]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/mmu_context.h
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / mmu_context.h
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8
9 #include <trace/events/tlb.h>
10
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15 #ifndef CONFIG_PARAVIRT
16 static inline void paravirt_activate_mm(struct mm_struct *prev,
17 struct mm_struct *next)
18 {
19 }
20 #endif /* !CONFIG_PARAVIRT */
21
22 #ifdef CONFIG_PERF_EVENTS
23 extern struct static_key rdpmc_always_available;
24
25 static inline void load_mm_cr4(struct mm_struct *mm)
26 {
27 if (static_key_false(&rdpmc_always_available) ||
28 atomic_read(&mm->context.perf_rdpmc_allowed))
29 cr4_set_bits(X86_CR4_PCE);
30 else
31 cr4_clear_bits(X86_CR4_PCE);
32 }
33 #else
34 static inline void load_mm_cr4(struct mm_struct *mm) {}
35 #endif
36
37 #ifdef CONFIG_MODIFY_LDT_SYSCALL
38 /*
39 * ldt_structs can be allocated, used, and freed, but they are never
40 * modified while live.
41 */
42 struct ldt_struct {
43 /*
44 * Xen requires page-aligned LDTs with special permissions. This is
45 * needed to prevent us from installing evil descriptors such as
46 * call gates. On native, we could merge the ldt_struct and LDT
47 * allocations, but it's not worth trying to optimize.
48 */
49 struct desc_struct *entries;
50 unsigned int nr_entries;
51 };
52
53 /*
54 * Used for LDT copy/destruction.
55 */
56 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
57 void destroy_context_ldt(struct mm_struct *mm);
58 #else /* CONFIG_MODIFY_LDT_SYSCALL */
59 static inline int init_new_context_ldt(struct task_struct *tsk,
60 struct mm_struct *mm)
61 {
62 return 0;
63 }
64 static inline void destroy_context_ldt(struct mm_struct *mm) {}
65 #endif
66
67 static inline void load_mm_ldt(struct mm_struct *mm)
68 {
69 #ifdef CONFIG_MODIFY_LDT_SYSCALL
70 struct ldt_struct *ldt;
71
72 /* lockless_dereference synchronizes with smp_store_release */
73 ldt = lockless_dereference(mm->context.ldt);
74
75 /*
76 * Any change to mm->context.ldt is followed by an IPI to all
77 * CPUs with the mm active. The LDT will not be freed until
78 * after the IPI is handled by all such CPUs. This means that,
79 * if the ldt_struct changes before we return, the values we see
80 * will be safe, and the new values will be loaded before we run
81 * any user code.
82 *
83 * NB: don't try to convert this to use RCU without extreme care.
84 * We would still need IRQs off, because we don't want to change
85 * the local LDT after an IPI loaded a newer value than the one
86 * that we can see.
87 */
88
89 if (unlikely(ldt))
90 set_ldt(ldt->entries, ldt->nr_entries);
91 else
92 clear_LDT();
93 #else
94 clear_LDT();
95 #endif
96 }
97
98 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
99 {
100 #ifdef CONFIG_MODIFY_LDT_SYSCALL
101 /*
102 * Load the LDT if either the old or new mm had an LDT.
103 *
104 * An mm will never go from having an LDT to not having an LDT. Two
105 * mms never share an LDT, so we don't gain anything by checking to
106 * see whether the LDT changed. There's also no guarantee that
107 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
108 * then prev->context.ldt will also be non-NULL.
109 *
110 * If we really cared, we could optimize the case where prev == next
111 * and we're exiting lazy mode. Most of the time, if this happens,
112 * we don't actually need to reload LDTR, but modify_ldt() is mostly
113 * used by legacy code and emulators where we don't need this level of
114 * performance.
115 *
116 * This uses | instead of || because it generates better code.
