]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/pgtable.h
x86/mm/dump_pagetables: Allow dumping current pagetables
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 /*
19 * Macros to add or remove encryption attribute
20 */
21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot)))
22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot)))
23
24 #ifndef __ASSEMBLY__
25 #include <asm/x86_init.h>
26
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29
30 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
31 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user);
32 void ptdump_walk_pgd_level_checkwx(void);
33
34 #ifdef CONFIG_DEBUG_WX
35 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
36 #else
37 #define debug_checkwx() do { } while (0)
38 #endif
39
40 /*
41 * ZERO_PAGE is a global shared page that is always zero: used
42 * for zero-mapped memory areas etc..
43 */
44 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
45 __visible;
46 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
47
48 extern spinlock_t pgd_lock;
49 extern struct list_head pgd_list;
50
51 extern struct mm_struct *pgd_page_get_mm(struct page *page);
52
53 extern pmdval_t early_pmd_flags;
54
55 #ifdef CONFIG_PARAVIRT
56 #include <asm/paravirt.h>
57 #else /* !CONFIG_PARAVIRT */
58 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
59 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
60
61 #define set_pte_atomic(ptep, pte) \
62 native_set_pte_atomic(ptep, pte)
63
64 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
65
66 #ifndef __PAGETABLE_P4D_FOLDED
67 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
68 #define pgd_clear(pgd) native_pgd_clear(pgd)
69 #endif
70
71 #ifndef set_p4d
72 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
73 #endif
74
75 #ifndef __PAGETABLE_PUD_FOLDED
76 #define p4d_clear(p4d) native_p4d_clear(p4d)
77 #endif
78
79 #ifndef set_pud
80 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
81 #endif
82
83 #ifndef __PAGETABLE_PUD_FOLDED
84 #define pud_clear(pud) native_pud_clear(pud)
85 #endif
86
87 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
88 #define pmd_clear(pmd) native_pmd_clear(pmd)
89
90 #define pgd_val(x) native_pgd_val(x)
91 #define __pgd(x) native_make_pgd(x)
92
93 #ifndef __PAGETABLE_P4D_FOLDED
94 #define p4d_val(x) native_p4d_val(x)
95 #define __p4d(x) native_make_p4d(x)
96 #endif
97
98 #ifndef __PAGETABLE_PUD_FOLDED
99 #define pud_val(x) native_pud_val(x)
100 #define __pud(x) native_make_pud(x)
101 #endif
102
103 #ifndef __PAGETABLE_PMD_FOLDED
104 #define pmd_val(x) native_pmd_val(x)
105 #define __pmd(x) native_make_pmd(x)
106 #endif
107
108 #define pte_val(x) native_pte_val(x)
109 #define __pte(x) native_make_pte(x)
110
111 #define arch_end_context_switch(prev) do {} while(0)
112
113 #endif /* CONFIG_PARAVIRT */
114
115 /*
116 * The following only work if pte_present() is true.
117 * Undefined behaviour if not..
