]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/mshyperv.h
reset: Restrict RESET_HSDK to ARC_SOC_HSDK or COMPILE_TEST
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / mshyperv.h
1 #ifndef _ASM_X86_MSHYPER_H
2 #define _ASM_X86_MSHYPER_H
3
4 #include <linux/types.h>
5 #include <linux/atomic.h>
6 #include <linux/nmi.h>
7 #include <asm/io.h>
8 #include <asm/hyperv.h>
9
10 /*
11 * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
12 * is set by CPUID(HVCPUID_VERSION_FEATURES).
13 */
14 enum hv_cpuid_function {
15 HVCPUID_VERSION_FEATURES = 0x00000001,
16 HVCPUID_VENDOR_MAXFUNCTION = 0x40000000,
17 HVCPUID_INTERFACE = 0x40000001,
18
19 /*
20 * The remaining functions depend on the value of
21 * HVCPUID_INTERFACE
22 */
23 HVCPUID_VERSION = 0x40000002,
24 HVCPUID_FEATURES = 0x40000003,
25 HVCPUID_ENLIGHTENMENT_INFO = 0x40000004,
26 HVCPUID_IMPLEMENTATION_LIMITS = 0x40000005,
27 };
28
29 struct ms_hyperv_info {
30 u32 features;
31 u32 misc_features;
32 u32 hints;
33 u32 max_vp_index;
34 u32 max_lp_index;
35 };
36
37 extern struct ms_hyperv_info ms_hyperv;
38
39 /*
40 * Declare the MSR used to setup pages used to communicate with the hypervisor.
41 */
42 union hv_x64_msr_hypercall_contents {
43 u64 as_uint64;
44 struct {
45 u64 enable:1;
46 u64 reserved:11;
47 u64 guest_physical_address:52;
48 };
49 };
50
51 /*
52 * TSC page layout.
53 */
54
55 struct ms_hyperv_tsc_page {
56 volatile u32 tsc_sequence;
57 u32 reserved1;
58 volatile u64 tsc_scale;
59 volatile s64 tsc_offset;
60 u64 reserved2[509];
61 };
62
63 /*
64 * The guest OS needs to register the guest ID with the hypervisor.
65 * The guest ID is a 64 bit entity and the structure of this ID is
66 * specified in the Hyper-V specification:
67 *
68 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
69 *
70 * While the current guideline does not specify how Linux guest ID(s)
71 * need to be generated, our plan is to publish the guidelines for
72 * Linux and other guest operating systems that currently are hosted
73 * on Hyper-V. The implementation here conforms to this yet
74 * unpublished guidelines.
75 *
76 *
77 * Bit(s)
78 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
79 * 62:56 - Os Type; Linux is 0x100
80 * 55:48 - Distro specific identification
81 * 47:16 - Linux kernel version number
82 * 15:0 - Distro specific identification
83 *
84 *
85 */
86
87 #define HV_LINUX_VENDOR_ID 0x8100
88
89 /*
90 * Generate the guest ID based on the guideline described above.
91 */
92
93 static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
94 __u64 d_info2)
95 {
96 __u64 guest_id = 0;
97
98 guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
99 guest_id |= (d_info1 << 48);
100 guest_id |= (kernel_version << 16);
101 guest_id |= d_info2;
102
103 return guest_id;
104 }
105
106
107 /* Free the message slot and signal end-of-message if required */
108 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
109 {
110 /*
111 * On crash we're reading some other CPU's message page and we need
112 * to be careful: this other CPU may already had cleared the header
113 * and the host may already had delivered some other message there.
114 * In case we blindly write msg->header.message_type we're going
115 * to lose it. We can still lose a message of the same type but
116 * we count on the fact that there can only be one
117 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
118 * on crash.
