]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/mmu_context.h
Merge tag 'staging-4.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / mmu_context.h
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8
9 #include <trace/events/tlb.h>
10
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15 #ifndef CONFIG_PARAVIRT
16 static inline void paravirt_activate_mm(struct mm_struct *prev,
17 struct mm_struct *next)
18 {
19 }
20 #endif /* !CONFIG_PARAVIRT */
21
22 #ifdef CONFIG_PERF_EVENTS
23 extern struct static_key rdpmc_always_available;
24
25 static inline void load_mm_cr4(struct mm_struct *mm)
26 {
27 if (static_key_false(&rdpmc_always_available) ||
28 atomic_read(&mm->context.perf_rdpmc_allowed))
29 cr4_set_bits(X86_CR4_PCE);
30 else
31 cr4_clear_bits(X86_CR4_PCE);
32 }
33 #else
34 static inline void load_mm_cr4(struct mm_struct *mm) {}
35 #endif
36
37 #ifdef CONFIG_MODIFY_LDT_SYSCALL
38 /*
39 * ldt_structs can be allocated, used, and freed, but they are never
40 * modified while live.
41 */
42 struct ldt_struct {
43 /*
44 * Xen requires page-aligned LDTs with special permissions. This is
45 * needed to prevent us from installing evil descriptors such as
46 * call gates. On native, we could merge the ldt_struct and LDT
47 * allocations, but it's not worth trying to optimize.
48 */
49 struct desc_struct *entries;
50 unsigned int nr_entries;
51 };
52
53 /*
54 * Used for LDT copy/destruction.
55 */
56 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
57 void destroy_context_ldt(struct mm_struct *mm);
58 #else /* CONFIG_MODIFY_LDT_SYSCALL */
59 static inline int init_new_context_ldt(struct task_struct *tsk,
60 struct mm_struct *mm)
61 {
62 return 0;
63 }
64 static inline void destroy_context_ldt(struct mm_struct *mm) {}
65 #endif
66
67 static inline void load_mm_ldt(struct mm_struct *mm)
68 {
69 #ifdef CONFIG_MODIFY_LDT_SYSCALL
70 struct ldt_struct *ldt;
71
72 /* lockless_dereference synchronizes with smp_store_release */
73 ldt = lockless_dereference(mm->context.ldt);
74
75 /*
76 * Any change to mm->context.ldt is followed by an IPI to all
77 * CPUs with the mm active. The LDT will not be freed until
78 * after the IPI is handled by all such CPUs. This means that,
79 * if the ldt_struct changes before we return, the values we see
80 * will be safe, and the new values will be loaded before we run
81 * any user code.
82 *
83 * NB: don't try to convert this to use RCU without extreme care.
84 * We would still need IRQs off, because we don't want to change
85 * the local LDT after an IPI loaded a newer value than the one
86 * that we can see.
87 */
88
89 if (unlikely(ldt))
90 set_ldt(ldt->entries, ldt->nr_entries);
91 else
92 clear_LDT();
93 #else
94 clear_LDT();
95 #endif
96 }
97
98 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
99 {
100 #ifdef CONFIG_MODIFY_LDT_SYSCALL
101 /*
102 * Load the LDT if either the old or new mm had an LDT.
103 *
104 * An mm will never go from having an LDT to not having an LDT. Two
105 * mms never share an LDT, so we don't gain anything by checking to
106 * see whether the LDT changed. There's also no guarantee that
107 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
108 * then prev->context.ldt will also be non-NULL.
109 *
110 * If we really cared, we could optimize the case where prev == next
111 * and we're exiting lazy mode. Most of the time, if this happens,
112 * we don't actually need to reload LDTR, but modify_ldt() is mostly
113 * used by legacy code and emulators where we don't need this level of
114 * performance.
115 *
116 * This uses | instead of || because it generates better code.
