]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/pgtable.h
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 /*
19 * Macros to add or remove encryption attribute
20 */
21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot)))
22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot)))
23
24 #ifndef __ASSEMBLY__
25 #include <asm/x86_init.h>
26
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29
30 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
31 void ptdump_walk_pgd_level_checkwx(void);
32
33 #ifdef CONFIG_DEBUG_WX
34 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
35 #else
36 #define debug_checkwx() do { } while (0)
37 #endif
38
39 /*
40 * ZERO_PAGE is a global shared page that is always zero: used
41 * for zero-mapped memory areas etc..
42 */
43 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
44 __visible;
45 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
46
47 extern spinlock_t pgd_lock;
48 extern struct list_head pgd_list;
49
50 extern struct mm_struct *pgd_page_get_mm(struct page *page);
51
52 extern pmdval_t early_pmd_flags;
53
54 #ifdef CONFIG_PARAVIRT
55 #include <asm/paravirt.h>
56 #else /* !CONFIG_PARAVIRT */
57 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
58 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
59
60 #define set_pte_atomic(ptep, pte) \
61 native_set_pte_atomic(ptep, pte)
62
63 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
64
65 #ifndef __PAGETABLE_P4D_FOLDED
66 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
67 #define pgd_clear(pgd) native_pgd_clear(pgd)
68 #endif
69
70 #ifndef set_p4d
71 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
72 #endif
73
74 #ifndef __PAGETABLE_PUD_FOLDED
75 #define p4d_clear(p4d) native_p4d_clear(p4d)
76 #endif
77
78 #ifndef set_pud
79 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
80 #endif
81
82 #ifndef __PAGETABLE_PUD_FOLDED
83 #define pud_clear(pud) native_pud_clear(pud)
84 #endif
85
86 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
87 #define pmd_clear(pmd) native_pmd_clear(pmd)
88
89 #define pgd_val(x) native_pgd_val(x)
90 #define __pgd(x) native_make_pgd(x)
91
92 #ifndef __PAGETABLE_P4D_FOLDED
93 #define p4d_val(x) native_p4d_val(x)
94 #define __p4d(x) native_make_p4d(x)
95 #endif
96
97 #ifndef __PAGETABLE_PUD_FOLDED
98 #define pud_val(x) native_pud_val(x)
99 #define __pud(x) native_make_pud(x)
100 #endif
101
102 #ifndef __PAGETABLE_PMD_FOLDED
103 #define pmd_val(x) native_pmd_val(x)
104 #define __pmd(x) native_make_pmd(x)
105 #endif
106
107 #define pte_val(x) native_pte_val(x)
108 #define __pte(x) native_make_pte(x)
109
110 #define arch_end_context_switch(prev) do {} while(0)
111
112 #endif /* CONFIG_PARAVIRT */
113
114 /*
115 * The following only work if pte_present() is true.
116 * Undefined behaviour if not..
117 */
118 static inline int pte_dirty(pte_t pte)
119 {
120 return pte_flags(pte) & _PAGE_DIRTY;
121 }
122
123
124 static inline u32 read_pkru(void)
125 {
126 if (boot_cpu_has(X86_FEATURE_OSPKE))
127 return __read_pkru();
128 return 0;
129 }
130
131 static inline void write_pkru(u32 pkru)
132 {
133 if (boot_cpu_has(X86_FEATURE_OSPKE))
134 __write_pkru(pkru);
135 }
136
137 static inline int pte_young(pte_t pte)
138 {
139 return pte_flags(pte) & _PAGE_ACCESSED;
140 }
141
142 static inline int pmd_dirty(pmd_t pmd)
143 {
144 return pmd_flags(pmd) & _PAGE_DIRTY;
145 }
146
147 static inline int pmd_young(pmd_t pmd)
148 {
149 return pmd_flags(pmd) & _PAGE_ACCESSED;
150 }
151
152 static inline int pud_dirty(pud_t pud)
153 {
154 return pud_flags(pud) & _PAGE_DIRTY;
155 }
156
157 static inline int pud_young(pud_t pud)
158 {
159 return pud_flags(pud) & _PAGE_ACCESSED;
160 }
161
162 static inline int pte_write(pte_t pte)
163 {
164 return pte_flags(pte) & _PAGE_RW;
165 }
166
167 static inline int pte_huge(pte_t pte)
168 {
169 return pte_flags(pte) & _PAGE_PSE;
170 }
171
172 static inline int pte_global(pte_t pte)
173 {
174 return pte_flags(pte) & _PAGE_GLOBAL;
