]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/pgtable.h
Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / pgtable.h
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/pgtable_types.h>
6
7 /*
8 * Macro to mark a page protection value as UC-
9 */
10 #define pgprot_noncached(prot) \
11 ((boot_cpu_data.x86 > 3) \
12 ? (__pgprot(pgprot_val(prot) | \
13 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
14 : (prot))
15
16 #ifndef __ASSEMBLY__
17 #include <asm/x86_init.h>
18
19 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
20 void ptdump_walk_pgd_level_checkwx(void);
21
22 #ifdef CONFIG_DEBUG_WX
23 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
24 #else
25 #define debug_checkwx() do { } while (0)
26 #endif
27
28 /*
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
31 */
32 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
33 __visible;
34 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
35
36 extern spinlock_t pgd_lock;
37 extern struct list_head pgd_list;
38
39 extern struct mm_struct *pgd_page_get_mm(struct page *page);
40
41 #ifdef CONFIG_PARAVIRT
42 #include <asm/paravirt.h>
43 #else /* !CONFIG_PARAVIRT */
44 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
45 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
46 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
47 #define set_pud_at(mm, addr, pudp, pud) native_set_pud_at(mm, addr, pudp, pud)
48
49 #define set_pte_atomic(ptep, pte) \
50 native_set_pte_atomic(ptep, pte)
51
52 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
53
54 #ifndef __PAGETABLE_P4D_FOLDED
55 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
56 #define pgd_clear(pgd) native_pgd_clear(pgd)
57 #endif
58
59 #ifndef set_p4d
60 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
61 #endif
62
63 #ifndef __PAGETABLE_PUD_FOLDED
64 #define p4d_clear(p4d) native_p4d_clear(p4d)
65 #endif
66
67 #ifndef set_pud
68 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
69 #endif
70
71 #ifndef __PAGETABLE_PUD_FOLDED
72 #define pud_clear(pud) native_pud_clear(pud)
73 #endif
74
75 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
76 #define pmd_clear(pmd) native_pmd_clear(pmd)
77
78 #define pte_update(mm, addr, ptep) do { } while (0)
79
80 #define pgd_val(x) native_pgd_val(x)
81 #define __pgd(x) native_make_pgd(x)
82
83 #ifndef __PAGETABLE_P4D_FOLDED
84 #define p4d_val(x) native_p4d_val(x)
85 #define __p4d(x) native_make_p4d(x)
86 #endif
87
88 #ifndef __PAGETABLE_PUD_FOLDED
89 #define pud_val(x) native_pud_val(x)
90 #define __pud(x) native_make_pud(x)
91 #endif
92
93 #ifndef __PAGETABLE_PMD_FOLDED
94 #define pmd_val(x) native_pmd_val(x)
95 #define __pmd(x) native_make_pmd(x)
96 #endif
97
98 #define pte_val(x) native_pte_val(x)
99 #define __pte(x) native_make_pte(x)
100
101 #define arch_end_context_switch(prev) do {} while(0)
102
103 #endif /* CONFIG_PARAVIRT */
104
105 /*
106 * The following only work if pte_present() is true.
107 * Undefined behaviour if not..