118 */
119 static inline int pte_dirty(pte_t pte)
120 {
121 return pte_flags(pte) & _PAGE_DIRTY;
122 }
123
124
125 static inline u32 read_pkru(void)
126 {
127 if (boot_cpu_has(X86_FEATURE_OSPKE))
128 return __read_pkru();
129 return 0;
130 }
131
132 static inline void write_pkru(u32 pkru)
133 {
134 if (boot_cpu_has(X86_FEATURE_OSPKE))
135 __write_pkru(pkru);
136 }
137
138 static inline int pte_young(pte_t pte)
139 {
140 return pte_flags(pte) & _PAGE_ACCESSED;
141 }
142
143 static inline int pmd_dirty(pmd_t pmd)
144 {
145 return pmd_flags(pmd) & _PAGE_DIRTY;
146 }
147
148 static inline int pmd_young(pmd_t pmd)
149 {
150 return pmd_flags(pmd) & _PAGE_ACCESSED;
151 }
152
153 static inline int pud_dirty(pud_t pud)
154 {
155 return pud_flags(pud) & _PAGE_DIRTY;
156 }
157
158 static inline int pud_young(pud_t pud)
159 {
160 return pud_flags(pud) & _PAGE_ACCESSED;
161 }
162
163 static inline int pte_write(pte_t pte)
164 {
165 return pte_flags(pte) & _PAGE_RW;
166 }
167
168 static inline int pte_huge(pte_t pte)
169 {
170 return pte_flags(pte) & _PAGE_PSE;
171 }
172
173 static inline int pte_global(pte_t pte)
174 {
175 return pte_flags(pte) & _PAGE_GLOBAL;
176 }
177
178 static inline int pte_exec(pte_t pte)
179 {
180 return !(pte_flags(pte) & _PAGE_NX);
181 }
182
183 static inline int pte_special(pte_t pte)
184 {
185 return pte_flags(pte) & _PAGE_SPECIAL;
186 }
187
188 static inline unsigned long pte_pfn(pte_t pte)
189 {
190 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
191 }
192
193 static inline unsigned long pmd_pfn(pmd_t pmd)
194 {
195 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
196 }
197
198 static inline unsigned long pud_pfn(pud_t pud)
199 {
200 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
201 }
202
203 static inline unsigned long p4d_pfn(p4d_t p4d)
204 {
205 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
206 }
207
208 static inline unsigned long pgd_pfn(pgd_t pgd)
209 {
210 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
211 }
212
213 static inline int p4d_large(p4d_t p4d)
214 {
215 /* No 512 GiB pages yet */
216 return 0;
217 }
218
219 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
220
221 static inline int pmd_large(pmd_t pte)
222 {
223 return pmd_flags(pte) & _PAGE_PSE;
224 }
225
226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
227 static inline int pmd_trans_huge(pmd_t pmd)
228 {
229 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
230 }
231
232 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
233 static inline int pud_trans_huge(pud_t pud)
234 {
235 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
236 }
237 #endif
238
239 #define has_transparent_hugepage has_transparent_hugepage
240 static inline int has_transparent_hugepage(void)
241 {
242 return boot_cpu_has(X86_FEATURE_PSE);
243 }
244
245 #ifdef __HAVE_ARCH_PTE_DEVMAP
246 static inline int pmd_devmap(pmd_t pmd)
247 {
248 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
249 }
250
251 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
252 static inline int pud_devmap(pud_t pud)
253 {
254 return !!(pud_val(pud) & _PAGE_DEVMAP);
255 }
256 #else
257 static inline int pud_devmap(pud_t pud)
258 {
259 return 0;
260 }
261 #endif
262
263 static inline int pgd_devmap(pgd_t pgd)
264 {
265 return 0;
266 }
267 #endif
268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
269
270 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
271 {
272 pteval_t v = native_pte_val(pte);
273
274 return native_make_pte(v | set);
275 }
276
277 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
278 {
279 pteval_t v = native_pte_val(pte);
280
281 return native_make_pte(v & ~clear);
282 }
283
284 static inline pte_t pte_mkclean(pte_t pte)
285 {