117 */
118 if (unlikely((unsigned long)prev->context.ldt |
119 (unsigned long)next->context.ldt))
120 load_mm_ldt(next);
121 #endif
122
123 DEBUG_LOCKS_WARN_ON(preemptible());
124 }
125
126 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
127 {
128 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
129 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
130 }
131
132 static inline int init_new_context(struct task_struct *tsk,
133 struct mm_struct *mm)
134 {
135 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
136 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
137 /* pkey 0 is the default and always allocated */
138 mm->context.pkey_allocation_map = 0x1;
139 /* -1 means unallocated or invalid */
140 mm->context.execute_only_pkey = -1;
141 }
142 #endif
143 return init_new_context_ldt(tsk, mm);
144 }
145 static inline void destroy_context(struct mm_struct *mm)
146 {
147 destroy_context_ldt(mm);
148 }
149
150 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
151 struct task_struct *tsk);
152
153 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
154 struct task_struct *tsk);
155 #define switch_mm_irqs_off switch_mm_irqs_off
156
157 #define activate_mm(prev, next) \
158 do { \
159 paravirt_activate_mm((prev), (next)); \
160 switch_mm((prev), (next), NULL); \
161 } while (0);
162
163 #ifdef CONFIG_X86_32
164 #define deactivate_mm(tsk, mm) \
165 do { \
166 lazy_load_gs(0); \
167 } while (0)
168 #else
169 #define deactivate_mm(tsk, mm) \
170 do { \
171 load_gs_index(0); \
172 loadsegment(fs, 0); \
173 } while (0)
174 #endif
175
176 static inline void arch_dup_mmap(struct mm_struct *oldmm,
177 struct mm_struct *mm)
178 {
179 paravirt_arch_dup_mmap(oldmm, mm);
180 }
181
182 static inline void arch_exit_mmap(struct mm_struct *mm)
183 {
184 paravirt_arch_exit_mmap(mm);
185 }
186
187 #ifdef CONFIG_X86_64
188 static inline bool is_64bit_mm(struct mm_struct *mm)
189 {
190 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
191 !(mm->context.ia32_compat == TIF_IA32);
192 }
193 #else
194 static inline bool is_64bit_mm(struct mm_struct *mm)
195 {
196 return false;
197 }
198 #endif
199
200 static inline void arch_bprm_mm_init(struct mm_struct *mm,
201 struct vm_area_struct *vma)
202 {
203 mpx_mm_init(mm);
204 }
205
206 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
207 unsigned long start, unsigned long end)
208 {
209 /*
210 * mpx_notify_unmap() goes and reads a rarely-hot
211 * cacheline in the mm_struct. That can be expensive
212 * enough to be seen in profiles.
213 *
214 * The mpx_notify_unmap() call and its contents have been
215 * observed to affect munmap() performance on hardware
216 * where MPX is not present.
217 *
218 * The unlikely() optimizes for the fast case: no MPX
219 * in the CPU, or no MPX use in the process. Even if
220 * we get this wrong (in the unlikely event that MPX
221 * is widely enabled on some system) the overhead of
222 * MPX itself (reading bounds tables) is expected to
223 * overwhelm the overhead of getting this unlikely()
224 * consistently wrong.
225 */
226 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
227 mpx_notify_unmap(mm, vma, start, end);
228 }
229
230 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
231 static inline int vma_pkey(struct vm_area_struct *vma)
232 {
233 unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
234 VM_PKEY_BIT2 | VM_PKEY_BIT3;
235
236 return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
237 }
238 #else
239 static inline int vma_pkey(struct vm_area_struct *vma)
240 {
241 return 0;
242 }
243 #endif
244
245 /*
246 * We only want to enforce protection keys on the current process
247 * because we effectively have no access to PKRU for other
248 * processes or any way to tell *which * PKRU in a threaded
249 * process we could use.
250 *
251 * So do not enforce things if the VMA is not from the current
252 * mm, or if we are in a kernel thread.
253 */
254 static inline bool vma_is_foreign(struct vm_area_struct *vma)
255 {
256 if (!current->mm)
257 return true;
258 /*
259 * Should PKRU be enforced on the access to this VMA? If
260 * the VMA is from another process, then PKRU has no
261 * relevance and should not be enforced.
262 */
263 if (current->mm != vma->vm_mm)
264 return true;
265
266 return false;
267 }
268
269 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
270 bool write, bool execute, bool foreign)
271 {
272 /* pkeys never affect instruction fetches */
273 if (execute)
274 return true;
275 /* allow access if the VMA is not one from this process */
276 if (foreign || vma_is_foreign(vma))
277 return true;
278 return __pkru_allows_pkey(vma_pkey(vma), write);
279 }
280
281
282 /*
283 * This can be used from process context to figure out what the value of
284 * CR3 is without needing to do a (slow) __read_cr3().
285 *
286 * It's intended to be used for code like KVM that sneakily changes CR3
287 * and needs to restore it. It needs to be used very carefully.
288 */
289 static inline unsigned long __get_current_cr3_fast(void)
290 {
291 unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd);
292
293 /* For now, be very restrictive about when this can be called. */
294 VM_WARN_ON(in_nmi() || preemptible());
295
296 VM_BUG_ON(cr3 != __read_cr3());
297 return cr3;
298 }
299
300 #endif /* _ASM_X86_MMU_CONTEXT_H */