119 */
120 if (cmpxchg(&msg->header.message_type, old_msg_type,
121 HVMSG_NONE) != old_msg_type)
122 return;
123
124 /*
125 * Make sure the write to MessageType (ie set to
126 * HVMSG_NONE) happens before we read the
127 * MessagePending and EOMing. Otherwise, the EOMing
128 * will not deliver any more messages since there is
129 * no empty slot
130 */
131 mb();
132
133 if (msg->header.message_flags.msg_pending) {
134 /*
135 * This will cause message queue rescan to
136 * possibly deliver another msg from the
137 * hypervisor
138 */
139 wrmsrl(HV_X64_MSR_EOM, 0);
140 }
141 }
142
143 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
144 #define hv_init_timer_config(config, val) wrmsrl(config, val)
145
146 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
147 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
148
149 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
150 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
151
152 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
153 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
154
155 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
156
157 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
158 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
159
160 void hyperv_callback_vector(void);
161 #ifdef CONFIG_TRACING
162 #define trace_hyperv_callback_vector hyperv_callback_vector
163 #endif
164 void hyperv_vector_handler(struct pt_regs *regs);
165 void hv_setup_vmbus_irq(void (*handler)(void));
166 void hv_remove_vmbus_irq(void);
167
168 void hv_setup_kexec_handler(void (*handler)(void));
169 void hv_remove_kexec_handler(void);
170 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
171 void hv_remove_crash_handler(void);
172
173 #if IS_ENABLED(CONFIG_HYPERV)
174 extern struct clocksource *hyperv_cs;
175 extern void *hv_hypercall_pg;
176
177 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
178 {
179 u64 input_address = input ? virt_to_phys(input) : 0;
180 u64 output_address = output ? virt_to_phys(output) : 0;
181 u64 hv_status;
182 register void *__sp asm(_ASM_SP);
183
184 #ifdef CONFIG_X86_64
185 if (!hv_hypercall_pg)
186 return U64_MAX;
187
188 __asm__ __volatile__("mov %4, %%r8\n"
189 "call *%5"
190 : "=a" (hv_status), "+r" (__sp),
191 "+c" (control), "+d" (input_address)
192 : "r" (output_address), "m" (hv_hypercall_pg)
193 : "cc", "memory", "r8", "r9", "r10", "r11");
194 #else
195 u32 input_address_hi = upper_32_bits(input_address);
196 u32 input_address_lo = lower_32_bits(input_address);
197 u32 output_address_hi = upper_32_bits(output_address);
198 u32 output_address_lo = lower_32_bits(output_address);
199
200 if (!hv_hypercall_pg)
201 return U64_MAX;
202
203 __asm__ __volatile__("call *%7"
204 : "=A" (hv_status),
205 "+c" (input_address_lo), "+r" (__sp)
206 : "A" (control),
207 "b" (input_address_hi),
208 "D"(output_address_hi), "S"(output_address_lo),
209 "m" (hv_hypercall_pg)
210 : "cc", "memory");
211 #endif /* !x86_64 */
212 return hv_status;
213 }
214
215 #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0)
216 #define HV_HYPERCALL_FAST_BIT BIT(16)
217 #define HV_HYPERCALL_VARHEAD_OFFSET 17
218 #define HV_HYPERCALL_REP_COMP_OFFSET 32
219 #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32)
220 #define HV_HYPERCALL_REP_START_OFFSET 48
221 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48)
222
223 /* Fast hypercall with 8 bytes of input and no output */
224 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
225 {
226 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
227 register void *__sp asm(_ASM_SP);
228
229 #ifdef CONFIG_X86_64
230 {
231 __asm__ __volatile__("call *%4"
232 : "=a" (hv_status), "+r" (__sp),
233 "+c" (control), "+d" (input1)
234 : "m" (hv_hypercall_pg)
235 : "cc", "r8", "r9", "r10", "r11");
236 }
237 #else
238 {
239 u32 input1_hi = upper_32_bits(input1);
240 u32 input1_lo = lower_32_bits(input1);
241
242 __asm__ __volatile__ ("call *%5"
243 : "=A"(hv_status),
244 "+c"(input1_lo),
245 "+r"(__sp)
246 : "A" (control),
247 "b" (input1_hi),
248 "m" (hv_hypercall_pg)
249 : "cc", "edi", "esi");
250 }
251 #endif
252 return hv_status;
253 }
254
255 /*
256 * Rep hypercalls. Callers of this functions are supposed to ensure that
257 * rep_count and varhead_size comply with Hyper-V hypercall definition.