175 }
176
177 static inline int pte_exec(pte_t pte)
178 {
179 return !(pte_flags(pte) & _PAGE_NX);
180 }
181
182 static inline int pte_special(pte_t pte)
183 {
184 return pte_flags(pte) & _PAGE_SPECIAL;
185 }
186
187 static inline unsigned long pte_pfn(pte_t pte)
188 {
189 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
190 }
191
192 static inline unsigned long pmd_pfn(pmd_t pmd)
193 {
194 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
195 }
196
197 static inline unsigned long pud_pfn(pud_t pud)
198 {
199 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
200 }
201
202 static inline unsigned long p4d_pfn(p4d_t p4d)
203 {
204 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
205 }
206
207 static inline unsigned long pgd_pfn(pgd_t pgd)
208 {
209 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
210 }
211
212 static inline int p4d_large(p4d_t p4d)
213 {
214 /* No 512 GiB pages yet */
215 return 0;
216 }
217
218 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
219
220 static inline int pmd_large(pmd_t pte)
221 {
222 return pmd_flags(pte) & _PAGE_PSE;
223 }
224
225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
226 static inline int pmd_trans_huge(pmd_t pmd)
227 {
228 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
229 }
230
231 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
232 static inline int pud_trans_huge(pud_t pud)
233 {
234 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
235 }
236 #endif
237
238 #define has_transparent_hugepage has_transparent_hugepage
239 static inline int has_transparent_hugepage(void)
240 {
241 return boot_cpu_has(X86_FEATURE_PSE);
242 }
243
244 #ifdef __HAVE_ARCH_PTE_DEVMAP
245 static inline int pmd_devmap(pmd_t pmd)
246 {
247 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
248 }
249
250 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
251 static inline int pud_devmap(pud_t pud)
252 {
253 return !!(pud_val(pud) & _PAGE_DEVMAP);
254 }
255 #else
256 static inline int pud_devmap(pud_t pud)
257 {
258 return 0;
259 }
260 #endif
261
262 static inline int pgd_devmap(pgd_t pgd)
263 {
264 return 0;
265 }
266 #endif
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268
269 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
270 {
271 pteval_t v = native_pte_val(pte);
272
273 return native_make_pte(v | set);
274 }
275
276 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
277 {
278 pteval_t v = native_pte_val(pte);
279
280 return native_make_pte(v & ~clear);
281 }
282
283 static inline pte_t pte_mkclean(pte_t pte)
284 {
285 return pte_clear_flags(pte, _PAGE_DIRTY);
286 }
287
288 static inline pte_t pte_mkold(pte_t pte)
289 {
290 return pte_clear_flags(pte, _PAGE_ACCESSED);
291 }
292
293 static inline pte_t pte_wrprotect(pte_t pte)
294 {
295 return pte_clear_flags(pte, _PAGE_RW);
296 }
297
298 static inline pte_t pte_mkexec(pte_t pte)
299 {
300 return pte_clear_flags(pte, _PAGE_NX);
301 }
302
303 static inline pte_t pte_mkdirty(pte_t pte)
304 {
305 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
306 }
307
308 static inline pte_t pte_mkyoung(pte_t pte)
309 {
310 return pte_set_flags(pte, _PAGE_ACCESSED);
311 }
312
313 static inline pte_t pte_mkwrite(pte_t pte)
314 {
315 return pte_set_flags(pte, _PAGE_RW);
316 }
317
318 static inline pte_t pte_mkhuge(pte_t pte)
319 {
320 return pte_set_flags(pte, _PAGE_PSE);
321 }
322
323 static inline pte_t pte_clrhuge(pte_t pte)
324 {
325 return pte_clear_flags(pte, _PAGE_PSE);
326 }
327
328 static inline pte_t pte_mkglobal(pte_t pte)
329 {
330 return pte_set_flags(pte, _PAGE_GLOBAL);
331 }
332
333 static inline pte_t pte_clrglobal(pte_t pte)
334 {
335 return pte_clear_flags(pte, _PAGE_GLOBAL);
336 }
337
338 static inline pte_t pte_mkspecial(pte_t pte)
339 {
340 return pte_set_flags(pte, _PAGE_SPECIAL);
341 }
342
343 static inline pte_t pte_mkdevmap(pte_t pte)
344 {
345 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
346 }
347
348 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
