]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/mmu_context.h
x86/mm: Simplify p[g4um]d_page() macros
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / mmu_context.h
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8
9 #include <trace/events/tlb.h>
10
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15
16 extern atomic64_t last_mm_ctx_id;
17
18 #ifndef CONFIG_PARAVIRT
19 static inline void paravirt_activate_mm(struct mm_struct *prev,
20 struct mm_struct *next)
21 {
22 }
23 #endif /* !CONFIG_PARAVIRT */
24
25 #ifdef CONFIG_PERF_EVENTS
26 extern struct static_key rdpmc_always_available;
27
28 static inline void load_mm_cr4(struct mm_struct *mm)
29 {
30 if (static_key_false(&rdpmc_always_available) ||
31 atomic_read(&mm->context.perf_rdpmc_allowed))
32 cr4_set_bits(X86_CR4_PCE);
33 else
34 cr4_clear_bits(X86_CR4_PCE);
35 }
36 #else
37 static inline void load_mm_cr4(struct mm_struct *mm) {}
38 #endif
39
40 #ifdef CONFIG_MODIFY_LDT_SYSCALL
41 /*
42 * ldt_structs can be allocated, used, and freed, but they are never
43 * modified while live.
44 */
45 struct ldt_struct {
46 /*
47 * Xen requires page-aligned LDTs with special permissions. This is
48 * needed to prevent us from installing evil descriptors such as
49 * call gates. On native, we could merge the ldt_struct and LDT
50 * allocations, but it's not worth trying to optimize.
51 */
52 struct desc_struct *entries;
53 unsigned int nr_entries;
54 };
55
56 /*
57 * Used for LDT copy/destruction.
58 */
59 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
60 void destroy_context_ldt(struct mm_struct *mm);
61 #else /* CONFIG_MODIFY_LDT_SYSCALL */
62 static inline int init_new_context_ldt(struct task_struct *tsk,
63 struct mm_struct *mm)
64 {
65 return 0;
66 }
67 static inline void destroy_context_ldt(struct mm_struct *mm) {}
68 #endif
69
70 static inline void load_mm_ldt(struct mm_struct *mm)
71 {
72 #ifdef CONFIG_MODIFY_LDT_SYSCALL
73 struct ldt_struct *ldt;
74
75 /* lockless_dereference synchronizes with smp_store_release */
76 ldt = lockless_dereference(mm->context.ldt);
77
78 /*
79 * Any change to mm->context.ldt is followed by an IPI to all
80 * CPUs with the mm active. The LDT will not be freed until
81 * after the IPI is handled by all such CPUs. This means that,
82 * if the ldt_struct changes before we return, the values we see
83 * will be safe, and the new values will be loaded before we run
84 * any user code.
85 *
86 * NB: don't try to convert this to use RCU without extreme care.
87 * We would still need IRQs off, because we don't want to change
88 * the local LDT after an IPI loaded a newer value than the one
89 * that we can see.
90 */
91
92 if (unlikely(ldt))
93 set_ldt(ldt->entries, ldt->nr_entries);
94 else
95 clear_LDT();
96 #else
97 clear_LDT();
98 #endif
99 }
100
101 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
102 {
103 #ifdef CONFIG_MODIFY_LDT_SYSCALL
104 /*
105 * Load the LDT if either the old or new mm had an LDT.
106 *
107 * An mm will never go from having an LDT to not having an LDT. Two
108 * mms never share an LDT, so we don't gain anything by checking to
109 * see whether the LDT changed. There's also no guarantee that
110 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
111 * then prev->context.ldt will also be non-NULL.
112 *
113 * If we really cared, we could optimize the case where prev == next
114 * and we're exiting lazy mode. Most of the time, if this happens,
115 * we don't actually need to reload LDTR, but modify_ldt() is mostly
116 * used by legacy code and emulators where we don't need this level of
117 * performance.
118 *
119 * This uses | instead of || because it generates better code.
