]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/pgtable.h
x86/mm: Convert update_mmu_cache() and update_mmu_cache_pmd() to functions
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / pgtable.h
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/e820.h>
6
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
15 : (prot))
16
17 #ifndef __ASSEMBLY__
18
19 #include <asm/x86_init.h>
20
21 /*
22 * ZERO_PAGE is a global shared page that is always zero: used
23 * for zero-mapped memory areas etc..
24 */
25 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
26 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
27
28 extern spinlock_t pgd_lock;
29 extern struct list_head pgd_list;
30
31 extern struct mm_struct *pgd_page_get_mm(struct page *page);
32
33 #ifdef CONFIG_PARAVIRT
34 #include <asm/paravirt.h>
35 #else /* !CONFIG_PARAVIRT */
36 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
37 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
38 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
39
40 #define set_pte_atomic(ptep, pte) \
41 native_set_pte_atomic(ptep, pte)
42
43 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
44
45 #ifndef __PAGETABLE_PUD_FOLDED
46 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
47 #define pgd_clear(pgd) native_pgd_clear(pgd)
48 #endif
49
50 #ifndef set_pud
51 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
52 #endif
53
54 #ifndef __PAGETABLE_PMD_FOLDED
55 #define pud_clear(pud) native_pud_clear(pud)
56 #endif
57
58 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
59 #define pmd_clear(pmd) native_pmd_clear(pmd)
60
61 #define pte_update(mm, addr, ptep) do { } while (0)
62 #define pte_update_defer(mm, addr, ptep) do { } while (0)
63 #define pmd_update(mm, addr, ptep) do { } while (0)
64 #define pmd_update_defer(mm, addr, ptep) do { } while (0)
65
66 #define pgd_val(x) native_pgd_val(x)
67 #define __pgd(x) native_make_pgd(x)
68
69 #ifndef __PAGETABLE_PUD_FOLDED
70 #define pud_val(x) native_pud_val(x)
71 #define __pud(x) native_make_pud(x)
72 #endif
73
74 #ifndef __PAGETABLE_PMD_FOLDED
75 #define pmd_val(x) native_pmd_val(x)
76 #define __pmd(x) native_make_pmd(x)
77 #endif
78
79 #define pte_val(x) native_pte_val(x)
80 #define __pte(x) native_make_pte(x)
81
82 #define arch_end_context_switch(prev) do {} while(0)
83
84 #endif /* CONFIG_PARAVIRT */
85
86 /*
87 * The following only work if pte_present() is true.
88 * Undefined behaviour if not..
89 */
90 static inline int pte_dirty(pte_t pte)
91 {
92 return pte_flags(pte) & _PAGE_DIRTY;
93 }
94
95 static inline int pte_young(pte_t pte)
96 {
97 return pte_flags(pte) & _PAGE_ACCESSED;
98 }
99
100 static inline int pmd_young(pmd_t pmd)
101 {
102 return pmd_flags(pmd) & _PAGE_ACCESSED;
103 }
104
105 static inline int pte_write(pte_t pte)
106 {
107 return pte_flags(pte) & _PAGE_RW;
108 }
109
110 static inline int pte_file(pte_t pte)
111 {
112 return pte_flags(pte) & _PAGE_FILE;
113 }
114
115 static inline int pte_huge(pte_t pte)
116 {
117 return pte_flags(pte) & _PAGE_PSE;
118 }
119
120 static inline int pte_global(pte_t pte)
121 {
122 return pte_flags(pte) & _PAGE_GLOBAL;
123 }
124
125 static inline int pte_exec(pte_t pte)
126 {
127 return !(pte_flags(pte) & _PAGE_NX);
128 }
129
130 static inline int pte_special(pte_t pte)
131 {
132 return pte_flags(pte) & _PAGE_SPECIAL;
133 }
134
135 static inline unsigned long pte_pfn(pte_t pte)
136 {
137 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
138 }
139