286 return pte_clear_flags(pte, _PAGE_DIRTY);
287 }
288
289 static inline pte_t pte_mkold(pte_t pte)
290 {
291 return pte_clear_flags(pte, _PAGE_ACCESSED);
292 }
293
294 static inline pte_t pte_wrprotect(pte_t pte)
295 {
296 return pte_clear_flags(pte, _PAGE_RW);
297 }
298
299 static inline pte_t pte_mkexec(pte_t pte)
300 {
301 return pte_clear_flags(pte, _PAGE_NX);
302 }
303
304 static inline pte_t pte_mkdirty(pte_t pte)
305 {
306 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
307 }
308
309 static inline pte_t pte_mkyoung(pte_t pte)
310 {
311 return pte_set_flags(pte, _PAGE_ACCESSED);
312 }
313
314 static inline pte_t pte_mkwrite(pte_t pte)
315 {
316 return pte_set_flags(pte, _PAGE_RW);
317 }
318
319 static inline pte_t pte_mkhuge(pte_t pte)
320 {
321 return pte_set_flags(pte, _PAGE_PSE);
322 }
323
324 static inline pte_t pte_clrhuge(pte_t pte)
325 {
326 return pte_clear_flags(pte, _PAGE_PSE);
327 }
328
329 static inline pte_t pte_mkglobal(pte_t pte)
330 {
331 return pte_set_flags(pte, _PAGE_GLOBAL);
332 }
333
334 static inline pte_t pte_clrglobal(pte_t pte)
335 {
336 return pte_clear_flags(pte, _PAGE_GLOBAL);
337 }
338
339 static inline pte_t pte_mkspecial(pte_t pte)
340 {
341 return pte_set_flags(pte, _PAGE_SPECIAL);
342 }
343
344 static inline pte_t pte_mkdevmap(pte_t pte)
345 {
346 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
347 }
348
349 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
350 {
351 pmdval_t v = native_pmd_val(pmd);
352
353 return __pmd(v | set);
354 }
355
356 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
357 {
358 pmdval_t v = native_pmd_val(pmd);
359
360 return __pmd(v & ~clear);
361 }
362
363 static inline pmd_t pmd_mkold(pmd_t pmd)
364 {
365 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
366 }
367
368 static inline pmd_t pmd_mkclean(pmd_t pmd)
369 {
370 return pmd_clear_flags(pmd, _PAGE_DIRTY);
371 }
372
373 static inline pmd_t pmd_wrprotect(pmd_t pmd)
374 {
375 return pmd_clear_flags(pmd, _PAGE_RW);
376 }
377
378 static inline pmd_t pmd_mkdirty(pmd_t pmd)
379 {
380 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
381 }
382
383 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
384 {
385 return pmd_set_flags(pmd, _PAGE_DEVMAP);
386 }
387
388 static inline pmd_t pmd_mkhuge(pmd_t pmd)
389 {
390 return pmd_set_flags(pmd, _PAGE_PSE);
391 }
392
393 static inline pmd_t pmd_mkyoung(pmd_t pmd)
394 {
395 return pmd_set_flags(pmd, _PAGE_ACCESSED);
396 }
397
398 static inline pmd_t pmd_mkwrite(pmd_t pmd)
399 {
400 return pmd_set_flags(pmd, _PAGE_RW);
401 }
402
403 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
404 {
405 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
406 }
407
408 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
409 {
410 pudval_t v = native_pud_val(pud);
411
412 return __pud(v | set);
413 }
414
415 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
416 {
417 pudval_t v = native_pud_val(pud);
418
419 return __pud(v & ~clear);
420 }
421
422 static inline pud_t pud_mkold(pud_t pud)
423 {
424 return pud_clear_flags(pud, _PAGE_ACCESSED);
425 }
426
427 static inline pud_t pud_mkclean(pud_t pud)
428 {
429 return pud_clear_flags(pud, _PAGE_DIRTY);
430 }
431
432 static inline pud_t pud_wrprotect(pud_t pud)
433 {
434 return pud_clear_flags(pud, _PAGE_RW);
435 }
436
437 static inline pud_t pud_mkdirty(pud_t pud)
438 {
439 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
440 }
441
442 static inline pud_t pud_mkdevmap(pud_t pud)
443 {
444 return pud_set_flags(pud, _PAGE_DEVMAP);
445 }
446
447 static inline pud_t pud_mkhuge(pud_t pud)
448 {
449 return pud_set_flags(pud, _PAGE_PSE);
450 }
451
452 static inline pud_t pud_mkyoung(pud_t pud)
453 {
454 return pud_set_flags(pud, _PAGE_ACCESSED);
