]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/include/asm/kvm_host.h
Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39
40 #define KVM_MAX_VCPUS 288
41 #define KVM_SOFT_MAX_VCPUS 240
42 #define KVM_MAX_VCPU_ID 1023
43 /* memory slots that are not exposed to userspace */
44 #define KVM_PRIVATE_MEM_SLOTS 3
45
46 #define KVM_HALT_POLL_NS_DEFAULT 200000
47
48 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
49
50 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
51 KVM_DIRTY_LOG_INITIALLY_SET)
52
53 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
54 KVM_BUS_LOCK_DETECTION_EXIT)
55
56 /* x86-specific vcpu->requests bit members */
57 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
58 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
59 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
60 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
61 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
62 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
63 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
64 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
65 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
66 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
67 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
68 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
69 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
70 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
71 #define KVM_REQ_MCLOCK_INPROGRESS \
72 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
73 #define KVM_REQ_SCAN_IOAPIC \
74 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
75 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
76 #define KVM_REQ_APIC_PAGE_RELOAD \
77 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
78 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
79 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
80 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
81 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
82 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
83 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
84 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
85 #define KVM_REQ_APICV_UPDATE \
86 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
87 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
88 #define KVM_REQ_TLB_FLUSH_GUEST \
89 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
91 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
92 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
93 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
94
95 #define CR0_RESERVED_BITS \
96 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
97 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
98 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
99
100 #define CR4_RESERVED_BITS \
101 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
102 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
103 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
104 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
105 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
106 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
107
108 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
109
110
111
112 #define INVALID_PAGE (~(hpa_t)0)
113 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
114
115 #define UNMAPPED_GVA (~(gpa_t)0)
116 #define INVALID_GPA (~(gpa_t)0)
117
118 /* KVM Hugepage definitions for x86 */
119 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
120 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
121 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
122 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
123 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
124 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
125 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
126
127 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
128 {
129 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
130 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
131 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
132 }
133
134 #define KVM_PERMILLE_MMU_PAGES 20
135 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
136 #define KVM_MMU_HASH_SHIFT 12
137 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
138 #define KVM_MIN_FREE_MMU_PAGES 5
139 #define KVM_REFILL_PAGES 25
140 #define KVM_MAX_CPUID_ENTRIES 256
141 #define KVM_NR_FIXED_MTRR_REGION 88
142 #define KVM_NR_VAR_MTRR 8
143
144 #define ASYNC_PF_PER_VCPU 64
145
146 enum kvm_reg {
147 VCPU_REGS_RAX = __VCPU_REGS_RAX,
148 VCPU_REGS_RCX = __VCPU_REGS_RCX,
149 VCPU_REGS_RDX = __VCPU_REGS_RDX,
150 VCPU_REGS_RBX = __VCPU_REGS_RBX,
151 VCPU_REGS_RSP = __VCPU_REGS_RSP,
152 VCPU_REGS_RBP = __VCPU_REGS_RBP,
153 VCPU_REGS_RSI = __VCPU_REGS_RSI,
154 VCPU_REGS_RDI = __VCPU_REGS_RDI,
155 #ifdef CONFIG_X86_64
156 VCPU_REGS_R8 = __VCPU_REGS_R8,
157 VCPU_REGS_R9 = __VCPU_REGS_R9,
158 VCPU_REGS_R10 = __VCPU_REGS_R10,
159 VCPU_REGS_R11 = __VCPU_REGS_R11,
160 VCPU_REGS_R12 = __VCPU_REGS_R12,
161 VCPU_REGS_R13 = __VCPU_REGS_R13,
162 VCPU_REGS_R14 = __VCPU_REGS_R14,
163 VCPU_REGS_R15 = __VCPU_REGS_R15,
164 #endif
165 VCPU_REGS_RIP,
166 NR_VCPU_REGS,
167
168 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
169 VCPU_EXREG_CR0,
170 VCPU_EXREG_CR3,
171 VCPU_EXREG_CR4,
172 VCPU_EXREG_RFLAGS,
173 VCPU_EXREG_SEGMENTS,
174 VCPU_EXREG_EXIT_INFO_1,
175 VCPU_EXREG_EXIT_INFO_2,
176 };
177
178 enum {
179 VCPU_SREG_ES,
180 VCPU_SREG_CS,
181 VCPU_SREG_SS,
182 VCPU_SREG_DS,
183 VCPU_SREG_FS,
184 VCPU_SREG_GS,
185 VCPU_SREG_TR,
186 VCPU_SREG_LDTR,
187 };
188
189 enum exit_fastpath_completion {
190 EXIT_FASTPATH_NONE,
191 EXIT_FASTPATH_REENTER_GUEST,
192 EXIT_FASTPATH_EXIT_HANDLED,
193 };
194 typedef enum exit_fastpath_completion fastpath_t;
195
196 struct x86_emulate_ctxt;
197 struct x86_exception;
198 enum x86_intercept;
199 enum x86_intercept_stage;
200
201 #define KVM_NR_DB_REGS 4
202
203 #define DR6_BUS_LOCK (1 << 11)
204 #define DR6_BD (1 << 13)
205 #define DR6_BS (1 << 14)
206 #define DR6_BT (1 << 15)
207 #define DR6_RTM (1 << 16)
208 /*
209 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
210 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
211 * they will never be 0 for now, but when they are defined
212 * in the future it will require no code change.
213 *
214 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
215 */
216 #define DR6_ACTIVE_LOW 0xffff0ff0
217 #define DR6_VOLATILE 0x0001e80f
218 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
219
220 #define DR7_BP_EN_MASK 0x000000ff
221 #define DR7_GE (1 << 9)
222 #define DR7_GD (1 << 13)
223 #define DR7_FIXED_1 0x00000400
224 #define DR7_VOLATILE 0xffff2bff
225
226 #define KVM_GUESTDBG_VALID_MASK \
227 (KVM_GUESTDBG_ENABLE | \
228 KVM_GUESTDBG_SINGLESTEP | \
229 KVM_GUESTDBG_USE_HW_BP | \
230 KVM_GUESTDBG_USE_SW_BP | \
231 KVM_GUESTDBG_INJECT_BP | \
232 KVM_GUESTDBG_INJECT_DB)
233
234
235 #define PFERR_PRESENT_BIT 0
236 #define PFERR_WRITE_BIT 1
237 #define PFERR_USER_BIT 2
238 #define PFERR_RSVD_BIT 3
239 #define PFERR_FETCH_BIT 4
240 #define PFERR_PK_BIT 5
241 #define PFERR_SGX_BIT 15
242 #define PFERR_GUEST_FINAL_BIT 32
243 #define PFERR_GUEST_PAGE_BIT 33
244
245 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
246 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
247 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
248 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
249 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
250 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
251 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
252 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
253 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
254
255 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
256 PFERR_WRITE_MASK | \
257 PFERR_PRESENT_MASK)
258
259 /* apic attention bits */
260 #define KVM_APIC_CHECK_VAPIC 0
261 /*
262 * The following bit is set with PV-EOI, unset on EOI.
263 * We detect PV-EOI changes by guest by comparing
264 * this bit with PV-EOI in guest memory.