349 {
350 pmdval_t v = native_pmd_val(pmd);
351
352 return __pmd(v | set);
353 }
354
355 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
356 {
357 pmdval_t v = native_pmd_val(pmd);
358
359 return __pmd(v & ~clear);
360 }
361
362 static inline pmd_t pmd_mkold(pmd_t pmd)
363 {
364 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
365 }
366
367 static inline pmd_t pmd_mkclean(pmd_t pmd)
368 {
369 return pmd_clear_flags(pmd, _PAGE_DIRTY);
370 }
371
372 static inline pmd_t pmd_wrprotect(pmd_t pmd)
373 {
374 return pmd_clear_flags(pmd, _PAGE_RW);
375 }
376
377 static inline pmd_t pmd_mkdirty(pmd_t pmd)
378 {
379 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
380 }
381
382 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
383 {
384 return pmd_set_flags(pmd, _PAGE_DEVMAP);
385 }
386
387 static inline pmd_t pmd_mkhuge(pmd_t pmd)
388 {
389 return pmd_set_flags(pmd, _PAGE_PSE);
390 }
391
392 static inline pmd_t pmd_mkyoung(pmd_t pmd)
393 {
394 return pmd_set_flags(pmd, _PAGE_ACCESSED);
395 }
396
397 static inline pmd_t pmd_mkwrite(pmd_t pmd)
398 {
399 return pmd_set_flags(pmd, _PAGE_RW);
400 }
401
402 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
403 {
404 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
405 }
406
407 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
408 {
409 pudval_t v = native_pud_val(pud);
410
411 return __pud(v | set);
412 }
413
414 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
415 {
416 pudval_t v = native_pud_val(pud);
417
418 return __pud(v & ~clear);
419 }
420
421 static inline pud_t pud_mkold(pud_t pud)
422 {
423 return pud_clear_flags(pud, _PAGE_ACCESSED);
424 }
425
426 static inline pud_t pud_mkclean(pud_t pud)
427 {
428 return pud_clear_flags(pud, _PAGE_DIRTY);
429 }
430
431 static inline pud_t pud_wrprotect(pud_t pud)
432 {
433 return pud_clear_flags(pud, _PAGE_RW);
434 }
435
436 static inline pud_t pud_mkdirty(pud_t pud)
437 {
438 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
439 }
440
441 static inline pud_t pud_mkdevmap(pud_t pud)
442 {
443 return pud_set_flags(pud, _PAGE_DEVMAP);
444 }
445
446 static inline pud_t pud_mkhuge(pud_t pud)
447 {
448 return pud_set_flags(pud, _PAGE_PSE);
449 }
450
451 static inline pud_t pud_mkyoung(pud_t pud)
452 {
453 return pud_set_flags(pud, _PAGE_ACCESSED);
454 }
455
456 static inline pud_t pud_mkwrite(pud_t pud)
457 {
458 return pud_set_flags(pud, _PAGE_RW);
459 }
460
461 static inline pud_t pud_mknotpresent(pud_t pud)
462 {
463 return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
464 }
465
466 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
467 static inline int pte_soft_dirty(pte_t pte)
468 {
469 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
470 }
471
472 static inline int pmd_soft_dirty(pmd_t pmd)
473 {
474 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
475 }
476
477 static inline int pud_soft_dirty(pud_t pud)
478 {
479 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
480 }
481
482 static inline pte_t pte_mksoft_dirty(pte_t pte)
483 {
484 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
485 }
486
487 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
488 {
489 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
490 }
491
492 static inline pud_t pud_mksoft_dirty(pud_t pud)
493 {
494 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
495 }
496
497 static inline pte_t pte_clear_soft_dirty(pte_t pte)
498 {
499 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
500 }
501
502 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
503 {
504 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
505 }
506
507 static inline pud_t pud_clear_soft_dirty(pud_t pud)
508 {
509 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
510 }
511
512 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
513
514 /*
515 * Mask out unsupported bits in a present pgprot. Non-present pgprots
516 * can use those bits for other purposes, so leave them be.