258 */
259 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
260 void *input, void *output)
261 {
262 u64 control = code;
263 u64 status;
264 u16 rep_comp;
265
266 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
267 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
268
269 do {
270 status = hv_do_hypercall(control, input, output);
271 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
272 return status;
273
274 /* Bits 32-43 of status have 'Reps completed' data. */
275 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
276 HV_HYPERCALL_REP_COMP_OFFSET;
277
278 control &= ~HV_HYPERCALL_REP_START_MASK;
279 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
280
281 touch_nmi_watchdog();
282 } while (rep_comp < rep_count);
283
284 return status;
285 }
286
287 /*
288 * Hypervisor's notion of virtual processor ID is different from
289 * Linux' notion of CPU ID. This information can only be retrieved
290 * in the context of the calling CPU. Setup a map for easy access
291 * to this information.
292 */
293 extern u32 *hv_vp_index;
294
295 /**
296 * hv_cpu_number_to_vp_number() - Map CPU to VP.
297 * @cpu_number: CPU number in Linux terms
298 *
299 * This function returns the mapping between the Linux processor
300 * number and the hypervisor's virtual processor number, useful
301 * in making hypercalls and such that talk about specific
302 * processors.
303 *
304 * Return: Virtual processor number in Hyper-V terms
305 */
306 static inline int hv_cpu_number_to_vp_number(int cpu_number)
307 {
308 return hv_vp_index[cpu_number];
309 }
310
311 void hyperv_init(void);
312 void hyperv_setup_mmu_ops(void);
313 void hyper_alloc_mmu(void);
314 void hyperv_report_panic(struct pt_regs *regs);
315 bool hv_is_hypercall_page_setup(void);
316 void hyperv_cleanup(void);
317 #else /* CONFIG_HYPERV */
318 static inline void hyperv_init(void) {}
319 static inline bool hv_is_hypercall_page_setup(void) { return false; }
320 static inline void hyperv_cleanup(void) {}
321 static inline void hyperv_setup_mmu_ops(void) {}
322 #endif /* CONFIG_HYPERV */
323
324 #ifdef CONFIG_HYPERV_TSCPAGE
325 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
326 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
327 {
328 u64 scale, offset, cur_tsc;
329 u32 sequence;
330
331 /*
332 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
333 * Top-Level Functional Specification ver. 3.0 and above. To get the
334 * reference time we must do the following:
335 * - READ ReferenceTscSequence
336 * A special '0' value indicates the time source is unreliable and we
337 * need to use something else. The currently published specification
338 * versions (up to 4.0b) contain a mistake and wrongly claim '-1'
339 * instead of '0' as the special value, see commit c35b82ef0294.
340 * - ReferenceTime =
341 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
342 * - READ ReferenceTscSequence again. In case its value has changed
343 * since our first reading we need to discard ReferenceTime and repeat
344 * the whole sequence as the hypervisor was updating the page in
345 * between.
346 */
347 do {
348 sequence = READ_ONCE(tsc_pg->tsc_sequence);
349 if (!sequence)
350 return U64_MAX;
351 /*
352 * Make sure we read sequence before we read other values from
353 * TSC page.
354 */
355 smp_rmb();
356
357 scale = READ_ONCE(tsc_pg->tsc_scale);
358 offset = READ_ONCE(tsc_pg->tsc_offset);
359 cur_tsc = rdtsc_ordered();
360
361 /*
362 * Make sure we read sequence after we read all other values
363 * from TSC page.
364 */
365 smp_rmb();
366
367 } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
368
369 return mul_u64_u64_shr(cur_tsc, scale, 64) + offset;
370 }
371
372 #else
373 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
374 {
375 return NULL;
376 }
377 #endif
378 #endif