117 */
118 if (unlikely((unsigned long)prev->context.ldt |
119 (unsigned long)next->context.ldt))
120 load_mm_ldt(next);
121 #endif
122
123 DEBUG_LOCKS_WARN_ON(preemptible());
124 }
125
126 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
127 {
128 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
129 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
130 }
131
132 static inline int init_new_context(struct task_struct *tsk,
133 struct mm_struct *mm)
134 {
135 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
136 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
137 /* pkey 0 is the default and always allocated */
138 mm->context.pkey_allocation_map = 0x1;
139 /* -1 means unallocated or invalid */
140 mm->context.execute_only_pkey = -1;
141 }
142 #endif
143 init_new_context_ldt(tsk, mm);
144
145 return 0;
146 }
147 static inline void destroy_context(struct mm_struct *mm)
148 {
149 destroy_context_ldt(mm);
150 }
151
152 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
153 struct task_struct *tsk);
154
155 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
156 struct task_struct *tsk);
157 #define switch_mm_irqs_off switch_mm_irqs_off
158
159 #define activate_mm(prev, next) \
160 do { \
161 paravirt_activate_mm((prev), (next)); \
162 switch_mm((prev), (next), NULL); \
163 } while (0);
164
165 #ifdef CONFIG_X86_32
166 #define deactivate_mm(tsk, mm) \
167 do { \
168 lazy_load_gs(0); \
169 } while (0)
170 #else
171 #define deactivate_mm(tsk, mm) \
172 do { \
173 load_gs_index(0); \
174 loadsegment(fs, 0); \
175 } while (0)
176 #endif
177
178 static inline void arch_dup_mmap(struct mm_struct *oldmm,
179 struct mm_struct *mm)
180 {
181 paravirt_arch_dup_mmap(oldmm, mm);
182 }
183
184 static inline void arch_exit_mmap(struct mm_struct *mm)
185 {
186 paravirt_arch_exit_mmap(mm);
187 }
188
189 #ifdef CONFIG_X86_64
190 static inline bool is_64bit_mm(struct mm_struct *mm)
191 {
192 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
193 !(mm->context.ia32_compat == TIF_IA32);
194 }
195 #else
196 static inline bool is_64bit_mm(struct mm_struct *mm)
197 {
198 return false;
199 }
200 #endif
201
202 static inline void arch_bprm_mm_init(struct mm_struct *mm,
203 struct vm_area_struct *vma)
204 {
205 mpx_mm_init(mm);
206 }
207
208 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
209 unsigned long start, unsigned long end)
210 {
211 /*
212 * mpx_notify_unmap() goes and reads a rarely-hot
213 * cacheline in the mm_struct. That can be expensive
214 * enough to be seen in profiles.
215 *
216 * The mpx_notify_unmap() call and its contents have been
217 * observed to affect munmap() performance on hardware
218 * where MPX is not present.
219 *
220 * The unlikely() optimizes for the fast case: no MPX
221 * in the CPU, or no MPX use in the process. Even if
222 * we get this wrong (in the unlikely event that MPX
223 * is widely enabled on some system) the overhead of
224 * MPX itself (reading bounds tables) is expected to
225 * overwhelm the overhead of getting this unlikely()
226 * consistently wrong.
227 */
228 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
229 mpx_notify_unmap(mm, vma, start, end);
230 }
231
232 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
233 static inline int vma_pkey(struct vm_area_struct *vma)
234 {
235 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
236 VM_PKEY_BIT2 | VM_PKEY_BIT3;
237
238 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
239 }
240 #else
241 static inline int vma_pkey(struct vm_area_struct *vma)
242 {
243 return 0;
244 }
245 #endif
246
247 /*
248 * We only want to enforce protection keys on the current process
249 * because we effectively have no access to PKRU for other
250 * processes or any way to tell *which * PKRU in a threaded
251 * process we could use.
252 *
253 * So do not enforce things if the VMA is not from the current
254 * mm, or if we are in a kernel thread.
255 */
256 static inline bool vma_is_foreign(struct vm_area_struct *vma)
257 {
258 if (!current->mm)
259 return true;
260 /*
261 * Should PKRU be enforced on the access to this VMA? If
262 * the VMA is from another process, then PKRU has no
263 * relevance and should not be enforced.
264 */
265 if (current->mm != vma->vm_mm)
266 return true;
267
268 return false;
269 }
270
271 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
272 bool write, bool execute, bool foreign)
273 {
274 /* pkeys never affect instruction fetches */
275 if (execute)
276 return true;
277 /* allow access if the VMA is not one from this process */
278 if (foreign || vma_is_foreign(vma))
279 return true;
280 return __pkru_allows_pkey(vma_pkey(vma), write);
281 }
282
283
284 /*
285 * This can be used from process context to figure out what the value of
286 * CR3 is without needing to do a (slow) __read_cr3().
287 *
288 * It's intended to be used for code like KVM that sneakily changes CR3
289 * and needs to restore it. It needs to be used very carefully.
290 */
291 static inline unsigned long __get_current_cr3_fast(void)
292 {
293 unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd);
294
295 /* For now, be very restrictive about when this can be called. */
296 VM_WARN_ON(in_nmi() || !in_atomic());
297
298 VM_BUG_ON(cr3 != __read_cr3());
299 return cr3;
300 }
301
302 #endif /* _ASM_X86_MMU_CONTEXT_H */