu *fpu)
595 {
596 return fpu->state != NULL;
597 }
598
599 static inline int fpu_alloc(struct fpu *fpu)
600 {
601 if (fpu_allocated(fpu))
602 return 0;
603 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
604 if (!fpu->state)
605 return -ENOMEM;
606 WARN_ON((unsigned long)fpu->state & 15);
607 return 0;
608 }
609
610 static inline void fpu_free(struct fpu *fpu)
611 {
612 if (fpu->state) {
613 kmem_cache_free(task_xstate_cachep, fpu->state);
614 fpu->state = NULL;
615 }
616 }
617
618 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
619 {
620 memcpy(dst->state, src->state, xstate_size);
621 }
622
623 extern void fpu_finit(struct fpu *fpu);
624
625 #endif /* __ASSEMBLY__ */
626
627 #endif /* _ASM_X86_I387_H */