140 static inline unsigned long pmd_pfn(pmd_t pmd)
141 {
142 return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT;
143 }
144
145 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
146
147 static inline int pmd_large(pmd_t pte)
148 {
149 return pmd_flags(pte) & _PAGE_PSE;
150 }
151
152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
153 static inline int pmd_trans_splitting(pmd_t pmd)
154 {
155 return pmd_val(pmd) & _PAGE_SPLITTING;
156 }
157
158 static inline int pmd_trans_huge(pmd_t pmd)
159 {
160 return pmd_val(pmd) & _PAGE_PSE;
161 }
162
163 static inline int has_transparent_hugepage(void)
164 {
165 return cpu_has_pse;
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168
169 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
170 {
171 pteval_t v = native_pte_val(pte);
172
173 return native_make_pte(v | set);
174 }
175
176 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
177 {
178 pteval_t v = native_pte_val(pte);
179
180 return native_make_pte(v & ~clear);
181 }
182
183 static inline pte_t pte_mkclean(pte_t pte)
184 {
185 return pte_clear_flags(pte, _PAGE_DIRTY);
186 }
187
188 static inline pte_t pte_mkold(pte_t pte)
189 {
190 return pte_clear_flags(pte, _PAGE_ACCESSED);
191 }
192
193 static inline pte_t pte_wrprotect(pte_t pte)
194 {
195 return pte_clear_flags(pte, _PAGE_RW);
196 }
197
198 static inline pte_t pte_mkexec(pte_t pte)
199 {
200 return pte_clear_flags(pte, _PAGE_NX);
201 }
202
203 static inline pte_t pte_mkdirty(pte_t pte)
204 {
205 return pte_set_flags(pte, _PAGE_DIRTY);
206 }
207
208 static inline pte_t pte_mkyoung(pte_t pte)
209 {
210 return pte_set_flags(pte, _PAGE_ACCESSED);
211 }
212
213 static inline pte_t pte_mkwrite(pte_t pte)
214 {
215 return pte_set_flags(pte, _PAGE_RW);
216 }
217
218 static inline pte_t pte_mkhuge(pte_t pte)
219 {
220 return pte_set_flags(pte, _PAGE_PSE);
221 }
222
223 static inline pte_t pte_clrhuge(pte_t pte)
224 {
225 return pte_clear_flags(pte, _PAGE_PSE);
226 }
227
228 static inline pte_t pte_mkglobal(pte_t pte)
229 {
230 return pte_set_flags(pte, _PAGE_GLOBAL);
231 }
232
233 static inline pte_t pte_clrglobal(pte_t pte)
234 {
235 return pte_clear_flags(pte, _PAGE_GLOBAL);
236 }
237
238 static inline pte_t pte_mkspecial(pte_t pte)
239 {
240 return pte_set_flags(pte, _PAGE_SPECIAL);
241 }
242
243 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
244 {
245 pmdval_t v = native_pmd_val(pmd);
246
247 return __pmd(v | set);
248 }
249
250 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
251 {
252 pmdval_t v = native_pmd_val(pmd);
253
254 return __pmd(v & ~clear);
255 }
256
257 static inline pmd_t pmd_mkold(pmd_t pmd)
258 {
259 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
260 }
261
262 static inline pmd_t pmd_wrprotect(pmd_t pmd)
263 {
264 return pmd_clear_flags(pmd, _PAGE_RW);
265 }
266
267 static inline pmd_t pmd_mkdirty(pmd_t pmd)
268 {
269 return pmd_set_flags(pmd, _PAGE_DIRTY);
270 }
271
272 static inline pmd_t pmd_mkhuge(pmd_t pmd)
273 {
274 return pmd_set_flags(pmd, _PAGE_PSE);
275 }
276
277 static inline pmd_t pmd_mkyoung(pmd_t pmd)
278 {
279 return pmd_set_flags(pmd, _PAGE_ACCESSED);
280 }
281
282 static inline pmd_t pmd_mkwrite(pmd_t pmd)
283 {
284 return pmd_set_flags(pmd, _PAGE_RW);
285 }
286
287 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
288 {
289 return pmd_clear_flags(pmd, _PAGE_PRESENT);
290 }
291
292 /*
293 * Mask out unsupported bits in a present pgprot. Non-present pgprots
294 * can use those bits for other purposes, so leave them be.