265 * See the implementation in apic_update_pv_eoi.
266 */
267 #define KVM_APIC_PV_EOI_PENDING 1
268
269 struct kvm_kernel_irq_routing_entry;
270
271 /*
272 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
273 * also includes TDP pages) to determine whether or not a page can be used in
274 * the given MMU context. This is a subset of the overall kvm_mmu_role to
275 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
276 * 2 bytes per gfn instead of 4 bytes per gfn.
277 *
278 * Indirect upper-level shadow pages are tracked for write-protection via
279 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
280 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
281 * gfn_track will overflow and explosions will ensure.
282 *
283 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
284 * cannot be reused. The ability to reuse a SP is tracked by its role, which
285 * incorporates various mode bits and properties of the SP. Roughly speaking,
286 * the number of unique SPs that can theoretically be created is 2^n, where n
287 * is the number of bits that are used to compute the role.
288 *
289 * But, even though there are 18 bits in the mask below, not all combinations
290 * of modes and flags are possible. The maximum number of possible upper-level
291 * shadow pages for a single gfn is in the neighborhood of 2^13.
292 *
293 * - invalid shadow pages are not accounted.
294 * - level is effectively limited to four combinations, not 16 as the number
295 * bits would imply, as 4k SPs are not tracked (allowed to go unsync).
296 * - level is effectively unused for non-PAE paging because there is exactly
297 * one upper level (see 4k SP exception above).
298 * - quadrant is used only for non-PAE paging and is exclusive with
299 * gpte_is_8_bytes.
300 * - execonly and ad_disabled are used only for nested EPT, which makes it
301 * exclusive with quadrant.
302 */
303 union kvm_mmu_page_role {
304 u32 word;
305 struct {
306 unsigned level:4;
307 unsigned gpte_is_8_bytes:1;
308 unsigned quadrant:2;
309 unsigned direct:1;
310 unsigned access:3;
311 unsigned invalid:1;
312 unsigned efer_nx:1;
313 unsigned cr0_wp:1;
314 unsigned smep_andnot_wp:1;
315 unsigned smap_andnot_wp:1;
316 unsigned ad_disabled:1;
317 unsigned guest_mode:1;
318 unsigned :6;
319
320 /*
321 * This is left at the top of the word so that
322 * kvm_memslots_for_spte_role can extract it with a
323 * simple shift. While there is room, give it a whole
324 * byte so it is also faster to load it from memory.
325 */
326 unsigned smm:8;
327 };
328 };
329
330 /*
331 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
332 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
333 * including on nested transitions, if nothing in the full role changes then
334 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
335 * don't treat all-zero structure as valid data.
336 *
337 * The properties that are tracked in the extended role but not the page role
338 * are for things that either (a) do not affect the validity of the shadow page
339 * or (b) are indirectly reflected in the shadow page's role. For example,
340 * CR4.PKE only affects permission checks for software walks of the guest page
341 * tables (because KVM doesn't support Protection Keys with shadow paging), and
342 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
343 *
344 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
345 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
346 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
347 * SMAP aware regardless of CR0.WP.
348 */
349 union kvm_mmu_extended_role {
350 u32 word;
351 struct {
352 unsigned int valid:1;
353 unsigned int execonly:1;
354 unsigned int cr0_pg:1;
355 unsigned int cr4_pae:1;
356 unsigned int cr4_pse:1;
357 unsigned int cr4_pke:1;
358 unsigned int cr4_smap:1;
359 unsigned int cr4_smep:1;
360 unsigned int cr4_la57:1;
361 };
362 };
363
364 union kvm_mmu_role {
365 u64 as_u64;
366 struct {
367 union kvm_mmu_page_role base;
368 union kvm_mmu_extended_role ext;
369 };
370 };
371
372 struct kvm_rmap_head {
373 unsigned long val;
374 };
375
376 struct kvm_pio_request {
377 unsigned long linear_rip;
378 unsigned long count;
379 int in;
380 int port;
381 int size;
382 };
383
384 #define PT64_ROOT_MAX_LEVEL 5
385
386 struct rsvd_bits_validate {
387 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
388 u64 bad_mt_xwr;
389 };
390
391 struct kvm_mmu_root_info {
392 gpa_t pgd;
393 hpa_t hpa;
394 };
395
396 #define KVM_MMU_ROOT_INFO_INVALID \
397 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
398
399 #define KVM_MMU_NUM_PREV_ROOTS 3
400
401 #define KVM_HAVE_MMU_RWLOCK
402
403 struct kvm_mmu_page;
404
405 /*
406 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
407 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
408 * current mmu mode.
409 */
410 struct kvm_mmu {
411 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
412 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
413 int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
414 bool prefault);
415 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
416 struct x86_exception *fault);
417 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
418 u32 access, struct x86_exception *exception);
419 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
420 struct x86_exception *exception);
421 int (*sync_page)(struct kvm_vcpu *vcpu,
422 struct kvm_mmu_page *sp);
423 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
424 hpa_t root_hpa;
425 gpa_t root_pgd;
426 union kvm_mmu_role mmu_role;
427 u8 root_level;
428 u8 shadow_root_level;
429 u8 ept_ad;
430 bool direct_map;
431 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
432
433 /*
434 * Bitmap; bit set = permission fault
435 * Byte index: page fault error code [4:1]
436 * Bit index: pte permissions in ACC_* format
437 */
438 u8 permissions[16];
439
440 /*
441 * The pkru_mask indicates if protection key checks are needed. It
442 * consists of 16 domains indexed by page fault error code bits [4:1],
443 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
444 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
445 */
446 u32 pkru_mask;
447
448 u64 *pae_root;
449 u64 *pml4_root;
450
451 /*
452 * check zero bits on shadow page table entries, these
453 * bits include not only hardware reserved bits but also
454 * the bits spte never used.
455 */
456 struct rsvd_bits_validate shadow_zero_check;
457
458 struct rsvd_bits_validate guest_rsvd_check;
459
460 u64 pdptrs[4]; /* pae */
461 };
462
463 struct kvm_tlb_range {
464 u64 start_gfn;
465 u64 pages;
466 };
467
468 enum pmc_type {
469 KVM_PMC_GP = 0,
470 KVM_PMC_FIXED,
471 };
472
473 struct kvm_pmc {
474 enum pmc_type type;
475 u8 idx;
476 u64 counter;
477 u64 eventsel;
478 struct perf_event *perf_event;
479 struct kvm_vcpu *vcpu;
480 /*
481 * eventsel value for general purpose counters,
482 * ctrl value for fixed counters.
483 */
484 u64 current_config;
485 };
486
487 struct kvm_pmu {
488 unsigned nr_arch_gp_counters;
489 unsigned nr_arch_fixed_counters;
490 unsigned available_event_types;
491 u64 fixed_ctr_ctrl;
492 u64 global_ctrl;
493 u64 global_status;
494 u64 global_ovf_ctrl;
495 u64 counter_bitmask[2];
496 u64 global_ctrl_mask;
497 u64 global_ovf_ctrl_mask;
498 u64 reserved_bits;
499 u8 version;
500 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
501 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
502 struct irq_work irq_work;
503 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
504 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
505 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
506
507 /*
508 * The gate to release perf_events not marked in
509 * pmc_in_use only once in a vcpu time slice.