517 */
518 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
519 {
520 pgprotval_t protval = pgprot_val(pgprot);
521
522 if (protval & _PAGE_PRESENT)
523 protval &= __supported_pte_mask;
524
525 return protval;
526 }
527
528 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
529 {
530 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
531 massage_pgprot(pgprot));
532 }
533
534 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
535 {
536 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
537 massage_pgprot(pgprot));
538 }
539
540 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
541 {
542 return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
543 massage_pgprot(pgprot));
544 }
545
546 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
547 {
548 pteval_t val = pte_val(pte);
549
550 /*
551 * Chop off the NX bit (if present), and add the NX portion of
552 * the newprot (if present):
553 */
554 val &= _PAGE_CHG_MASK;
555 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
556
557 return __pte(val);
558 }
559
560 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
561 {
562 pmdval_t val = pmd_val(pmd);
563
564 val &= _HPAGE_CHG_MASK;
565 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
566
567 return __pmd(val);
568 }
569
570 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
571 #define pgprot_modify pgprot_modify
572 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
573 {
574 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
575 pgprotval_t addbits = pgprot_val(newprot);
576 return __pgprot(preservebits | addbits);
577 }
578
579 #define pte_pgprot(x) __pgprot(pte_flags(x))
580 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
581 #define pud_pgprot(x) __pgprot(pud_flags(x))
582 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
583
584 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
585
586 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
587 enum page_cache_mode pcm,
588 enum page_cache_mode new_pcm)
589 {
590 /*
591 * PAT type is always WB for untracked ranges, so no need to check.
592 */
593 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
594 return 1;
595
596 /*
597 * Certain new memtypes are not allowed with certain
598 * requested memtype:
599 * - request is uncached, return cannot be write-back
600 * - request is write-combine, return cannot be write-back
601 * - request is write-through, return cannot be write-back
602 * - request is write-through, return cannot be write-combine
603 */
604 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
605 new_pcm == _PAGE_CACHE_MODE_WB) ||
606 (pcm == _PAGE_CACHE_MODE_WC &&
607 new_pcm == _PAGE_CACHE_MODE_WB) ||
608 (pcm == _PAGE_CACHE_MODE_WT &&
609 new_pcm == _PAGE_CACHE_MODE_WB) ||
610 (pcm == _PAGE_CACHE_MODE_WT &&
611 new_pcm == _PAGE_CACHE_MODE_WC)) {
612 return 0;
613 }
614
615 return 1;
616 }
617
618 pmd_t *populate_extra_pmd(unsigned long vaddr);
619 pte_t *populate_extra_pte(unsigned long vaddr);
620 #endif /* __ASSEMBLY__ */
621
622 #ifdef CONFIG_X86_32
623 # include <asm/pgtable_32.h>
624 #else
625 # include <asm/pgtable_64.h>
626 #endif
627
628 #ifndef __ASSEMBLY__
629 #include <linux/mm_types.h>
630 #include <linux/mmdebug.h>
631 #include <linux/log2.h>
632 #include <asm/fixmap.h>
633
634 static inline int pte_none(pte_t pte)
635 {
636 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
637 }
638
639 #define __HAVE_ARCH_PTE_SAME
640 static inline int pte_same(pte_t a, pte_t b)
641 {
642 return a.pte == b.pte;
643 }
644
645 static inline int pte_present(pte_t a)
646 {
647 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
648 }
649
650 #ifdef __HAVE_ARCH_PTE_DEVMAP
651 static inline int pte_devmap(pte_t a)
652 {
653 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
654 }
655 #endif
656
657 #define pte_accessible pte_accessible
658 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
659 {
660 if (pte_flags(a) & _PAGE_PRESENT)
661 return true;
662
663 if ((pte_flags(a) & _PAGE_PROTNONE) &&
664 mm_tlb_flush_pending(mm))
665 return true;
666
667 return false;
668 }
669
670 static inline int pmd_present(pmd_t pmd)
671 {
672 /*
673 * Checking for _PAGE_PSE is needed too because
674 * split_huge_page will temporarily clear the present bit (but
675 * the _PAGE_PSE flag will remain set at all times while the
676 * _PAGE_PRESENT bit is clear).