295 */
296 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
297 {
298 pgprotval_t protval = pgprot_val(pgprot);
299
300 if (protval & _PAGE_PRESENT)
301 protval &= __supported_pte_mask;
302
303 return protval;
304 }
305
306 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
307 {
308 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
309 massage_pgprot(pgprot));
310 }
311
312 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
313 {
314 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
315 massage_pgprot(pgprot));
316 }
317
318 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
319 {
320 pteval_t val = pte_val(pte);
321
322 /*
323 * Chop off the NX bit (if present), and add the NX portion of
324 * the newprot (if present):
325 */
326 val &= _PAGE_CHG_MASK;
327 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
328
329 return __pte(val);
330 }
331
332 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
333 {
334 pmdval_t val = pmd_val(pmd);
335
336 val &= _HPAGE_CHG_MASK;
337 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
338
339 return __pmd(val);
340 }
341
342 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
343 #define pgprot_modify pgprot_modify
344 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
345 {
346 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
347 pgprotval_t addbits = pgprot_val(newprot);
348 return __pgprot(preservebits | addbits);
349 }
350
351 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
352
353 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
354
355 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
356 unsigned long flags,
357 unsigned long new_flags)
358 {
359 /*
360 * PAT type is always WB for untracked ranges, so no need to check.
361 */
362 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
363 return 1;
364
365 /*
366 * Certain new memtypes are not allowed with certain
367 * requested memtype:
368 * - request is uncached, return cannot be write-back
369 * - request is write-combine, return cannot be write-back
370 */
371 if ((flags == _PAGE_CACHE_UC_MINUS &&
372 new_flags == _PAGE_CACHE_WB) ||
373 (flags == _PAGE_CACHE_WC &&
374 new_flags == _PAGE_CACHE_WB)) {
375 return 0;
376 }
377
378 return 1;
379 }
380
381 pmd_t *populate_extra_pmd(unsigned long vaddr);
382 pte_t *populate_extra_pte(unsigned long vaddr);
383 #endif /* __ASSEMBLY__ */
384
385 #ifdef CONFIG_X86_32
386 # include <asm/pgtable_32.h>
387 #else
388 # include <asm/pgtable_64.h>
389 #endif
390
391 #ifndef __ASSEMBLY__
392 #include <linux/mm_types.h>
393
394 static inline int pte_none(pte_t pte)
395 {
396 return !pte.pte;
397 }
398
399 #define __HAVE_ARCH_PTE_SAME
400 static inline int pte_same(pte_t a, pte_t b)
401 {
402 return a.pte == b.pte;
403 }
404
405 static inline int pte_present(pte_t a)
406 {
407 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE |
408 _PAGE_NUMA);
409 }
410
411 #define pte_accessible pte_accessible
412 static inline int pte_accessible(pte_t a)
413 {
414 return pte_flags(a) & _PAGE_PRESENT;
415 }
416
417 static inline int pte_hidden(pte_t pte)
418 {
419 return pte_flags(pte) & _PAGE_HIDDEN;
420 }
421
422 static inline int pmd_present(pmd_t pmd)
423 {
424 /*
425 * Checking for _PAGE_PSE is needed too because
426 * split_huge_page will temporarily clear the present bit (but
427 * the _PAGE_PSE flag will remain set at all times while the
428 * _PAGE_PRESENT bit is clear).
429 */
430 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE |
431 _PAGE_NUMA);
432 }
433
434 static inline int pmd_none(pmd_t pmd)
435 {
436 /* Only check low word on 32-bit platforms, since it might be
437 out of sync with upper half. */
438 return (unsigned long)native_pmd_val(pmd) == 0;
439 }
440
441 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
442 {
443 return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK);
444 }
445
446 /*
447 * Currently stuck as a macro due to indirect forward reference to
448 * linux/mmzone.h's __section_mem_map_addr() definition:
449 */
450 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT)
451
452 /*
453 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
454 *
455 * this macro returns the index of the entry in the pmd page which would
456 * control the given virtual address
457 */
458 static inline unsigned long pmd_index(unsigned long address)
459 {
460 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
461 }
462
463 /*
464 * Conversion functions: convert a page and protection to a page entry,
465 * and a page entry and page directory to the page they refer to.
