]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/mmu_context.h
locking/barriers: Convert users of lockless_dereference() to READ_ONCE()
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / mmu_context.h
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8
9 #include <trace/events/tlb.h>
10
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15
16 extern atomic64_t last_mm_ctx_id;
17
18 #ifndef CONFIG_PARAVIRT
19 static inline void paravirt_activate_mm(struct mm_struct *prev,
20 struct mm_struct *next)
21 {
22 }
23 #endif /* !CONFIG_PARAVIRT */
24
25 #ifdef CONFIG_PERF_EVENTS
26 extern struct static_key rdpmc_always_available;
27
28 static inline void load_mm_cr4(struct mm_struct *mm)
29 {
30 if (static_key_false(&rdpmc_always_available) ||
31 atomic_read(&mm->context.perf_rdpmc_allowed))
32 cr4_set_bits(X86_CR4_PCE);
33 else
34 cr4_clear_bits(X86_CR4_PCE);
35 }
36 #else
37 static inline void load_mm_cr4(struct mm_struct *mm) {}
38 #endif
39
40 #ifdef CONFIG_MODIFY_LDT_SYSCALL
41 /*
42 * ldt_structs can be allocated, used, and freed, but they are never
43 * modified while live.
44 */
45 struct ldt_struct {
46 /*
47 * Xen requires page-aligned LDTs with special permissions. This is
48 * needed to prevent us from installing evil descriptors such as
49 * call gates. On native, we could merge the ldt_struct and LDT
50 * allocations, but it's not worth trying to optimize.
51 */
52 struct desc_struct *entries;
53 unsigned int nr_entries;
54 };
55
56 /*
57 * Used for LDT copy/destruction.
58 */
59 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
60 void destroy_context_ldt(struct mm_struct *mm);
61 #else /* CONFIG_MODIFY_LDT_SYSCALL */
62 static inline int init_new_context_ldt(struct task_struct *tsk,
63 struct mm_struct *mm)
64 {
65 return 0;
66 }
67 static inline void destroy_context_ldt(struct mm_struct *mm) {}
68 #endif
69
70 static inline void load_mm_ldt(struct mm_struct *mm)
71 {
72 #ifdef CONFIG_MODIFY_LDT_SYSCALL
73 struct ldt_struct *ldt;
74
75 /* READ_ONCE synchronizes with smp_store_release */
76 ldt = READ_ONCE(mm->context.ldt);
77
78 /*
79 * Any change to mm->context.ldt is followed by an IPI to all
80 * CPUs with the mm active. The LDT will not be freed until
81 * after the IPI is handled by all such CPUs. This means that,
82 * if the ldt_struct changes before we return, the values we see
83 * will be safe, and the new values will be loaded before we run
84 * any user code.
85 *
86 * NB: don't try to convert this to use RCU without extreme care.
87 * We would still need IRQs off, because we don't want to change
88 * the local LDT after an IPI loaded a newer value than the one
89 * that we can see.
90 */
91
92 if (unlikely(ldt))
93 set_ldt(ldt->entries, ldt->nr_entries);
94 else
95 clear_LDT();
96 #else
97 clear_LDT();
98 #endif
99 }
100
101 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
102 {
103 #ifdef CONFIG_MODIFY_LDT_SYSCALL
104 /*
105 * Load the LDT if either the old or new mm had an LDT.
106 *
107 * An mm will never go from having an LDT to not having an LDT. Two
108 * mms never share an LDT, so we don't gain anything by checking to
109 * see whether the LDT changed. There's also no guarantee that
110 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
111 * then prev->context.ldt will also be non-NULL.
112 *
113 * If we really cared, we could optimize the case where prev == next
114 * and we're exiting lazy mode. Most of the time, if this happens,
115 * we don't actually need to reload LDTR, but modify_ldt() is mostly
116 * used by legacy code and emulators where we don't need this level of
117 * performance.
118 *
119 * This uses | instead of || because it generates better code.