108 */
109 static inline int pte_dirty(pte_t pte)
110 {
111 return pte_flags(pte) & _PAGE_DIRTY;
112 }
113
114
115 static inline u32 read_pkru(void)
116 {
117 if (boot_cpu_has(X86_FEATURE_OSPKE))
118 return __read_pkru();
119 return 0;
120 }
121
122 static inline void write_pkru(u32 pkru)
123 {
124 if (boot_cpu_has(X86_FEATURE_OSPKE))
125 __write_pkru(pkru);
126 }
127
128 static inline int pte_young(pte_t pte)
129 {
130 return pte_flags(pte) & _PAGE_ACCESSED;
131 }
132
133 static inline int pmd_dirty(pmd_t pmd)
134 {
135 return pmd_flags(pmd) & _PAGE_DIRTY;
136 }
137
138 static inline int pmd_young(pmd_t pmd)
139 {
140 return pmd_flags(pmd) & _PAGE_ACCESSED;
141 }
142
143 static inline int pud_dirty(pud_t pud)
144 {
145 return pud_flags(pud) & _PAGE_DIRTY;
146 }
147
148 static inline int pud_young(pud_t pud)
149 {
150 return pud_flags(pud) & _PAGE_ACCESSED;
151 }
152
153 static inline int pte_write(pte_t pte)
154 {
155 return pte_flags(pte) & _PAGE_RW;
156 }
157
158 static inline int pte_huge(pte_t pte)
159 {
160 return pte_flags(pte) & _PAGE_PSE;
161 }
162
163 static inline int pte_global(pte_t pte)
164 {
165 return pte_flags(pte) & _PAGE_GLOBAL;
166 }
167
168 static inline int pte_exec(pte_t pte)
169 {
170 return !(pte_flags(pte) & _PAGE_NX);
171 }
172
173 static inline int pte_special(pte_t pte)
174 {
175 return pte_flags(pte) & _PAGE_SPECIAL;
176 }
177
178 static inline unsigned long pte_pfn(pte_t pte)
179 {
180 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
181 }
182
183 static inline unsigned long pmd_pfn(pmd_t pmd)
184 {
185 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
186 }
187
188 static inline unsigned long pud_pfn(pud_t pud)
189 {
190 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
191 }
192
193 static inline unsigned long p4d_pfn(p4d_t p4d)
194 {
195 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
196 }
197
198 static inline int p4d_large(p4d_t p4d)
199 {
200 /* No 512 GiB pages yet */
201 return 0;
202 }
203
204 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
205
206 static inline int pmd_large(pmd_t pte)
207 {
208 return pmd_flags(pte) & _PAGE_PSE;
209 }
210
211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
212 static inline int pmd_trans_huge(pmd_t pmd)
213 {
214 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
215 }
216
217 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
218 static inline int pud_trans_huge(pud_t pud)
219 {
220 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
221 }
222 #endif
223
224 #define has_transparent_hugepage has_transparent_hugepage
225 static inline int has_transparent_hugepage(void)
226 {
227 return boot_cpu_has(X86_FEATURE_PSE);
228 }
229
230 #ifdef __HAVE_ARCH_PTE_DEVMAP
231 static inline int pmd_devmap(pmd_t pmd)
232 {
233 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
234 }
235
236 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
237 static inline int pud_devmap(pud_t pud)
238 {
239 return !!(pud_val(pud) & _PAGE_DEVMAP);
240 }
241 #else
242 static inline int pud_devmap(pud_t pud)
243 {
244 return 0;
245 }
246 #endif
247 #endif
248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
249
250 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
251 {
252 pteval_t v = native_pte_val(pte);
253
254 return native_make_pte(v | set);
255 }
256
257 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
258 {
259 pteval_t v = native_pte_val(pte);
260
261 return native_make_pte(v & ~clear);
262 }
263
264 static inline pte_t pte_mkclean(pte_t pte)
265 {
266 return pte_clear_flags(pte, _PAGE_DIRTY);
267 }
268
269 static inline pte_t pte_mkold(pte_t pte)
270 {
271 return pte_clear_flags(pte, _PAGE_ACCESSED);
272 }
273
274 static inline pte_t pte_wrprotect(pte_t pte)
275 {
276 return pte_clear_flags(pte, _PAGE_RW);
277 }
278
279 static inline pte_t pte_mkexec(pte_t pte)
280 {
281 return pte_clear_flags(pte, _PAGE_NX);
282 }
283
284 static inline pte_t pte_mkdirty(pte_t pte)
285 {
286 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
287 }
288
289 static inline pte_t pte_mkyoung(pte_t pte)
290 {
291 return pte_set_flags(pte, _PAGE_ACCESSED);
292 }
293
294 static inline pte_t pte_mkwrite(pte_t pte)
295 {
296 return pte_set_flags(pte, _PAGE_RW);
297 }
298
299 static inline pte_t pte_mkhuge(pte_t pte)
300 {
301 return pte_set_flags(pte, _PAGE_PSE);
302 }
303
304 static inline pte_t pte_clrhuge(pte_t pte)
305 {
306 return pte_clear_flags(pte, _PAGE_PSE);
307 }
308