455 }
456
457 static inline pud_t pud_mkwrite(pud_t pud)
458 {
459 return pud_set_flags(pud, _PAGE_RW);
460 }
461
462 static inline pud_t pud_mknotpresent(pud_t pud)
463 {
464 return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
465 }
466
467 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
468 static inline int pte_soft_dirty(pte_t pte)
469 {
470 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
471 }
472
473 static inline int pmd_soft_dirty(pmd_t pmd)
474 {
475 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
476 }
477
478 static inline int pud_soft_dirty(pud_t pud)
479 {
480 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
481 }
482
483 static inline pte_t pte_mksoft_dirty(pte_t pte)
484 {
485 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
486 }
487
488 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
489 {
490 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
491 }
492
493 static inline pud_t pud_mksoft_dirty(pud_t pud)
494 {
495 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
496 }
497
498 static inline pte_t pte_clear_soft_dirty(pte_t pte)
499 {
500 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
501 }
502
503 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
504 {
505 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
506 }
507
508 static inline pud_t pud_clear_soft_dirty(pud_t pud)
509 {
510 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
511 }
512
513 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
514
515 /*
516 * Mask out unsupported bits in a present pgprot. Non-present pgprots
517 * can use those bits for other purposes, so leave them be.
518 */
519 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
520 {
521 pgprotval_t protval = pgprot_val(pgprot);
522
523 if (protval & _PAGE_PRESENT)
524 protval &= __supported_pte_mask;
525
526 return protval;
527 }
528
529 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
530 {
531 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
532 massage_pgprot(pgprot));
533 }
534
535 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
536 {
537 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
538 massage_pgprot(pgprot));
539 }
540
541 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
542 {
543 return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
544 massage_pgprot(pgprot));
545 }
546
547 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
548 {
549 pteval_t val = pte_val(pte);
550
551 /*
552 * Chop off the NX bit (if present), and add the NX portion of
553 * the newprot (if present):
554 */
555 val &= _PAGE_CHG_MASK;
556 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
557
558 return __pte(val);
559 }
560
561 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
562 {
563 pmdval_t val = pmd_val(pmd);
564
565 val &= _HPAGE_CHG_MASK;
566 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
567
568 return __pmd(val);
569 }
570
571 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
572 #define pgprot_modify pgprot_modify
573 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
574 {
575 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
576 pgprotval_t addbits = pgprot_val(newprot);
577 return __pgprot(preservebits | addbits);
578 }
579
580 #define pte_pgprot(x) __pgprot(pte_flags(x))
581 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
582 #define pud_pgprot(x) __pgprot(pud_flags(x))
583 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
584
585 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
586
587 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
588 enum page_cache_mode pcm,
589 enum page_cache_mode new_pcm)
590 {
591 /*
592 * PAT type is always WB for untracked ranges, so no need to check.