466 *
467 * (Currently stuck as a macro because of indirect forward reference
468 * to linux/mm.h:page_to_nid())
469 */
470 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
471
472 /*
473 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
474 *
475 * this function returns the index of the entry in the pte page which would
476 * control the given virtual address
477 */
478 static inline unsigned long pte_index(unsigned long address)
479 {
480 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
481 }
482
483 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
484 {
485 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
486 }
487
488 static inline int pmd_bad(pmd_t pmd)
489 {
490 #ifdef CONFIG_NUMA_BALANCING
491 /* pmd_numa check */
492 if ((pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA)
493 return 0;
494 #endif
495 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
496 }
497
498 static inline unsigned long pages_to_mb(unsigned long npg)
499 {
500 return npg >> (20 - PAGE_SHIFT);
501 }
502
503 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
504 remap_pfn_range(vma, vaddr, pfn, size, prot)
505
506 #if PAGETABLE_LEVELS > 2
507 static inline int pud_none(pud_t pud)
508 {
509 return native_pud_val(pud) == 0;
510 }
511
512 static inline int pud_present(pud_t pud)
513 {
514 return pud_flags(pud) & _PAGE_PRESENT;
515 }
516
517 static inline unsigned long pud_page_vaddr(pud_t pud)
518 {
519 return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK);
520 }
521
522 /*
523 * Currently stuck as a macro due to indirect forward reference to
524 * linux/mmzone.h's __section_mem_map_addr() definition:
525 */
526 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT)
527
528 /* Find an entry in the second-level page table.. */
529 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
530 {
531 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
532 }
533
534 static inline int pud_large(pud_t pud)
535 {
536 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
537 (_PAGE_PSE | _PAGE_PRESENT);
538 }
539
540 static inline int pud_bad(pud_t pud)
541 {
542 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
543 }
544 #else
545 static inline int pud_large(pud_t pud)
546 {
547 return 0;
548 }
549 #endif /* PAGETABLE_LEVELS > 2 */
550
551 #if PAGETABLE_LEVELS > 3
552 static inline int pgd_present(pgd_t pgd)
553 {
554 return pgd_flags(pgd) & _PAGE_PRESENT;
555 }
556
557 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
558 {
559 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
560 }
561
562 /*
563 * Currently stuck as a macro due to indirect forward reference to
564 * linux/mmzone.h's __section_mem_map_addr() definition:
565 */
566 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
567
568 /* to find an entry in a page-table-directory. */
569 static inline unsigned long pud_index(unsigned long address)
570 {
571 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
572 }
573
574 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
575 {
576 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
577 }
578
579 static inline int pgd_bad(pgd_t pgd)
580 {
581 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
582 }
583
584 static inline int pgd_none(pgd_t pgd)
585 {
586 return !native_pgd_val(pgd);
587 }
588 #endif /* PAGETABLE_LEVELS > 3 */
589
590 #endif /* __ASSEMBLY__ */
591
592 /*
593 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
594 *
595 * this macro returns the index of the entry in the pgd page which would
596 * control the given virtual address
597 */
598 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
599
600 /*
601 * pgd_offset() returns a (pgd_t *)
602 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
603 */
604 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
605 /*
606 * a shortcut which implies the use of the kernel's pgd, instead
607 * of a process's
608 */
609 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
610
611
612 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
613 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
614
615 #ifndef __ASSEMBLY__
616
617 extern int direct_gbpages;
618
619 /* local pte updates need not use xchg for locking */
620 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
621 {
622 pte_t res = *ptep;
623
624 /* Pure native function needs no input for mm, addr */
625 native_pte_clear(NULL, 0, ptep);
626 return res;
627 }
628
629 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
630 {
631 pmd_t res = *pmdp;
632
633 native_pmd_clear(pmdp);
634 return res;
635 }
636
637 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
638 pte_t *ptep , pte_t pte)
639 {
640 native_set_pte(ptep, pte);
641 }
642
643 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
644 pmd_t *pmdp , pmd_t pmd)
645 {
646 native_set_pmd(pmdp, pmd);
647 }
648
649 #ifndef CONFIG_PARAVIRT
650 /*
651 * Rules for using pte_update - it must be called after any PTE update which
652 * has not been done using the set_pte / clear_pte interfaces. It is used by
653 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
654 * updates should either be sets, clears, or set_pte_atomic for P->P
655 * transitions, which means this hook should only be called for user PTEs.