510 */
511 bool need_cleanup;
512
513 /*
514 * The total number of programmed perf_events and it helps to avoid
515 * redundant check before cleanup if guest don't use vPMU at all.
516 */
517 u8 event_count;
518 };
519
520 struct kvm_pmu_ops;
521
522 enum {
523 KVM_DEBUGREG_BP_ENABLED = 1,
524 KVM_DEBUGREG_WONT_EXIT = 2,
525 KVM_DEBUGREG_RELOAD = 4,
526 };
527
528 struct kvm_mtrr_range {
529 u64 base;
530 u64 mask;
531 struct list_head node;
532 };
533
534 struct kvm_mtrr {
535 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
536 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
537 u64 deftype;
538
539 struct list_head head;
540 };
541
542 /* Hyper-V SynIC timer */
543 struct kvm_vcpu_hv_stimer {
544 struct hrtimer timer;
545 int index;
546 union hv_stimer_config config;
547 u64 count;
548 u64 exp_time;
549 struct hv_message msg;
550 bool msg_pending;
551 };
552
553 /* Hyper-V synthetic interrupt controller (SynIC)*/
554 struct kvm_vcpu_hv_synic {
555 u64 version;
556 u64 control;
557 u64 msg_page;
558 u64 evt_page;
559 atomic64_t sint[HV_SYNIC_SINT_COUNT];
560 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
561 DECLARE_BITMAP(auto_eoi_bitmap, 256);
562 DECLARE_BITMAP(vec_bitmap, 256);
563 bool active;
564 bool dont_zero_synic_pages;
565 };
566
567 /* Hyper-V per vcpu emulation context */
568 struct kvm_vcpu_hv {
569 struct kvm_vcpu *vcpu;
570 u32 vp_index;
571 u64 hv_vapic;
572 s64 runtime_offset;
573 struct kvm_vcpu_hv_synic synic;
574 struct kvm_hyperv_exit exit;
575 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
576 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
577 cpumask_t tlb_flush;
578 bool enforce_cpuid;
579 struct {
580 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
581 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
582 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
583 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
584 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
585 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
586 } cpuid_cache;
587 };
588
589 /* Xen HVM per vcpu emulation context */
590 struct kvm_vcpu_xen {
591 u64 hypercall_rip;
592 u32 current_runstate;
593 bool vcpu_info_set;
594 bool vcpu_time_info_set;
595 bool runstate_set;
596 struct gfn_to_hva_cache vcpu_info_cache;
597 struct gfn_to_hva_cache vcpu_time_info_cache;
598 struct gfn_to_hva_cache runstate_cache;
599 u64 last_steal;
600 u64 runstate_entry_time;
601 u64 runstate_times[4];
602 };
603
604 struct kvm_vcpu_arch {
605 /*
606 * rip and regs accesses must go through
607 * kvm_{register,rip}_{read,write} functions.
608 */
609 unsigned long regs[NR_VCPU_REGS];
610 u32 regs_avail;
611 u32 regs_dirty;
612
613 unsigned long cr0;
614 unsigned long cr0_guest_owned_bits;
615 unsigned long cr2;
616 unsigned long cr3;
617 unsigned long cr4;
618 unsigned long cr4_guest_owned_bits;
619 unsigned long cr4_guest_rsvd_bits;
620 unsigned long cr8;
621 u32 host_pkru;
622 u32 pkru;
623 u32 hflags;
624 u64 efer;
625 u64 apic_base;
626 struct kvm_lapic *apic; /* kernel irqchip context */
627 bool apicv_active;
628 bool load_eoi_exitmap_pending;
629 DECLARE_BITMAP(ioapic_handled_vectors, 256);
630 unsigned long apic_attention;
631 int32_t apic_arb_prio;
632 int mp_state;
633 u64 ia32_misc_enable_msr;
634 u64 smbase;
635 u64 smi_count;
636 bool tpr_access_reporting;
637 bool xsaves_enabled;
638 u64 ia32_xss;
639 u64 microcode_version;
640 u64 arch_capabilities;
641 u64 perf_capabilities;
642
643 /*
644 * Paging state of the vcpu
645 *
646 * If the vcpu runs in guest mode with two level paging this still saves
647 * the paging mode of the l1 guest. This context is always used to
648 * handle faults.
649 */
650 struct kvm_mmu *mmu;
651
652 /* Non-nested MMU for L1 */
653 struct kvm_mmu root_mmu;
654
655 /* L1 MMU when running nested */
656 struct kvm_mmu guest_mmu;
657
658 /*
659 * Paging state of an L2 guest (used for nested npt)
660 *
661 * This context will save all necessary information to walk page tables
662 * of an L2 guest. This context is only initialized for page table
663 * walking and not for faulting since we never handle l2 page faults on
664 * the host.
665 */
666 struct kvm_mmu nested_mmu;
667
668 /*
669 * Pointer to the mmu context currently used for
670 * gva_to_gpa translations.
671 */
672 struct kvm_mmu *walk_mmu;
673
674 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
675 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
676 struct kvm_mmu_memory_cache mmu_gfn_array_cache;
677 struct kvm_mmu_memory_cache mmu_page_header_cache;
678
679 /*
680 * QEMU userspace and the guest each have their own FPU state.
681 * In vcpu_run, we switch between the user and guest FPU contexts.
682 * While running a VCPU, the VCPU thread will have the guest FPU
683 * context.
684 *
685 * Note that while the PKRU state lives inside the fpu registers,
686 * it is switched out separately at VMENTER and VMEXIT time. The
687 * "guest_fpu" state here contains the guest FPU context, with the
688 * host PRKU bits.