593 */
594 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
595 return 1;
596
597 /*
598 * Certain new memtypes are not allowed with certain
599 * requested memtype:
600 * - request is uncached, return cannot be write-back
601 * - request is write-combine, return cannot be write-back
602 * - request is write-through, return cannot be write-back
603 * - request is write-through, return cannot be write-combine
604 */
605 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
606 new_pcm == _PAGE_CACHE_MODE_WB) ||
607 (pcm == _PAGE_CACHE_MODE_WC &&
608 new_pcm == _PAGE_CACHE_MODE_WB) ||
609 (pcm == _PAGE_CACHE_MODE_WT &&
610 new_pcm == _PAGE_CACHE_MODE_WB) ||
611 (pcm == _PAGE_CACHE_MODE_WT &&
612 new_pcm == _PAGE_CACHE_MODE_WC)) {
613 return 0;
614 }
615
616 return 1;
617 }
618
619 pmd_t *populate_extra_pmd(unsigned long vaddr);
620 pte_t *populate_extra_pte(unsigned long vaddr);
621 #endif /* __ASSEMBLY__ */
622
623 #ifdef CONFIG_X86_32
624 # include <asm/pgtable_32.h>
625 #else
626 # include <asm/pgtable_64.h>
627 #endif
628
629 #ifndef __ASSEMBLY__
630 #include <linux/mm_types.h>
631 #include <linux/mmdebug.h>
632 #include <linux/log2.h>
633 #include <asm/fixmap.h>
634
635 static inline int pte_none(pte_t pte)
636 {
637 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
638 }
639
640 #define __HAVE_ARCH_PTE_SAME
641 static inline int pte_same(pte_t a, pte_t b)
642 {
643 return a.pte == b.pte;
644 }
645
646 static inline int pte_present(pte_t a)
647 {
648 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
649 }
650
651 #ifdef __HAVE_ARCH_PTE_DEVMAP
652 static inline int pte_devmap(pte_t a)
653 {
654 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
655 }
656 #endif
657
658 #define pte_accessible pte_accessible
659 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
660 {
661 if (pte_flags(a) & _PAGE_PRESENT)
662 return true;
663
664 if ((pte_flags(a) & _PAGE_PROTNONE) &&
665 mm_tlb_flush_pending(mm))
666 return true;
667
668 return false;
669 }
670
671 static inline int pte_hidden(pte_t pte)
672 {
673 return pte_flags(pte) & _PAGE_HIDDEN;
674 }
675
676 static inline int pmd_present(pmd_t pmd)
677 {
678 /*
679 * Checking for _PAGE_PSE is needed too because
680 * split_huge_page will temporarily clear the present bit (but
681 * the _PAGE_PSE flag will remain set at all times while the
682 * _PAGE_PRESENT bit is clear).
683 */
684 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
685 }
686
687 #ifdef CONFIG_NUMA_BALANCING
688 /*
689 * These work without NUMA balancing but the kernel does not care. See the
690 * comment in include/asm-generic/pgtable.h
691 */
692 static inline int pte_protnone(pte_t pte)
693 {
694 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
695 == _PAGE_PROTNONE;
696 }
697
698 static inline int pmd_protnone(pmd_t pmd)
699 {
700 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
701 == _PAGE_PROTNONE;
702 }
703 #endif /* CONFIG_NUMA_BALANCING */
704
705 static inline int pmd_none(pmd_t pmd)
706 {
707 /* Only check low word on 32-bit platforms, since it might be
708 out of sync with upper half. */
709 unsigned long val = native_pmd_val(pmd);
710 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
711 }
712
713 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
714 {
715 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
716 }
717
718 /*
719 * Currently stuck as a macro due to indirect forward reference to
720 * linux/mmzone.h's __section_mem_map_addr() definition:
721 */
722 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
723
724 /*
725 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
726 *
727 * this macro returns the index of the entry in the pmd page which would
728 * control the given virtual address
729 */
730 static inline unsigned long pmd_index(unsigned long address)
731 {
732 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
733 }
734
735 /*
736 * Conversion functions: convert a page and protection to a page entry,
737 * and a page entry and page directory to the page they refer to.