309 static inline pte_t pte_mkglobal(pte_t pte)
310 {
311 return pte_set_flags(pte, _PAGE_GLOBAL);
312 }
313
314 static inline pte_t pte_clrglobal(pte_t pte)
315 {
316 return pte_clear_flags(pte, _PAGE_GLOBAL);
317 }
318
319 static inline pte_t pte_mkspecial(pte_t pte)
320 {
321 return pte_set_flags(pte, _PAGE_SPECIAL);
322 }
323
324 static inline pte_t pte_mkdevmap(pte_t pte)
325 {
326 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
327 }
328
329 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
330 {
331 pmdval_t v = native_pmd_val(pmd);
332
333 return __pmd(v | set);
334 }
335
336 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
337 {
338 pmdval_t v = native_pmd_val(pmd);
339
340 return __pmd(v & ~clear);
341 }
342
343 static inline pmd_t pmd_mkold(pmd_t pmd)
344 {
345 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
346 }
347
348 static inline pmd_t pmd_mkclean(pmd_t pmd)
349 {
350 return pmd_clear_flags(pmd, _PAGE_DIRTY);
351 }
352
353 static inline pmd_t pmd_wrprotect(pmd_t pmd)
354 {
355 return pmd_clear_flags(pmd, _PAGE_RW);
356 }
357
358 static inline pmd_t pmd_mkdirty(pmd_t pmd)
359 {
360 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
361 }
362
363 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
364 {
365 return pmd_set_flags(pmd, _PAGE_DEVMAP);
366 }
367
368 static inline pmd_t pmd_mkhuge(pmd_t pmd)
369 {
370 return pmd_set_flags(pmd, _PAGE_PSE);
371 }
372
373 static inline pmd_t pmd_mkyoung(pmd_t pmd)
374 {
375 return pmd_set_flags(pmd, _PAGE_ACCESSED);
376 }
377
378 static inline pmd_t pmd_mkwrite(pmd_t pmd)
379 {
380 return pmd_set_flags(pmd, _PAGE_RW);
381 }
382
383 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
384 {
385 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
386 }
387
388 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
389 {
390 pudval_t v = native_pud_val(pud);
391
392 return __pud(v | set);
393 }
394
395 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
396 {
397 pudval_t v = native_pud_val(pud);
398
399 return __pud(v & ~clear);
400 }
401
402 static inline pud_t pud_mkold(pud_t pud)
403 {
404 return pud_clear_flags(pud, _PAGE_ACCESSED);
405 }
406
407 static inline pud_t pud_mkclean(pud_t pud)
408 {
409 return pud_clear_flags(pud, _PAGE_DIRTY);
410 }
411
412 static inline pud_t pud_wrprotect(pud_t pud)
413 {
414 return pud_clear_flags(pud, _PAGE_RW);
415 }
416
417 static inline pud_t pud_mkdirty(pud_t pud)
418 {
419 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
420 }
421
422 static inline pud_t pud_mkdevmap(pud_t pud)
423 {
424 return pud_set_flags(pud, _PAGE_DEVMAP);
425 }
426
427 static inline pud_t pud_mkhuge(pud_t pud)
428 {
429 return pud_set_flags(pud, _PAGE_PSE);
430 }
431
432 static inline pud_t pud_mkyoung(pud_t pud)
433 {
434 return pud_set_flags(pud, _PAGE_ACCESSED);
435 }
436
437 static inline pud_t pud_mkwrite(pud_t pud)
438 {
439 return pud_set_flags(pud, _PAGE_RW);
440 }
441
442 static inline pud_t pud_mknotpresent(pud_t pud)
443 {
444 return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
445 }
446
447 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
448 static inline int pte_soft_dirty(pte_t pte)
449 {
450 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
451 }
452
453 static inline int pmd_soft_dirty(pmd_t pmd)
454 {
455 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
456 }
457
458 static inline int pud_soft_dirty(pud_t pud)
459 {
460 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
461 }
462
463 static inline pte_t pte_mksoft_dirty(pte_t pte)
464 {
465 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
466 }
467
468 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
469 {
470 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
471 }
472
473 static inline pud_t pud_mksoft_dirty(pud_t pud)
474 {
475 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
476 }
477
478 static inline pte_t pte_clear_soft_dirty(pte_t pte)
479 {
480 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
481 }
482
483 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
484 {
485 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
486 }
487
488 static inline pud_t pud_clear_soft_dirty(pud_t pud)
489 {
490 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
491 }
492
493 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
494
495 /*
496 * Mask out unsupported bits in a present pgprot. Non-present pgprots
497 * can use those bits for other purposes, so leave them be.