689 */
690 struct fpu *user_fpu;
691 struct fpu *guest_fpu;
692
693 u64 xcr0;
694 u64 guest_supported_xcr0;
695
696 struct kvm_pio_request pio;
697 void *pio_data;
698 void *guest_ins_data;
699
700 u8 event_exit_inst_len;
701
702 struct kvm_queued_exception {
703 bool pending;
704 bool injected;
705 bool has_error_code;
706 u8 nr;
707 u32 error_code;
708 unsigned long payload;
709 bool has_payload;
710 u8 nested_apf;
711 } exception;
712
713 struct kvm_queued_interrupt {
714 bool injected;
715 bool soft;
716 u8 nr;
717 } interrupt;
718
719 int halt_request; /* real mode on Intel only */
720
721 int cpuid_nent;
722 struct kvm_cpuid_entry2 *cpuid_entries;
723
724 u64 reserved_gpa_bits;
725 int maxphyaddr;
726 int max_tdp_level;
727
728 /* emulate context */
729
730 struct x86_emulate_ctxt *emulate_ctxt;
731 bool emulate_regs_need_sync_to_vcpu;
732 bool emulate_regs_need_sync_from_vcpu;
733 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
734
735 gpa_t time;
736 struct pvclock_vcpu_time_info hv_clock;
737 unsigned int hw_tsc_khz;
738 struct gfn_to_hva_cache pv_time;
739 bool pv_time_enabled;
740 /* set guest stopped flag in pvclock flags field */
741 bool pvclock_set_guest_stopped_request;
742
743 struct {
744 u8 preempted;
745 u64 msr_val;
746 u64 last_steal;
747 struct gfn_to_pfn_cache cache;
748 } st;
749
750 u64 l1_tsc_offset;
751 u64 tsc_offset; /* current tsc offset */
752 u64 last_guest_tsc;
753 u64 last_host_tsc;
754 u64 tsc_offset_adjustment;
755 u64 this_tsc_nsec;
756 u64 this_tsc_write;
757 u64 this_tsc_generation;
758 bool tsc_catchup;
759 bool tsc_always_catchup;
760 s8 virtual_tsc_shift;
761 u32 virtual_tsc_mult;
762 u32 virtual_tsc_khz;
763 s64 ia32_tsc_adjust_msr;
764 u64 msr_ia32_power_ctl;
765 u64 l1_tsc_scaling_ratio;
766 u64 tsc_scaling_ratio; /* current scaling ratio */
767
768 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
769 unsigned nmi_pending; /* NMI queued after currently running handler */
770 bool nmi_injected; /* Trying to inject an NMI this entry */
771 bool smi_pending; /* SMI queued after currently running handler */
772
773 struct kvm_mtrr mtrr_state;
774 u64 pat;
775
776 unsigned switch_db_regs;
777 unsigned long db[KVM_NR_DB_REGS];
778 unsigned long dr6;
779 unsigned long dr7;
780 unsigned long eff_db[KVM_NR_DB_REGS];
781 unsigned long guest_debug_dr7;
782 u64 msr_platform_info;
783 u64 msr_misc_features_enables;
784
785 u64 mcg_cap;
786 u64 mcg_status;
787 u64 mcg_ctl;
788 u64 mcg_ext_ctl;
789 u64 *mce_banks;
790
791 /* Cache MMIO info */
792 u64 mmio_gva;
793 unsigned mmio_access;
794 gfn_t mmio_gfn;
795 u64 mmio_gen;
796
797 struct kvm_pmu pmu;
798
799 /* used for guest single stepping over the given code position */
800 unsigned long singlestep_rip;
801
802 bool hyperv_enabled;
803 struct kvm_vcpu_hv *hyperv;
804 struct kvm_vcpu_xen xen;
805
806 cpumask_var_t wbinvd_dirty_mask;
807
808 unsigned long last_retry_eip;
809 unsigned long last_retry_addr;
810
811 struct {
812 bool halted;
813 gfn_t gfns[ASYNC_PF_PER_VCPU];
814 struct gfn_to_hva_cache data;
815 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
816 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
817 u16 vec;
818 u32 id;
819 bool send_user_only;
820 u32 host_apf_flags;
821 unsigned long nested_apf_token;
822 bool delivery_as_pf_vmexit;
823 bool pageready_pending;
824 } apf;
825
826 /* OSVW MSRs (AMD only) */
827 struct {
828 u64 length;
829 u64 status;
830 } osvw;
831
832 struct {
833 u64 msr_val;
834 struct gfn_to_hva_cache data;
835 } pv_eoi;
836
837 u64 msr_kvm_poll_control;
838
839 /*
840 * Indicates the guest is trying to write a gfn that contains one or
841 * more of the PTEs used to translate the write itself, i.e. the access
842 * is changing its own translation in the guest page tables. KVM exits
843 * to userspace if emulation of the faulting instruction fails and this
844 * flag is set, as KVM cannot make forward progress.
845 *
846 * If emulation fails for a write to guest page tables, KVM unprotects
847 * (zaps) the shadow page for the target gfn and resumes the guest to
848 * retry the non-emulatable instruction (on hardware). Unprotecting the
849 * gfn doesn't allow forward progress for a self-changing access because
850 * doing so also zaps the translation for the gfn, i.e. retrying the
851 * instruction will hit a !PRESENT fault, which results in a new shadow
852 * page and sends KVM back to square one.
853 */
854 bool write_fault_to_shadow_pgtable;
855
856 /* set at EPT violation at this point */
857 unsigned long exit_qualification;
858
859 /* pv related host specific info */
860 struct {
861 bool pv_unhalted;
862 } pv;
863
864 int pending_ioapic_eoi;
865 int pending_external_vector;
866
867 /* be preempted when it's in kernel-mode(cpl=0) */
868 bool preempted_in_kernel;
869
870 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
871 bool l1tf_flush_l1d;
872
873 /* Host CPU on which VM-entry was most recently attempted */
874 int last_vmentry_cpu;
875
876 /* AMD MSRC001_0015 Hardware Configuration */
877 u64 msr_hwcr;
878
879 /* pv related cpuid info */
880 struct {
881 /*
882 * value of the eax register in the KVM_CPUID_FEATURES CPUID
883 * leaf.
884 */
885 u32 features;
886
887 /*
888 * indicates whether pv emulation should be disabled if features
889 * are not present in the guest's cpuid
890 */
891 bool enforce;
892 } pv_cpuid;
893
894 /* Protected Guests */
895 bool guest_state_protected;
896
897 /*
898 * Set when PDPTS were loaded directly by the userspace without
899 * reading the guest memory
900 */
901 bool pdptrs_from_userspace;
902
903 #if IS_ENABLED(CONFIG_HYPERV)
904 hpa_t hv_root_tdp;
905 #endif
906 };
907
908 struct kvm_lpage_info {
909 int disallow_lpage;
910 };
911
912 struct kvm_arch_memory_slot {
913 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
914 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
915 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
916 };
917
918 /*
919 * We use as the mode the number of bits allocated in the LDR for the
920 * logical processor ID. It happens that these are all powers of two.
921 * This makes it is very easy to detect cases where the APICs are
922 * configured for multiple modes; in that case, we cannot use the map and
923 * hence cannot use kvm_irq_delivery_to_apic_fast either.