738 *
739 * (Currently stuck as a macro because of indirect forward reference
740 * to linux/mm.h:page_to_nid())
741 */
742 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
743
744 /*
745 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
746 *
747 * this function returns the index of the entry in the pte page which would
748 * control the given virtual address
749 */
750 static inline unsigned long pte_index(unsigned long address)
751 {
752 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
753 }
754
755 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
756 {
757 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
758 }
759
760 static inline int pmd_bad(pmd_t pmd)
761 {
762 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
763 }
764
765 static inline unsigned long pages_to_mb(unsigned long npg)
766 {
767 return npg >> (20 - PAGE_SHIFT);
768 }
769
770 #if CONFIG_PGTABLE_LEVELS > 2
771 static inline int pud_none(pud_t pud)
772 {
773 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
774 }
775
776 static inline int pud_present(pud_t pud)
777 {
778 return pud_flags(pud) & _PAGE_PRESENT;
779 }
780
781 static inline unsigned long pud_page_vaddr(pud_t pud)
782 {
783 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
784 }
785
786 /*
787 * Currently stuck as a macro due to indirect forward reference to
788 * linux/mmzone.h's __section_mem_map_addr() definition:
789 */
790 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
791
792 /* Find an entry in the second-level page table.. */
793 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
794 {
795 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
796 }
797
798 static inline int pud_large(pud_t pud)
799 {
800 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
801 (_PAGE_PSE | _PAGE_PRESENT);
802 }
803
804 static inline int pud_bad(pud_t pud)
805 {
806 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
807 }
808 #else
809 static inline int pud_large(pud_t pud)
810 {
811 return 0;
812 }
813 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
814
815 static inline unsigned long pud_index(unsigned long address)
816 {
817 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
818 }
819
820 #if CONFIG_PGTABLE_LEVELS > 3
821 static inline int p4d_none(p4d_t p4d)
822 {
823 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
824 }
825
826 static inline int p4d_present(p4d_t p4d)
827 {
828 return p4d_flags(p4d) & _PAGE_PRESENT;
829 }
830
831 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
832 {
833 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
834 }
835
836 /*
837 * Currently stuck as a macro due to indirect forward reference to
838 * linux/mmzone.h's __section_mem_map_addr() definition:
839 */
840 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
841
842 /* Find an entry in the third-level page table.. */
843 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
844 {
845 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
846 }
847
848 static inline int p4d_bad(p4d_t p4d)
849 {
850 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
851
852 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
853 ignore_flags |= _PAGE_NX;
854
855 return (p4d_flags(p4d) & ~ignore_flags) != 0;
856 }
857 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
858
859 static inline unsigned long p4d_index(unsigned long address)
860 {
861 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
862 }
863
864 #if CONFIG_PGTABLE_LEVELS > 4
865 static inline int pgd_present(pgd_t pgd)
866 {
867 return pgd_flags(pgd) & _PAGE_PRESENT;
868 }
869
870 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
871 {
872 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
873 }
874
875 /*
876 * Currently stuck as a macro due to indirect forward reference to
877 * linux/mmzone.h's __section_mem_map_addr() definition:
878 */
879 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
880
881 /* to find an entry in a page-table-directory. */
882 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
883 {
884 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
885 }
886
887 static inline int pgd_bad(pgd_t pgd)
888 {
889 unsigned long ignore_flags = _PAGE_USER;
890
891 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
892 ignore_flags |= _PAGE_NX;
893
894 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
895 }
896
897 static inline int pgd_none(pgd_t pgd)
898 {
899 /*
900 * There is no need to do a workaround for the KNL stray
901 * A/D bit erratum here. PGDs only point to page tables
902 * except on 32-bit non-PAE which is not supported on
903 * KNL.