120 */
121 if (unlikely((unsigned long)prev->context.ldt |
122 (unsigned long)next->context.ldt))
123 load_mm_ldt(next);
124 #endif
125
126 DEBUG_LOCKS_WARN_ON(preemptible());
127 }
128
129 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
130 {
131 int cpu = smp_processor_id();
132
133 if (cpumask_test_cpu(cpu, mm_cpumask(mm)))
134 cpumask_clear_cpu(cpu, mm_cpumask(mm));
135 }
136
137 static inline int init_new_context(struct task_struct *tsk,
138 struct mm_struct *mm)
139 {
140 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
141 atomic64_set(&mm->context.tlb_gen, 0);
142
143 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
144 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
145 /* pkey 0 is the default and always allocated */
146 mm->context.pkey_allocation_map = 0x1;
147 /* -1 means unallocated or invalid */
148 mm->context.execute_only_pkey = -1;
149 }
150 #endif
151 init_new_context_ldt(tsk, mm);
152
153 return 0;
154 }
155 static inline void destroy_context(struct mm_struct *mm)
156 {
157 destroy_context_ldt(mm);
158 }
159
160 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
161 struct task_struct *tsk);
162
163 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
164 struct task_struct *tsk);
165 #define switch_mm_irqs_off switch_mm_irqs_off
166
167 #define activate_mm(prev, next) \
168 do { \
169 paravirt_activate_mm((prev), (next)); \
170 switch_mm((prev), (next), NULL); \
171 } while (0);
172
173 #ifdef CONFIG_X86_32
174 #define deactivate_mm(tsk, mm) \
175 do { \
176 lazy_load_gs(0); \
177 } while (0)
178 #else
179 #define deactivate_mm(tsk, mm) \
180 do { \
181 load_gs_index(0); \
182 loadsegment(fs, 0); \
183 } while (0)
184 #endif
185
186 static inline void arch_dup_mmap(struct mm_struct *oldmm,
187 struct mm_struct *mm)
188 {
189 paravirt_arch_dup_mmap(oldmm, mm);
190 }
191
192 static inline void arch_exit_mmap(struct mm_struct *mm)
193 {
194 paravirt_arch_exit_mmap(mm);
195 }
196
197 #ifdef CONFIG_X86_64
198 static inline bool is_64bit_mm(struct mm_struct *mm)
199 {
200 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
201 !(mm->context.ia32_compat == TIF_IA32);
202 }
203 #else
204 static inline bool is_64bit_mm(struct mm_struct *mm)
205 {
206 return false;
207 }
208 #endif
209
210 static inline void arch_bprm_mm_init(struct mm_struct *mm,
211 struct vm_area_struct *vma)
212 {
213 mpx_mm_init(mm);
214 }
215
216 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
217 unsigned long start, unsigned long end)
218 {
219 /*
220 * mpx_notify_unmap() goes and reads a rarely-hot
221 * cacheline in the mm_struct. That can be expensive
222 * enough to be seen in profiles.
223 *
224 * The mpx_notify_unmap() call and its contents have been
225 * observed to affect munmap() performance on hardware
226 * where MPX is not present.
227 *
228 * The unlikely() optimizes for the fast case: no MPX
229 * in the CPU, or no MPX use in the process. Even if
230 * we get this wrong (in the unlikely event that MPX
231 * is widely enabled on some system) the overhead of
232 * MPX itself (reading bounds tables) is expected to
233 * overwhelm the overhead of getting this unlikely()
234 * consistently wrong.
235 */
236 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
237 mpx_notify_unmap(mm, vma, start, end);
238 }
239
240 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
241 static inline int vma_pkey(struct vm_area_struct *vma)
242 {
243 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
244 VM_PKEY_BIT2 | VM_PKEY_BIT3;
245
246 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
247 }
248 #else
249 static inline int vma_pkey(struct vm_area_struct *vma)
250 {
251 return 0;
252 }
253 #endif
254
255 /*
256 * We only want to enforce protection keys on the current process
257 * because we effectively have no access to PKRU for other
258 * processes or any way to tell *which * PKRU in a threaded
259 * process we could use.
260 *
261 * So do not enforce things if the VMA is not from the current
262 * mm, or if we are in a kernel thread.
263 */
264 static inline bool vma_is_foreign(struct vm_area_struct *vma)
265 {
266 if (!current->mm)
267 return true;
268 /*
269 * Should PKRU be enforced on the access to this VMA? If
270 * the VMA is from another process, then PKRU has no
271 * relevance and should not be enforced.
272 */
273 if (current->mm != vma->vm_mm)
274 return true;
275
276 return false;
277 }
278
279 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
280 bool write, bool execute, bool foreign)
281 {
282 /* pkeys never affect instruction fetches */
283 if (execute)
284 return true;
285 /* allow access if the VMA is not one from this process */
286 if (foreign || vma_is_foreign(vma))
287 return true;
288 return __pkru_allows_pkey(vma_pkey(vma), write);
289 }
290
291
292 /*
293 * This can be used from process context to figure out what the value of
294 * CR3 is without needing to do a (slow) __read_cr3().
295 *
296 * It's intended to be used for code like KVM that sneakily changes CR3
297 * and needs to restore it. It needs to be used very carefully.
298 */
299 static inline unsigned long __get_current_cr3_fast(void)
300 {
301 unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd);
302
303 /* For now, be very restrictive about when this can be called. */
304 VM_WARN_ON(in_nmi() || !in_atomic());
305
306 VM_BUG_ON(cr3 != __read_cr3());
307 return cr3;
308 }
309
310 #endif /* _ASM_X86_MMU_CONTEXT_H */