924 */
925 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
926 #define KVM_APIC_MODE_XAPIC_FLAT 8
927 #define KVM_APIC_MODE_X2APIC 16
928
929 struct kvm_apic_map {
930 struct rcu_head rcu;
931 u8 mode;
932 u32 max_apic_id;
933 union {
934 struct kvm_lapic *xapic_flat_map[8];
935 struct kvm_lapic *xapic_cluster_map[16][4];
936 };
937 struct kvm_lapic *phys_map[];
938 };
939
940 /* Hyper-V synthetic debugger (SynDbg)*/
941 struct kvm_hv_syndbg {
942 struct {
943 u64 control;
944 u64 status;
945 u64 send_page;
946 u64 recv_page;
947 u64 pending_page;
948 } control;
949 u64 options;
950 };
951
952 /* Current state of Hyper-V TSC page clocksource */
953 enum hv_tsc_page_status {
954 /* TSC page was not set up or disabled */
955 HV_TSC_PAGE_UNSET = 0,
956 /* TSC page MSR was written by the guest, update pending */
957 HV_TSC_PAGE_GUEST_CHANGED,
958 /* TSC page MSR was written by KVM userspace, update pending */
959 HV_TSC_PAGE_HOST_CHANGED,
960 /* TSC page was properly set up and is currently active */
961 HV_TSC_PAGE_SET,
962 /* TSC page is currently being updated and therefore is inactive */
963 HV_TSC_PAGE_UPDATING,
964 /* TSC page was set up with an inaccessible GPA */
965 HV_TSC_PAGE_BROKEN,
966 };
967
968 /* Hyper-V emulation context */
969 struct kvm_hv {
970 struct mutex hv_lock;
971 u64 hv_guest_os_id;
972 u64 hv_hypercall;
973 u64 hv_tsc_page;
974 enum hv_tsc_page_status hv_tsc_page_status;
975
976 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
977 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
978 u64 hv_crash_ctl;
979
980 struct ms_hyperv_tsc_page tsc_ref;
981
982 struct idr conn_to_evt;
983
984 u64 hv_reenlightenment_control;
985 u64 hv_tsc_emulation_control;
986 u64 hv_tsc_emulation_status;
987
988 /* How many vCPUs have VP index != vCPU index */
989 atomic_t num_mismatched_vp_indexes;
990
991 struct hv_partition_assist_pg *hv_pa_pg;
992 struct kvm_hv_syndbg hv_syndbg;
993 };
994
995 struct msr_bitmap_range {
996 u32 flags;
997 u32 nmsrs;
998 u32 base;
999 unsigned long *bitmap;
1000 };
1001
1002 /* Xen emulation context */
1003 struct kvm_xen {
1004 bool long_mode;
1005 bool shinfo_set;
1006 u8 upcall_vector;
1007 struct gfn_to_hva_cache shinfo_cache;
1008 };
1009
1010 enum kvm_irqchip_mode {
1011 KVM_IRQCHIP_NONE,
1012 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1013 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1014 };
1015
1016 struct kvm_x86_msr_filter {
1017 u8 count;
1018 bool default_allow:1;
1019 struct msr_bitmap_range ranges[16];
1020 };
1021
1022 #define APICV_INHIBIT_REASON_DISABLE 0
1023 #define APICV_INHIBIT_REASON_HYPERV 1
1024 #define APICV_INHIBIT_REASON_NESTED 2
1025 #define APICV_INHIBIT_REASON_IRQWIN 3
1026 #define APICV_INHIBIT_REASON_PIT_REINJ 4
1027 #define APICV_INHIBIT_REASON_X2APIC 5
1028
1029 struct kvm_arch {
1030 unsigned long n_used_mmu_pages;
1031 unsigned long n_requested_mmu_pages;
1032 unsigned long n_max_mmu_pages;
1033 unsigned int indirect_shadow_pages;
1034 u8 mmu_valid_gen;
1035 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1036 struct list_head active_mmu_pages;
1037 struct list_head zapped_obsolete_pages;
1038 struct list_head lpage_disallowed_mmu_pages;
1039 struct kvm_page_track_notifier_node mmu_sp_tracker;
1040 struct kvm_page_track_notifier_head track_notifier_head;
1041 /*
1042 * Protects marking pages unsync during page faults, as TDP MMU page
1043 * faults only take mmu_lock for read. For simplicity, the unsync
1044 * pages lock is always taken when marking pages unsync regardless of
1045 * whether mmu_lock is held for read or write.
1046 */
1047 spinlock_t mmu_unsync_pages_lock;
1048
1049 struct list_head assigned_dev_head;
1050 struct iommu_domain *iommu_domain;
1051 bool iommu_noncoherent;
1052 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1053 atomic_t noncoherent_dma_count;
1054 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1055 atomic_t assigned_device_count;
1056 struct kvm_pic *vpic;
1057 struct kvm_ioapic *vioapic;
1058 struct kvm_pit *vpit;
1059 atomic_t vapics_in_nmi_mode;
1060 struct mutex apic_map_lock;
1061 struct kvm_apic_map __rcu *apic_map;
1062 atomic_t apic_map_dirty;
1063
1064 bool apic_access_memslot_enabled;
1065 unsigned long apicv_inhibit_reasons;
1066
1067 gpa_t wall_clock;
1068
1069 bool mwait_in_guest;
1070 bool hlt_in_guest;
1071 bool pause_in_guest;
1072 bool cstate_in_guest;
1073
1074 unsigned long irq_sources_bitmap;
1075 s64 kvmclock_offset;
1076 raw_spinlock_t tsc_write_lock;
1077 u64 last_tsc_nsec;
1078 u64 last_tsc_write;
1079 u32 last_tsc_khz;
1080 u64 cur_tsc_nsec;
1081 u64 cur_tsc_write;
1082 u64 cur_tsc_offset;
1083 u64 cur_tsc_generation;
1084 int nr_vcpus_matched_tsc;
1085
1086 spinlock_t pvclock_gtod_sync_lock;
1087 bool use_master_clock;
1088 u64 master_kernel_ns;
1089 u64 master_cycle_now;
1090 struct delayed_work kvmclock_update_work;
1091 struct delayed_work kvmclock_sync_work;
1092
1093 struct kvm_xen_hvm_config xen_hvm_config;
1094
1095 /* reads protected by irq_srcu, writes by irq_lock */
1096 struct hlist_head mask_notifier_list;
1097
1098 struct kvm_hv hyperv;
1099 struct kvm_xen xen;
1100
1101 #ifdef CONFIG_KVM_MMU_AUDIT
1102 int audit_point;
1103 #endif
1104
1105 bool backwards_tsc_observed;
1106 bool boot_vcpu_runs_old_kvmclock;
1107 u32 bsp_vcpu_id;
1108
1109 u64 disabled_quirks;
1110 int cpu_dirty_logging_count;
1111
1112 enum kvm_irqchip_mode irqchip_mode;
1113 u8 nr_reserved_ioapic_pins;
1114
1115 bool disabled_lapic_found;
1116
1117 bool x2apic_format;
1118 bool x2apic_broadcast_quirk_disabled;
1119
1120 bool guest_can_read_msr_platform_info;
1121 bool exception_payload_enabled;
1122
1123 bool bus_lock_detection_enabled;
1124 /*
1125 * If exit_on_emulation_error is set, and the in-kernel instruction
1126 * emulator fails to emulate an instruction, allow userspace
1127 * the opportunity to look at it.
1128 */
1129 bool exit_on_emulation_error;
1130
1131 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1132 u32 user_space_msr_mask;
1133 struct kvm_x86_msr_filter __rcu *msr_filter;
1134
1135 u32 hypercall_exit_enabled;
1136
1137 /* Guest can access the SGX PROVISIONKEY. */
1138 bool sgx_provisioning_allowed;
1139
1140 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1141 struct task_struct *nx_lpage_recovery_thread;
1142
1143 #ifdef CONFIG_X86_64
1144 /*
1145 * Whether the TDP MMU is enabled for this VM. This contains a
1146 * snapshot of the TDP MMU module parameter from when the VM was
1147 * created and remains unchanged for the life of the VM. If this is
1148 * true, TDP MMU handler functions will run for various MMU
1149 * operations.
1150 */
1151 bool tdp_mmu_enabled;
1152
1153 /*
1154 * List of struct kvm_mmu_pages being used as roots.