656 * This hook implies a P->P protection or access change has taken place, which
657 * requires a subsequent TLB flush. The notification can optionally be delayed
658 * until the TLB flush event by using the pte_update_defer form of the
659 * interface, but care must be taken to assure that the flush happens while
660 * still holding the same page table lock so that the shadow and primary pages
661 * do not become out of sync on SMP.
662 */
663 #define pte_update(mm, addr, ptep) do { } while (0)
664 #define pte_update_defer(mm, addr, ptep) do { } while (0)
665 #endif
666
667 /*
668 * We only update the dirty/accessed state if we set
669 * the dirty bit by hand in the kernel, since the hardware
670 * will do the accessed bit for us, and we don't want to
671 * race with other CPU's that might be updating the dirty
672 * bit at the same time.
673 */
674 struct vm_area_struct;
675
676 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
677 extern int ptep_set_access_flags(struct vm_area_struct *vma,
678 unsigned long address, pte_t *ptep,
679 pte_t entry, int dirty);
680
681 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
682 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
683 unsigned long addr, pte_t *ptep);
684
685 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
686 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
687 unsigned long address, pte_t *ptep);
688
689 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
690 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
691 pte_t *ptep)
692 {
693 pte_t pte = native_ptep_get_and_clear(ptep);
694 pte_update(mm, addr, ptep);
695 return pte;
696 }
697
698 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
699 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
700 unsigned long addr, pte_t *ptep,
701 int full)
702 {
703 pte_t pte;
704 if (full) {
705 /*
706 * Full address destruction in progress; paravirt does not
707 * care about updates and native needs no locking
708 */
709 pte = native_local_ptep_get_and_clear(ptep);
710 } else {
711 pte = ptep_get_and_clear(mm, addr, ptep);
712 }
713 return pte;
714 }
715
716 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
717 static inline void ptep_set_wrprotect(struct mm_struct *mm,
718 unsigned long addr, pte_t *ptep)
719 {
720 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
721 pte_update(mm, addr, ptep);
722 }
723
724 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
725
726 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
727
728 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
729 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
730 unsigned long address, pmd_t *pmdp,
731 pmd_t entry, int dirty);
732
733 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
734 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
735 unsigned long addr, pmd_t *pmdp);
736
737 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
738 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
739 unsigned long address, pmd_t *pmdp);
740
741
742 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
743 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
744 unsigned long addr, pmd_t *pmdp);
745
746 #define __HAVE_ARCH_PMD_WRITE
747 static inline int pmd_write(pmd_t pmd)
748 {
749 return pmd_flags(pmd) & _PAGE_RW;
750 }
751
752 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
753 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr,
754 pmd_t *pmdp)
755 {
756 pmd_t pmd = native_pmdp_get_and_clear(pmdp);
757 pmd_update(mm, addr, pmdp);
758 return pmd;
759 }
760
761 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
762 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
763 unsigned long addr, pmd_t *pmdp)
764 {
765 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
766 pmd_update(mm, addr, pmdp);
767 }
768
769 /*
770 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
771 *
772 * dst - pointer to pgd range anwhere on a pgd page
773 * src - ""
774 * count - the number of pgds to copy.
775 *
776 * dst and src can be on the same page, but the range must not overlap,
777 * and must not cross a page boundary.
778 */
779 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
780 {
781 memcpy(dst, src, count * sizeof(pgd_t));
782 }
783
784 /*
785 * The x86 doesn't have any external MMU info: the kernel page
786 * tables contain all the necessary information.
787 */
788 static inline void update_mmu_cache(struct vm_area_struct *vma,
789 unsigned long addr, pte_t *ptep)
790 {
791 }
792 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
793 unsigned long addr, pmd_t *pmd)
794 {
795 }
796
797 #include <asm-generic/pgtable.h>
798 #endif /* __ASSEMBLY__ */
799
800 #endif /* _ASM_X86_PGTABLE_H */