677 */
678 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
679 }
680
681 #ifdef CONFIG_NUMA_BALANCING
682 /*
683 * These work without NUMA balancing but the kernel does not care. See the
684 * comment in include/asm-generic/pgtable.h
685 */
686 static inline int pte_protnone(pte_t pte)
687 {
688 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
689 == _PAGE_PROTNONE;
690 }
691
692 static inline int pmd_protnone(pmd_t pmd)
693 {
694 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
695 == _PAGE_PROTNONE;
696 }
697 #endif /* CONFIG_NUMA_BALANCING */
698
699 static inline int pmd_none(pmd_t pmd)
700 {
701 /* Only check low word on 32-bit platforms, since it might be
702 out of sync with upper half. */
703 unsigned long val = native_pmd_val(pmd);
704 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
705 }
706
707 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
708 {
709 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
710 }
711
712 /*
713 * Currently stuck as a macro due to indirect forward reference to
714 * linux/mmzone.h's __section_mem_map_addr() definition:
715 */
716 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
717
718 /*
719 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
720 *
721 * this macro returns the index of the entry in the pmd page which would
722 * control the given virtual address
723 */
724 static inline unsigned long pmd_index(unsigned long address)
725 {
726 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
727 }
728
729 /*
730 * Conversion functions: convert a page and protection to a page entry,
731 * and a page entry and page directory to the page they refer to.
732 *
733 * (Currently stuck as a macro because of indirect forward reference
734 * to linux/mm.h:page_to_nid())
735 */
736 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
737
738 /*
739 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
740 *
741 * this function returns the index of the entry in the pte page which would
742 * control the given virtual address
743 */
744 static inline unsigned long pte_index(unsigned long address)
745 {
746 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
747 }
748
749 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
750 {
751 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
752 }
753
754 static inline int pmd_bad(pmd_t pmd)
755 {
756 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
757 }
758
759 static inline unsigned long pages_to_mb(unsigned long npg)
760 {
761 return npg >> (20 - PAGE_SHIFT);
762 }
763
764 #if CONFIG_PGTABLE_LEVELS > 2
765 static inline int pud_none(pud_t pud)
766 {
767 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
768 }
769
770 static inline int pud_present(pud_t pud)
771 {
772 return pud_flags(pud) & _PAGE_PRESENT;
773 }
774
775 static inline unsigned long pud_page_vaddr(pud_t pud)
776 {
777 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
778 }
779
780 /*
781 * Currently stuck as a macro due to indirect forward reference to
782 * linux/mmzone.h's __section_mem_map_addr() definition:
783 */
784 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
785
786 /* Find an entry in the second-level page table.. */
787 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
788 {
789 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
790 }
791
792 static inline int pud_large(pud_t pud)
793 {
794 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
795 (_PAGE_PSE | _PAGE_PRESENT);
796 }
797
798 static inline int pud_bad(pud_t pud)
799 {
800 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
801 }
802 #else
803 static inline int pud_large(pud_t pud)
804 {
805 return 0;
806 }
807 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
808
809 static inline unsigned long pud_index(unsigned long address)
810 {
811 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
812 }
813
814 #if CONFIG_PGTABLE_LEVELS > 3
815 static inline int p4d_none(p4d_t p4d)
816 {
817 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
818 }
819
820 static inline int p4d_present(p4d_t p4d)
821 {
822 return p4d_flags(p4d) & _PAGE_PRESENT;
823 }
824
825 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
826 {
827 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
828 }
829
830 /*
831 * Currently stuck as a macro due to indirect forward reference to
832 * linux/mmzone.h's __section_mem_map_addr() definition:
833 */
834 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
835
836 /* Find an entry in the third-level page table.. */
837 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
838 {
839 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
840 }
841
842 static inline int p4d_bad(p4d_t p4d)
843 {
844 return (p4d_flags(p4d) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
845 }
846 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
847
848 static inline unsigned long p4d_index(unsigned long address)
849 {
850 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
851 }
852
853 #if CONFIG_PGTABLE_LEVELS > 4
854 static inline int pgd_present(pgd_t pgd)
855 {
856 return pgd_flags(pgd) & _PAGE_PRESENT;
857 }
858
859 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
860 {
861 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
862 }
863
864 /*
865 * Currently stuck as a macro due to indirect forward reference to
866 * linux/mmzone.h's __section_mem_map_addr() definition:
867 */
868 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
869
870 /* to find an entry in a page-table-directory. */
871 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
872 {
873 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
874 }
875
876 static inline int pgd_bad(pgd_t pgd)
877 {
878 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
879 }
880
881 static inline int pgd_none(pgd_t pgd)
882 {
883 /*
884 * There is no need to do a workaround for the KNL stray
885 * A/D bit erratum here. PGDs only point to page tables
886 * except on 32-bit non-PAE which is not supported on
887 * KNL.