1155 * All struct kvm_mmu_pages in the list should have
1156 * tdp_mmu_page set.
1157 *
1158 * For reads, this list is protected by:
1159 * the MMU lock in read mode + RCU or
1160 * the MMU lock in write mode
1161 *
1162 * For writes, this list is protected by:
1163 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1164 * the MMU lock in write mode
1165 *
1166 * Roots will remain in the list until their tdp_mmu_root_count
1167 * drops to zero, at which point the thread that decremented the
1168 * count to zero should removed the root from the list and clean
1169 * it up, freeing the root after an RCU grace period.
1170 */
1171 struct list_head tdp_mmu_roots;
1172
1173 /*
1174 * List of struct kvmp_mmu_pages not being used as roots.
1175 * All struct kvm_mmu_pages in the list should have
1176 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1177 */
1178 struct list_head tdp_mmu_pages;
1179
1180 /*
1181 * Protects accesses to the following fields when the MMU lock
1182 * is held in read mode:
1183 * - tdp_mmu_roots (above)
1184 * - tdp_mmu_pages (above)
1185 * - the link field of struct kvm_mmu_pages used by the TDP MMU
1186 * - lpage_disallowed_mmu_pages
1187 * - the lpage_disallowed_link field of struct kvm_mmu_pages used
1188 * by the TDP MMU
1189 * It is acceptable, but not necessary, to acquire this lock when
1190 * the thread holds the MMU lock in write mode.
1191 */
1192 spinlock_t tdp_mmu_pages_lock;
1193 #endif /* CONFIG_X86_64 */
1194
1195 /*
1196 * If set, rmaps have been allocated for all memslots and should be
1197 * allocated for any newly created or modified memslots.
1198 */
1199 bool memslots_have_rmaps;
1200
1201 #if IS_ENABLED(CONFIG_HYPERV)
1202 hpa_t hv_root_tdp;
1203 spinlock_t hv_root_tdp_lock;
1204 #endif
1205 };
1206
1207 struct kvm_vm_stat {
1208 struct kvm_vm_stat_generic generic;
1209 u64 mmu_shadow_zapped;
1210 u64 mmu_pte_write;
1211 u64 mmu_pde_zapped;
1212 u64 mmu_flooded;
1213 u64 mmu_recycled;
1214 u64 mmu_cache_miss;
1215 u64 mmu_unsync;
1216 u64 lpages;
1217 u64 nx_lpage_splits;
1218 u64 max_mmu_page_hash_collisions;
1219 };
1220
1221 struct kvm_vcpu_stat {
1222 struct kvm_vcpu_stat_generic generic;
1223 u64 pf_fixed;
1224 u64 pf_guest;
1225 u64 tlb_flush;
1226 u64 invlpg;
1227
1228 u64 exits;
1229 u64 io_exits;
1230 u64 mmio_exits;
1231 u64 signal_exits;
1232 u64 irq_window_exits;
1233 u64 nmi_window_exits;
1234 u64 l1d_flush;
1235 u64 halt_exits;
1236 u64 request_irq_exits;
1237 u64 irq_exits;
1238 u64 host_state_reload;
1239 u64 fpu_reload;
1240 u64 insn_emulation;
1241 u64 insn_emulation_fail;
1242 u64 hypercalls;
1243 u64 irq_injections;
1244 u64 nmi_injections;
1245 u64 req_event;
1246 u64 nested_run;
1247 u64 directed_yield_attempted;
1248 u64 directed_yield_successful;
1249 u64 guest_mode;
1250 };
1251
1252 struct x86_instruction_info;
1253
1254 struct msr_data {
1255 bool host_initiated;
1256 u32 index;
1257 u64 data;
1258 };
1259
1260 struct kvm_lapic_irq {
1261 u32 vector;
1262 u16 delivery_mode;
1263 u16 dest_mode;
1264 bool level;
1265 u16 trig_mode;
1266 u32 shorthand;
1267 u32 dest_id;
1268 bool msi_redir_hint;
1269 };
1270
1271 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1272 {
1273 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1274 }
1275
1276 struct kvm_x86_ops {
1277 int (*hardware_enable)(void);
1278 void (*hardware_disable)(void);
1279 void (*hardware_unsetup)(void);
1280 bool (*cpu_has_accelerated_tpr)(void);
1281 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1282 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1283
1284 unsigned int vm_size;
1285 int (*vm_init)(struct kvm *kvm);
1286 void (*vm_destroy)(struct kvm *kvm);
1287
1288 /* Create, but do not attach this VCPU */
1289 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1290 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1291 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1292
1293 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1294 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1295 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1296
1297 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1298 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1299 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1300 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1301 void (*get_segment)(struct kvm_vcpu *vcpu,
1302 struct kvm_segment *var, int seg);
1303 int (*get_cpl)(struct kvm_vcpu *vcpu);
1304 void (*set_segment)(struct kvm_vcpu *vcpu,
1305 struct kvm_segment *var, int seg);
1306 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1307 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1308 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1309 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1310 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1311 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1312 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1313 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1314 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1315 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1316 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1317 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1318 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1319 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1320
1321 void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1322 void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1323 int (*tlb_remote_flush)(struct kvm *kvm);
1324 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1325 struct kvm_tlb_range *range);
1326
1327 /*
1328 * Flush any TLB entries associated with the given GVA.
1329 * Does not need to flush GPA->HPA mappings.
1330 * Can potentially get non-canonical addresses through INVLPGs, which
1331 * the implementation may choose to ignore if appropriate.
1332 */
1333 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1334
1335 /*
1336 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1337 * does not need to flush GPA->HPA mappings.
1338 */
1339 void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1340
1341 enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1342 int (*handle_exit)(struct kvm_vcpu *vcpu,
1343 enum exit_fastpath_completion exit_fastpath);
1344 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1345 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1346 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1347 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1348 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1349 unsigned char *hypercall_addr);
1350 void (*set_irq)(struct kvm_vcpu *vcpu);
1351 void (*set_nmi)(struct kvm_vcpu *vcpu);
1352 void (*queue_exception)(struct kvm_vcpu *vcpu);
1353 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1354 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1355 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1356 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1357 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1358 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1359 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1360 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1361 bool (*check_apicv_inhibit_reasons)(ulong bit);
1362 void (*pre_update_apicv_exec_ctrl)(struct kvm *kvm, bool activate);
1363 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1364 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1365 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1366 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1367 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1368 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1369 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1370 int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1371 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1372 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1373 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1374 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1375
1376 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1377 int root_level);
1378
1379 bool (*has_wbinvd_exit)(void);
1380
1381 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1382 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1383 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1384 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1385
1386 /*
1387 * Retrieve somewhat arbitrary exit information. Intended to be used
1388 * only from within tracepoints to avoid VMREADs when tracing is off.
1389 */
1390 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
1391 u32 *exit_int_info, u32 *exit_int_info_err_code);
1392
1393 int (*check_intercept)(struct kvm_vcpu *vcpu,
1394 struct x86_instruction_info *info,
1395 enum x86_intercept_stage stage,
1396 struct x86_exception *exception);
1397 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1398
1399 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1400
1401 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1402
1403 /*
1404 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1405 * value indicates CPU dirty logging is unsupported or disabled.