904 */
905 return !native_pgd_val(pgd);
906 }
907 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
908
909 #endif /* __ASSEMBLY__ */
910
911 /*
912 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
913 *
914 * this macro returns the index of the entry in the pgd page which would
915 * control the given virtual address
916 */
917 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
918
919 /*
920 * pgd_offset() returns a (pgd_t *)
921 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
922 */
923 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address)))
924 /*
925 * a shortcut to get a pgd_t in a given mm
926 */
927 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
928 /*
929 * a shortcut which implies the use of the kernel's pgd, instead
930 * of a process's
931 */
932 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
933
934
935 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
936 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
937
938 #ifndef __ASSEMBLY__
939
940 extern int direct_gbpages;
941 void init_mem_mapping(void);
942 void early_alloc_pgt_buf(void);
943 extern void memblock_find_dma_reserve(void);
944
945 #ifdef CONFIG_X86_64
946 /* Realmode trampoline initialization. */
947 extern pgd_t trampoline_pgd_entry;
948 static inline void __meminit init_trampoline_default(void)
949 {
950 /* Default trampoline pgd value */
951 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
952 }
953 # ifdef CONFIG_RANDOMIZE_MEMORY
954 void __meminit init_trampoline(void);
955 # else
956 # define init_trampoline init_trampoline_default
957 # endif
958 #else
959 static inline void init_trampoline(void) { }
960 #endif
961
962 /* local pte updates need not use xchg for locking */
963 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
964 {
965 pte_t res = *ptep;
966
967 /* Pure native function needs no input for mm, addr */
968 native_pte_clear(NULL, 0, ptep);
969 return res;
970 }
971
972 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
973 {
974 pmd_t res = *pmdp;
975
976 native_pmd_clear(pmdp);
977 return res;
978 }
979
980 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
981 {
982 pud_t res = *pudp;
983
984 native_pud_clear(pudp);
985 return res;
986 }
987
988 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
989 pte_t *ptep , pte_t pte)
990 {
991 native_set_pte(ptep, pte);
992 }
993
994 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
995 pmd_t *pmdp, pmd_t pmd)
996 {
997 native_set_pmd(pmdp, pmd);
998 }
999
1000 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1001 pud_t *pudp, pud_t pud)
1002 {
1003 native_set_pud(pudp, pud);
1004 }
1005
1006 /*
1007 * We only update the dirty/accessed state if we set
1008 * the dirty bit by hand in the kernel, since the hardware
1009 * will do the accessed bit for us, and we don't want to
1010 * race with other CPU's that might be updating the dirty
1011 * bit at the same time.
1012 */
1013 struct vm_area_struct;
1014
1015 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1016 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1017 unsigned long address, pte_t *ptep,
1018 pte_t entry, int dirty);
1019
1020 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1021 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1022 unsigned long addr, pte_t *ptep);
1023
1024 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1025 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1026 unsigned long address, pte_t *ptep);
1027
1028 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1029 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1030 pte_t *ptep)
1031 {
1032 pte_t pte = native_ptep_get_and_clear(ptep);
1033 return pte;
1034 }
1035
1036 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1037 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1038 unsigned long addr, pte_t *ptep,
1039 int full)
1040 {
1041 pte_t pte;
1042 if (full) {
1043 /*
1044 * Full address destruction in progress; paravirt does not
1045 * care about updates and native needs no locking
1046 */
1047 pte = native_local_ptep_get_and_clear(ptep);
1048 } else {
1049 pte = ptep_get_and_clear(mm, addr, ptep);
1050 }
1051 return pte;
1052 }
1053
1054 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1055 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1056 unsigned long addr, pte_t *ptep)
1057 {
1058 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1059 }
1060
1061 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1062
1063 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1064
1065 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1066 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1067 unsigned long address, pmd_t *pmdp,
1068 pmd_t entry, int dirty);
1069 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1070 unsigned long address, pud_t *pudp,
1071 pud_t entry, int dirty);
1072
1073 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1074 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1075 unsigned long addr, pmd_t *pmdp);
1076 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1077 unsigned long addr, pud_t *pudp);
1078
1079 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1080 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1081 unsigned long address, pmd_t *pmdp);
1082
1083
1084 #define __HAVE_ARCH_PMD_WRITE
1085 static inline int pmd_write(pmd_t pmd)
1086 {
1087 return pmd_flags(pmd) & _PAGE_RW;
1088 }
1089
1090 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1091 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1092 pmd_t *pmdp)
1093 {
1094 return native_pmdp_get_and_clear(pmdp);
1095 }
1096
1097 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1098 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1099 unsigned long addr, pud_t *pudp)
1100 {
1101 return native_pudp_get_and_clear(pudp);
1102 }
1103
1104 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1105 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1106 unsigned long addr, pmd_t *pmdp)
1107 {
1108 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1109 }
1110
1111 /*
1112 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1113 *
1114 * dst - pointer to pgd range anwhere on a pgd page
1115 * src - ""
1116 * count - the number of pgds to copy.