888 */
889 return !native_pgd_val(pgd);
890 }
891 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
892
893 #endif /* __ASSEMBLY__ */
894
895 /*
896 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
897 *
898 * this macro returns the index of the entry in the pgd page which would
899 * control the given virtual address
900 */
901 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
902
903 /*
904 * pgd_offset() returns a (pgd_t *)
905 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
906 */
907 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
908 /*
909 * a shortcut which implies the use of the kernel's pgd, instead
910 * of a process's
911 */
912 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
913
914
915 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
916 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
917
918 #ifndef __ASSEMBLY__
919
920 extern int direct_gbpages;
921 void init_mem_mapping(void);
922 void early_alloc_pgt_buf(void);
923 extern void memblock_find_dma_reserve(void);
924
925 #ifdef CONFIG_X86_64
926 /* Realmode trampoline initialization. */
927 extern pgd_t trampoline_pgd_entry;
928 static inline void __meminit init_trampoline_default(void)
929 {
930 /* Default trampoline pgd value */
931 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
932 }
933 # ifdef CONFIG_RANDOMIZE_MEMORY
934 void __meminit init_trampoline(void);
935 # else
936 # define init_trampoline init_trampoline_default
937 # endif
938 #else
939 static inline void init_trampoline(void) { }
940 #endif
941
942 /* local pte updates need not use xchg for locking */
943 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
944 {
945 pte_t res = *ptep;
946
947 /* Pure native function needs no input for mm, addr */
948 native_pte_clear(NULL, 0, ptep);
949 return res;
950 }
951
952 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
953 {
954 pmd_t res = *pmdp;
955
956 native_pmd_clear(pmdp);
957 return res;
958 }
959
960 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
961 {
962 pud_t res = *pudp;
963
964 native_pud_clear(pudp);
965 return res;
966 }
967
968 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
969 pte_t *ptep , pte_t pte)
970 {
971 native_set_pte(ptep, pte);
972 }
973
974 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
975 pmd_t *pmdp, pmd_t pmd)
976 {
977 native_set_pmd(pmdp, pmd);
978 }
979
980 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
981 pud_t *pudp, pud_t pud)
982 {
983 native_set_pud(pudp, pud);
984 }
985
986 /*
987 * We only update the dirty/accessed state if we set
988 * the dirty bit by hand in the kernel, since the hardware
989 * will do the accessed bit for us, and we don't want to
990 * race with other CPU's that might be updating the dirty
991 * bit at the same time.
992 */
993 struct vm_area_struct;
994
995 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
996 extern int ptep_set_access_flags(struct vm_area_struct *vma,
997 unsigned long address, pte_t *ptep,
998 pte_t entry, int dirty);
999
1000 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1001 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1002 unsigned long addr, pte_t *ptep);
1003
1004 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1005 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1006 unsigned long address, pte_t *ptep);
1007
1008 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1009 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1010 pte_t *ptep)
1011 {
1012 pte_t pte = native_ptep_get_and_clear(ptep);
1013 return pte;
1014 }
1015
1016 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1017 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1018 unsigned long addr, pte_t *ptep,
1019 int full)
1020 {
1021 pte_t pte;
1022 if (full) {
1023 /*
1024 * Full address destruction in progress; paravirt does not
1025 * care about updates and native needs no locking
1026 */
1027 pte = native_local_ptep_get_and_clear(ptep);
1028 } else {
1029 pte = ptep_get_and_clear(mm, addr, ptep);
1030 }
1031 return pte;
1032 }
1033
1034 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1035 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1036 unsigned long addr, pte_t *ptep)
1037 {
1038 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1039 }
1040
1041 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1042
1043 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1044
1045 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1046 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1047 unsigned long address, pmd_t *pmdp,
1048 pmd_t entry, int dirty);
1049 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1050 unsigned long address, pud_t *pudp,
1051 pud_t entry, int dirty);
1052
1053 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1054 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pmd_t *pmdp);
1056 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1057 unsigned long addr, pud_t *pudp);
1058
1059 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1060 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1061 unsigned long address, pmd_t *pmdp);
1062
1063
1064 #define pmd_write pmd_write
1065 static inline int pmd_write(pmd_t pmd)
1066 {
1067 return pmd_flags(pmd) & _PAGE_RW;
1068 }
1069
1070 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1071 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1072 pmd_t *pmdp)
1073 {
1074 return native_pmdp_get_and_clear(pmdp);
1075 }
1076
1077 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1078 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1079 unsigned long addr, pud_t *pudp)
1080 {
1081 return native_pudp_get_and_clear(pudp);
1082 }
1083
1084 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1085 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1086 unsigned long addr, pmd_t *pmdp)
1087 {
1088 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1089 }
1090
1091 #define pud_write pud_write
1092 static inline int pud_write(pud_t pud)
1093 {
1094 return pud_flags(pud) & _PAGE_RW;
1095 }
1096
1097 /*
1098 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1099 *
1100 * dst - pointer to pgd range anwhere on a pgd page
1101 * src - ""
1102 * count - the number of pgds to copy.