1406 */
1407 int cpu_dirty_log_size;
1408 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1409
1410 /* pmu operations of sub-arch */
1411 const struct kvm_pmu_ops *pmu_ops;
1412 const struct kvm_x86_nested_ops *nested_ops;
1413
1414 /*
1415 * Architecture specific hooks for vCPU blocking due to
1416 * HLT instruction.
1417 * Returns for .pre_block():
1418 * - 0 means continue to block the vCPU.
1419 * - 1 means we cannot block the vCPU since some event
1420 * happens during this period, such as, 'ON' bit in
1421 * posted-interrupts descriptor is set.
1422 */
1423 int (*pre_block)(struct kvm_vcpu *vcpu);
1424 void (*post_block)(struct kvm_vcpu *vcpu);
1425
1426 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1427 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1428
1429 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1430 uint32_t guest_irq, bool set);
1431 void (*start_assignment)(struct kvm *kvm);
1432 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1433 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1434
1435 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1436 bool *expired);
1437 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1438
1439 void (*setup_mce)(struct kvm_vcpu *vcpu);
1440
1441 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1442 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1443 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1444 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1445
1446 int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1447 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1448 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1449 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1450
1451 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1452
1453 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1454
1455 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1456 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1457
1458 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1459 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1460 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1461
1462 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1463 };
1464
1465 struct kvm_x86_nested_ops {
1466 int (*check_events)(struct kvm_vcpu *vcpu);
1467 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1468 void (*triple_fault)(struct kvm_vcpu *vcpu);
1469 int (*get_state)(struct kvm_vcpu *vcpu,
1470 struct kvm_nested_state __user *user_kvm_nested_state,
1471 unsigned user_data_size);
1472 int (*set_state)(struct kvm_vcpu *vcpu,
1473 struct kvm_nested_state __user *user_kvm_nested_state,
1474 struct kvm_nested_state *kvm_state);
1475 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1476 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1477
1478 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1479 uint16_t *vmcs_version);
1480 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1481 };
1482
1483 struct kvm_x86_init_ops {
1484 int (*cpu_has_kvm_support)(void);
1485 int (*disabled_by_bios)(void);
1486 int (*check_processor_compatibility)(void);
1487 int (*hardware_setup)(void);
1488
1489 struct kvm_x86_ops *runtime_ops;
1490 };
1491
1492 struct kvm_arch_async_pf {
1493 u32 token;
1494 gfn_t gfn;
1495 unsigned long cr3;
1496 bool direct_map;
1497 };
1498
1499 extern u32 __read_mostly kvm_nr_uret_msrs;
1500 extern u64 __read_mostly host_efer;
1501 extern bool __read_mostly allow_smaller_maxphyaddr;
1502 extern bool __read_mostly enable_apicv;
1503 extern struct kvm_x86_ops kvm_x86_ops;
1504
1505 #define KVM_X86_OP(func) \
1506 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1507 #define KVM_X86_OP_NULL KVM_X86_OP
1508 #include <asm/kvm-x86-ops.h>
1509
1510 static inline void kvm_ops_static_call_update(void)
1511 {
1512 #define KVM_X86_OP(func) \
1513 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1514 #define KVM_X86_OP_NULL KVM_X86_OP
1515 #include <asm/kvm-x86-ops.h>
1516 }
1517
1518 #define __KVM_HAVE_ARCH_VM_ALLOC
1519 static inline struct kvm *kvm_arch_alloc_vm(void)
1520 {
1521 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1522 }
1523 void kvm_arch_free_vm(struct kvm *kvm);
1524
1525 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1526 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1527 {
1528 if (kvm_x86_ops.tlb_remote_flush &&
1529 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1530 return 0;
1531 else
1532 return -ENOTSUPP;
1533 }
1534
1535 int kvm_mmu_module_init(void);
1536 void kvm_mmu_module_exit(void);
1537
1538 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1539 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1540 void kvm_mmu_init_vm(struct kvm *kvm);
1541 void kvm_mmu_uninit_vm(struct kvm *kvm);
1542
1543 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1544 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1545 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1546 struct kvm_memory_slot *memslot,
1547 int start_level);
1548 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1549 const struct kvm_memory_slot *memslot);
1550 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1551 struct kvm_memory_slot *memslot);
1552 void kvm_mmu_zap_all(struct kvm *kvm);
1553 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1554 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1555 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1556
1557 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1558
1559 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1560 const void *val, int bytes);
1561
1562 struct kvm_irq_mask_notifier {
1563 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1564 int irq;
1565 struct hlist_node link;
1566 };
1567
1568 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1569 struct kvm_irq_mask_notifier *kimn);
1570 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1571 struct kvm_irq_mask_notifier *kimn);
1572 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1573 bool mask);
1574
1575 extern bool tdp_enabled;
1576
1577 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1578
1579 /* control of guest tsc rate supported? */
1580 extern bool kvm_has_tsc_control;
1581 /* maximum supported tsc_khz for guests */
1582 extern u32 kvm_max_guest_tsc_khz;
1583 /* number of bits of the fractional part of the TSC scaling ratio */
1584 extern u8 kvm_tsc_scaling_ratio_frac_bits;
1585 /* maximum allowed value of TSC scaling ratio */
1586 extern u64 kvm_max_tsc_scaling_ratio;
1587 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1588 extern u64 kvm_default_tsc_scaling_ratio;
1589 /* bus lock detection supported? */
1590 extern bool kvm_has_bus_lock_exit;
1591
1592 extern u64 kvm_mce_cap_supported;
1593
1594 /*
1595 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1596 * userspace I/O) to indicate that the emulation context
1597 * should be reused as is, i.e. skip initialization of
1598 * emulation context, instruction fetch and decode.
1599 *
1600 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1601 * Indicates that only select instructions (tagged with
1602 * EmulateOnUD) should be emulated (to minimize the emulator
1603 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1604 *
1605 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1606 * decode the instruction length. For use *only* by
1607 * kvm_x86_ops.skip_emulated_instruction() implementations.
1608 *
1609 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1610 * retry native execution under certain conditions,
1611 * Can only be set in conjunction with EMULTYPE_PF.
1612 *
1613 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1614 * triggered by KVM's magic "force emulation" prefix,
1615 * which is opt in via module param (off by default).
1616 * Bypasses EmulateOnUD restriction despite emulating
1617 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1618 * Used to test the full emulator from userspace.
1619 *
1620 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1621 * backdoor emulation, which is opt in via module param.
1622 * VMware backdoor emulation handles select instructions
1623 * and reinjects the #GP for all other cases.
1624 *
1625 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1626 * case the CR2/GPA value pass on the stack is valid.