120 */
121 if (unlikely((unsigned long)prev->context.ldt |
122 (unsigned long)next->context.ldt))
123 load_mm_ldt(next);
124 #endif
125
126 DEBUG_LOCKS_WARN_ON(preemptible());
127 }
128
129 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
130
131 static inline int init_new_context(struct task_struct *tsk,
132 struct mm_struct *mm)
133 {
134 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
135 atomic64_set(&mm->context.tlb_gen, 0);
136
137 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
138 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
139 /* pkey 0 is the default and always allocated */
140 mm->context.pkey_allocation_map = 0x1;
141 /* -1 means unallocated or invalid */
142 mm->context.execute_only_pkey = -1;
143 }
144 #endif
145 return init_new_context_ldt(tsk, mm);
146 }
147 static inline void destroy_context(struct mm_struct *mm)
148 {
149 destroy_context_ldt(mm);
150 }
151
152 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
153 struct task_struct *tsk);
154
155 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
156 struct task_struct *tsk);
157 #define switch_mm_irqs_off switch_mm_irqs_off
158
159 #define activate_mm(prev, next) \
160 do { \
161 paravirt_activate_mm((prev), (next)); \
162 switch_mm((prev), (next), NULL); \
163 } while (0);
164
165 #ifdef CONFIG_X86_32
166 #define deactivate_mm(tsk, mm) \
167 do { \
168 lazy_load_gs(0); \
169 } while (0)
170 #else
171 #define deactivate_mm(tsk, mm) \
172 do { \
173 load_gs_index(0); \
174 loadsegment(fs, 0); \
175 } while (0)
176 #endif
177
178 static inline void arch_dup_mmap(struct mm_struct *oldmm,
179 struct mm_struct *mm)
180 {
181 paravirt_arch_dup_mmap(oldmm, mm);
182 }
183
184 static inline void arch_exit_mmap(struct mm_struct *mm)
185 {
186 paravirt_arch_exit_mmap(mm);
187 }
188
189 #ifdef CONFIG_X86_64
190 static inline bool is_64bit_mm(struct mm_struct *mm)
191 {
192 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
193 !(mm->context.ia32_compat == TIF_IA32);
194 }
195 #else
196 static inline bool is_64bit_mm(struct mm_struct *mm)
197 {
198 return false;
199 }
200 #endif
201
202 static inline void arch_bprm_mm_init(struct mm_struct *mm,
203 struct vm_area_struct *vma)
204 {
205 mpx_mm_init(mm);
206 }
207
208 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
209 unsigned long start, unsigned long end)
210 {
211 /*
212 * mpx_notify_unmap() goes and reads a rarely-hot
213 * cacheline in the mm_struct. That can be expensive
214 * enough to be seen in profiles.
215 *
216 * The mpx_notify_unmap() call and its contents have been
217 * observed to affect munmap() performance on hardware
218 * where MPX is not present.
219 *
220 * The unlikely() optimizes for the fast case: no MPX
221 * in the CPU, or no MPX use in the process. Even if
222 * we get this wrong (in the unlikely event that MPX
223 * is widely enabled on some system) the overhead of
224 * MPX itself (reading bounds tables) is expected to
225 * overwhelm the overhead of getting this unlikely()
226 * consistently wrong.
227 */
228 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
229 mpx_notify_unmap(mm, vma, start, end);
230 }
231
232 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
233 static inline int vma_pkey(struct vm_area_struct *vma)
234 {
235 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
236 VM_PKEY_BIT2 | VM_PKEY_BIT3;
237
238 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
239 }
240 #else
241 static inline int vma_pkey(struct vm_area_struct *vma)
242 {
243 return 0;
244 }
245 #endif
246
247 /*
248 * We only want to enforce protection keys on the current process
249 * because we effectively have no access to PKRU for other
250 * processes or any way to tell *which * PKRU in a threaded
251 * process we could use.
252 *
253 * So do not enforce things if the VMA is not from the current
254 * mm, or if we are in a kernel thread.
255 */
256 static inline bool vma_is_foreign(struct vm_area_struct *vma)
257 {
258 if (!current->mm)
259 return true;
260 /*
261 * Should PKRU be enforced on the access to this VMA? If
262 * the VMA is from another process, then PKRU has no
263 * relevance and should not be enforced.
264 */
265 if (current->mm != vma->vm_mm)
266 return true;
267
268 return false;
269 }
270
271 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
272 bool write, bool execute, bool foreign)
273 {
274 /* pkeys never affect instruction fetches */
275 if (execute)
276 return true;
277 /* allow access if the VMA is not one from this process */
278 if (foreign || vma_is_foreign(vma))
279 return true;
280 return __pkru_allows_pkey(vma_pkey(vma), write);
281 }
282
283 /*
284 * If PCID is on, ASID-aware code paths put the ASID+1 into the PCID
285 * bits. This serves two purposes. It prevents a nasty situation in
286 * which PCID-unaware code saves CR3, loads some other value (with PCID
287 * == 0), and then restores CR3, thus corrupting the TLB for ASID 0 if
288 * the saved ASID was nonzero. It also means that any bugs involving
289 * loading a PCID-enabled CR3 with CR4.PCIDE off will trigger
290 * deterministically.
291 */
292
293 static inline unsigned long build_cr3(struct mm_struct *mm, u16 asid)
294 {
295 if (static_cpu_has(X86_FEATURE_PCID)) {
296 VM_WARN_ON_ONCE(asid > 4094);
297 return __sme_pa(mm->pgd) | (asid + 1);
298 } else {
299 VM_WARN_ON_ONCE(asid != 0);
300 return __sme_pa(mm->pgd);
301 }
302 }
303
304 static inline unsigned long build_cr3_noflush(struct mm_struct *mm, u16 asid)
305 {
306 VM_WARN_ON_ONCE(asid > 4094);
307 return __sme_pa(mm->pgd) | (asid + 1) | CR3_NOFLUSH;
308 }
309
310 /*
311 * This can be used from process context to figure out what the value of
312 * CR3 is without needing to do a (slow) __read_cr3().
313 *
314 * It's intended to be used for code like KVM that sneakily changes CR3
315 * and needs to restore it. It needs to be used very carefully.
316 */
317 static inline unsigned long __get_current_cr3_fast(void)
318 {
319 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm),
320 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
321
322 /* For now, be very restrictive about when this can be called. */
323 VM_WARN_ON(in_nmi() || preemptible());
324
325 VM_BUG_ON(cr3 != __read_cr3());
326 return cr3;
327 }
328
329 #endif /* _ASM_X86_MMU_CONTEXT_H */