1117 *
1118 * dst and src can be on the same page, but the range must not overlap,
1119 * and must not cross a page boundary.
1120 */
1121 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1122 {
1123 memcpy(dst, src, count * sizeof(pgd_t));
1124 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1125 if (!static_cpu_has(X86_FEATURE_PTI))
1126 return;
1127 /* Clone the user space pgd as well */
1128 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1129 count * sizeof(pgd_t));
1130 #endif
1131 }
1132
1133 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1134 static inline int page_level_shift(enum pg_level level)
1135 {
1136 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1137 }
1138 static inline unsigned long page_level_size(enum pg_level level)
1139 {
1140 return 1UL << page_level_shift(level);
1141 }
1142 static inline unsigned long page_level_mask(enum pg_level level)
1143 {
1144 return ~(page_level_size(level) - 1);
1145 }
1146
1147 /*
1148 * The x86 doesn't have any external MMU info: the kernel page
1149 * tables contain all the necessary information.
1150 */
1151 static inline void update_mmu_cache(struct vm_area_struct *vma,
1152 unsigned long addr, pte_t *ptep)
1153 {
1154 }
1155 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1156 unsigned long addr, pmd_t *pmd)
1157 {
1158 }
1159 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1160 unsigned long addr, pud_t *pud)
1161 {
1162 }
1163
1164 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1165 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1166 {
1167 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1168 }
1169
1170 static inline int pte_swp_soft_dirty(pte_t pte)
1171 {
1172 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1173 }
1174
1175 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1176 {
1177 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1178 }
1179
1180 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1181 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1182 {
1183 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1184 }
1185
1186 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1187 {
1188 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1189 }
1190
1191 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1192 {
1193 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1194 }
1195 #endif
1196 #endif
1197
1198 #define PKRU_AD_BIT 0x1
1199 #define PKRU_WD_BIT 0x2
1200 #define PKRU_BITS_PER_PKEY 2
1201
1202 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1203 {
1204 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1205 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1206 }
1207
1208 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1209 {
1210 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1211 /*
1212 * Access-disable disables writes too so we need to check
1213 * both bits here.
1214 */
1215 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1216 }
1217
1218 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1219 {
1220 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1221 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1222 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1223 #else
1224 return 0;
1225 #endif
1226 }
1227
1228 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1229 {
1230 u32 pkru = read_pkru();
1231
1232 if (!__pkru_allows_read(pkru, pkey))
1233 return false;
1234 if (write && !__pkru_allows_write(pkru, pkey))
1235 return false;
1236
1237 return true;
1238 }
1239
1240 /*
1241 * 'pteval' can come from a PTE, PMD or PUD. We only check
1242 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1243 * same value on all 3 types.
1244 */
1245 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1246 {
1247 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1248
1249 if (write)
1250 need_pte_bits |= _PAGE_RW;
1251
1252 if ((pteval & need_pte_bits) != need_pte_bits)
1253 return 0;
1254
1255 return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1256 }
1257
1258 #define pte_access_permitted pte_access_permitted
1259 static inline bool pte_access_permitted(pte_t pte, bool write)
1260 {
1261 return __pte_access_permitted(pte_val(pte), write);
1262 }
1263
1264 #define pmd_access_permitted pmd_access_permitted
1265 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1266 {
1267 return __pte_access_permitted(pmd_val(pmd), write);
1268 }
1269
1270 #define pud_access_permitted pud_access_permitted
1271 static inline bool pud_access_permitted(pud_t pud, bool write)
1272 {
1273 return __pte_access_permitted(pud_val(pud), write);
1274 }
1275
1276 #include <asm-generic/pgtable.h>
1277 #endif /* __ASSEMBLY__ */
1278
1279 #endif /* _ASM_X86_PGTABLE_H */