1627 */
1628 #define EMULTYPE_NO_DECODE (1 << 0)
1629 #define EMULTYPE_TRAP_UD (1 << 1)
1630 #define EMULTYPE_SKIP (1 << 2)
1631 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1632 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1633 #define EMULTYPE_VMWARE_GP (1 << 5)
1634 #define EMULTYPE_PF (1 << 6)
1635
1636 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1637 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1638 void *insn, int insn_len);
1639
1640 void kvm_enable_efer_bits(u64);
1641 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1642 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1643 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1644 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1645 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1646 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1647 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1648 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1649 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1650 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1651 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1652
1653 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1654 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1655 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1656 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1657 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1658 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1659
1660 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1661 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1662 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1663
1664 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1665 int reason, bool has_error_code, u32 error_code);
1666
1667 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu);
1668
1669 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1670 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1671 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1672 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1673 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1675 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1676 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1677 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1678 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1679 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1680 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1681
1682 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1683 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1684
1685 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1686 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1687 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1688
1689 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1690 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1691 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1692 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1693 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1694 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1695 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1696 struct x86_exception *fault);
1697 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1698 gfn_t gfn, void *data, int offset, int len,
1699 u32 access);
1700 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1702
1703 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1704 int irq_source_id, int level)
1705 {
1706 /* Logical OR for level trig interrupt */
1707 if (level)
1708 __set_bit(irq_source_id, irq_state);
1709 else
1710 __clear_bit(irq_source_id, irq_state);
1711
1712 return !!(*irq_state);
1713 }
1714
1715 #define KVM_MMU_ROOT_CURRENT BIT(0)
1716 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1717 #define KVM_MMU_ROOTS_ALL (~0UL)
1718
1719 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1720 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1721
1722 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1723
1724 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1725
1726 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1727 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1728 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1729 ulong roots_to_free);
1730 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1731 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1732 struct x86_exception *exception);
1733 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1734 struct x86_exception *exception);
1735 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1736 struct x86_exception *exception);
1737 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1738 struct x86_exception *exception);
1739 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1740 struct x86_exception *exception);
1741
1742 bool kvm_apicv_activated(struct kvm *kvm);
1743 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1744 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1745 unsigned long bit);
1746
1747 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1748
1749 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1750 void *insn, int insn_len);
1751 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1752 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1753 gva_t gva, hpa_t root_hpa);
1754 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1755 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1756
1757 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
1758 int tdp_huge_page_level);
1759
1760 static inline u16 kvm_read_ldt(void)
1761 {
1762 u16 ldt;
1763 asm("sldt %0" : "=g"(ldt));
1764 return ldt;
1765 }
1766
1767 static inline void kvm_load_ldt(u16 sel)
1768 {
1769 asm("lldt %0" : : "rm"(sel));
1770 }
1771
1772 #ifdef CONFIG_X86_64
1773 static inline unsigned long read_msr(unsigned long msr)
1774 {
1775 u64 value;
1776
1777 rdmsrl(msr, value);
1778 return value;
1779 }
1780 #endif
1781
1782 static inline u32 get_rdx_init_val(void)
1783 {
1784 return 0x600; /* P6 family */
1785 }
1786
1787 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1788 {
1789 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1790 }
1791
1792 #define TSS_IOPB_BASE_OFFSET 0x66
1793 #define TSS_BASE_SIZE 0x68
1794 #define TSS_IOPB_SIZE (65536 / 8)
1795 #define TSS_REDIRECTION_SIZE (256 / 8)
1796 #define RMODE_TSS_SIZE \
1797 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1798
1799 enum {
1800 TASK_SWITCH_CALL = 0,
1801 TASK_SWITCH_IRET = 1,
1802 TASK_SWITCH_JMP = 2,
1803 TASK_SWITCH_GATE = 3,
1804 };
1805
1806 #define HF_GIF_MASK (1 << 0)
1807 #define HF_NMI_MASK (1 << 3)
1808 #define HF_IRET_MASK (1 << 4)
1809 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1810 #define HF_SMM_MASK (1 << 6)
1811 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1812
1813 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1814 #define KVM_ADDRESS_SPACE_NUM 2
1815
1816 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1817 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1818
1819 asmlinkage void kvm_spurious_fault(void);
1820
1821 /*
1822 * Hardware virtualization extension instructions may fault if a
1823 * reboot turns off virtualization while processes are running.
1824 * Usually after catching the fault we just panic; during reboot
1825 * instead the instruction is ignored.
1826 */
1827 #define __kvm_handle_fault_on_reboot(insn) \
1828 "666: \n\t" \
1829 insn "\n\t" \
1830 "jmp 668f \n\t" \
1831 "667: \n\t" \
1832 "1: \n\t" \
1833 ".pushsection .discard.instr_begin \n\t" \
1834 ".long 1b - . \n\t" \
1835 ".popsection \n\t" \
1836 "call kvm_spurious_fault \n\t" \
1837 "1: \n\t" \
1838 ".pushsection .discard.instr_end \n\t" \
1839 ".long 1b - . \n\t" \
1840 ".popsection \n\t" \
1841 "668: \n\t" \
1842 _ASM_EXTABLE(666b, 667b)
1843
1844 #define KVM_ARCH_WANT_MMU_NOTIFIER
1845
1846 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1847 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1848 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1849 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1850 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1851 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1852 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1853
1854 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1855 unsigned long ipi_bitmap_high, u32 min,
1856 unsigned long icr, int op_64_bit);
1857
1858 int kvm_add_user_return_msr(u32 msr);
1859 int kvm_find_user_return_msr(u32 msr);
1860 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1861
1862 static inline bool kvm_is_supported_user_return_msr(u32 msr)
1863 {
1864 return kvm_find_user_return_msr(msr) >= 0;
1865 }
1866
1867 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1868 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1869 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1870 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1871
1872 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1873 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1874
1875 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1876 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1877 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1878 unsigned long *vcpu_bitmap);
1879
1880 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1881 struct kvm_async_pf *work);
1882 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1883 struct kvm_async_pf *work);
1884 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1885 struct kvm_async_pf *work);
1886 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1887 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1888 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1889
1890 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1891 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1892 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1893
1894 int kvm_is_in_guest(void);
1895
1896 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1897 u32 size);
1898 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1899 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1900
1901 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1902 struct kvm_vcpu **dest_vcpu);
1903
1904 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1905 struct kvm_lapic_irq *irq);
1906
1907 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1908 {
1909 /* We can only post Fixed and LowPrio IRQs */
1910 return (irq->delivery_mode == APIC_DM_FIXED ||
1911 irq->delivery_mode == APIC_DM_LOWEST);
1912 }
1913
1914 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1915 {
1916 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1917 }
1918
1919 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1920 {
1921 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1922 }
1923
1924 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1925
1926 static inline int kvm_cpu_get_apicid(int mps_cpu)
1927 {
1928 #ifdef CONFIG_X86_LOCAL_APIC
1929 return default_cpu_present_to_apicid(mps_cpu);
1930 #else
1931 WARN_ON_ONCE(1);
1932 return BAD_APICID;
1933 #endif
1934 }
1935
1936 #define put_smstate(type, buf, offset, val) \
1937 *(type *)((buf) + (offset) - 0x7e00) = val
1938
1939 #define GET_SMSTATE(type, buf, offset) \
1940 (*(type *)((buf) + (offset) - 0x7e00))
1941
1942 int kvm_cpu_dirty_log_size(void);
1943
1944 int alloc_all_memslots_rmaps(struct kvm *kvm);
1945
1946 #endif /* _ASM_X86_KVM_HOST_H */