1103 *
1104 * dst and src can be on the same page, but the range must not overlap,
1105 * and must not cross a page boundary.
1106 */
1107 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1108 {
1109 memcpy(dst, src, count * sizeof(pgd_t));
1110 }
1111
1112 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1113 static inline int page_level_shift(enum pg_level level)
1114 {
1115 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1116 }
1117 static inline unsigned long page_level_size(enum pg_level level)
1118 {
1119 return 1UL << page_level_shift(level);
1120 }
1121 static inline unsigned long page_level_mask(enum pg_level level)
1122 {
1123 return ~(page_level_size(level) - 1);
1124 }
1125
1126 /*
1127 * The x86 doesn't have any external MMU info: the kernel page
1128 * tables contain all the necessary information.
1129 */
1130 static inline void update_mmu_cache(struct vm_area_struct *vma,
1131 unsigned long addr, pte_t *ptep)
1132 {
1133 }
1134 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1135 unsigned long addr, pmd_t *pmd)
1136 {
1137 }
1138 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1139 unsigned long addr, pud_t *pud)
1140 {
1141 }
1142
1143 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1144 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1145 {
1146 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1147 }
1148
1149 static inline int pte_swp_soft_dirty(pte_t pte)
1150 {
1151 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1152 }
1153
1154 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1155 {
1156 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1157 }
1158
1159 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1160 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1161 {
1162 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1163 }
1164
1165 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1166 {
1167 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1168 }
1169
1170 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1171 {
1172 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1173 }
1174 #endif
1175 #endif
1176
1177 #define PKRU_AD_BIT 0x1
1178 #define PKRU_WD_BIT 0x2
1179 #define PKRU_BITS_PER_PKEY 2
1180
1181 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1182 {
1183 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1184 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1185 }
1186
1187 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1188 {
1189 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1190 /*
1191 * Access-disable disables writes too so we need to check
1192 * both bits here.
1193 */
1194 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1195 }
1196
1197 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1198 {
1199 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1200 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1201 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1202 #else
1203 return 0;
1204 #endif
1205 }
1206
1207 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1208 {
1209 u32 pkru = read_pkru();
1210
1211 if (!__pkru_allows_read(pkru, pkey))
1212 return false;
1213 if (write && !__pkru_allows_write(pkru, pkey))
1214 return false;
1215
1216 return true;
1217 }
1218
1219 /*
1220 * 'pteval' can come from a PTE, PMD or PUD. We only check
1221 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1222 * same value on all 3 types.
1223 */
1224 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1225 {
1226 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1227
1228 if (write)
1229 need_pte_bits |= _PAGE_RW;
1230
1231 if ((pteval & need_pte_bits) != need_pte_bits)
1232 return 0;
1233
1234 return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1235 }
1236
1237 #define pte_access_permitted pte_access_permitted
1238 static inline bool pte_access_permitted(pte_t pte, bool write)
1239 {
1240 return __pte_access_permitted(pte_val(pte), write);
1241 }
1242
1243 #define pmd_access_permitted pmd_access_permitted
1244 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1245 {
1246 return __pte_access_permitted(pmd_val(pmd), write);
1247 }
1248
1249 #define pud_access_permitted pud_access_permitted
1250 static inline bool pud_access_permitted(pud_t pud, bool write)
1251 {
1252 return __pte_access_permitted(pud_val(pud), write);
1253 }
1254
1255 #include <asm-generic/pgtable.h>
1256 #endif /* __ASSEMBLY__ */
1257
1258 #endif /* _ASM_X86_PGTABLE_H */