498 */
499 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
500 {
501 pgprotval_t protval = pgprot_val(pgprot);
502
503 if (protval & _PAGE_PRESENT)
504 protval &= __supported_pte_mask;
505
506 return protval;
507 }
508
509 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
510 {
511 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
512 massage_pgprot(pgprot));
513 }
514
515 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
516 {
517 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
518 massage_pgprot(pgprot));
519 }
520
521 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
522 {
523 return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
524 massage_pgprot(pgprot));
525 }
526
527 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
528 {
529 pteval_t val = pte_val(pte);
530
531 /*
532 * Chop off the NX bit (if present), and add the NX portion of
533 * the newprot (if present):
534 */
535 val &= _PAGE_CHG_MASK;
536 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
537
538 return __pte(val);
539 }
540
541 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
542 {
543 pmdval_t val = pmd_val(pmd);
544
545 val &= _HPAGE_CHG_MASK;
546 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
547
548 return __pmd(val);
549 }
550
551 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
552 #define pgprot_modify pgprot_modify
553 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
554 {
555 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
556 pgprotval_t addbits = pgprot_val(newprot);
557 return __pgprot(preservebits | addbits);
558 }
559
560 #define pte_pgprot(x) __pgprot(pte_flags(x))
561 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
562 #define pud_pgprot(x) __pgprot(pud_flags(x))
563 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
564
565 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
566
567 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
568 enum page_cache_mode pcm,
569 enum page_cache_mode new_pcm)
570 {
571 /*
572 * PAT type is always WB for untracked ranges, so no need to check.
573 */
574 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
575 return 1;
576
577 /*
578 * Certain new memtypes are not allowed with certain
579 * requested memtype:
580 * - request is uncached, return cannot be write-back
581 * - request is write-combine, return cannot be write-back
582 * - request is write-through, return cannot be write-back
583 * - request is write-through, return cannot be write-combine
584 */
585 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
586 new_pcm == _PAGE_CACHE_MODE_WB) ||
587 (pcm == _PAGE_CACHE_MODE_WC &&
588 new_pcm == _PAGE_CACHE_MODE_WB) ||
589 (pcm == _PAGE_CACHE_MODE_WT &&
590 new_pcm == _PAGE_CACHE_MODE_WB) ||
591 (pcm == _PAGE_CACHE_MODE_WT &&
592 new_pcm == _PAGE_CACHE_MODE_WC)) {
593 return 0;
594 }
595
596 return 1;
597 }
598
599 pmd_t *populate_extra_pmd(unsigned long vaddr);
600 pte_t *populate_extra_pte(unsigned long vaddr);
601 #endif /* __ASSEMBLY__ */
602
603 #ifdef CONFIG_X86_32
604 # include <asm/pgtable_32.h>
605 #else
606 # include <asm/pgtable_64.h>
607 #endif
608
609 #ifndef __ASSEMBLY__
610 #include <linux/mm_types.h>
611 #include <linux/mmdebug.h>
612 #include <linux/log2.h>
613 #include <asm/fixmap.h>
614
615 static inline int pte_none(pte_t pte)
616 {
617 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
618 }
619
620 #define __HAVE_ARCH_PTE_SAME
621 static inline int pte_same(pte_t a, pte_t b)
622 {
623 return a.pte == b.pte;
624 }
625
626 static inline int pte_present(pte_t a)
627 {
628 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
629 }
630
631 #ifdef __HAVE_ARCH_PTE_DEVMAP
632 static inline int pte_devmap(pte_t a)
633 {
634 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
635 }
636 #endif
637
638 #define pte_accessible pte_accessible
639 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
640 {
641 if (pte_flags(a) & _PAGE_PRESENT)
642 return true;
643
644 if ((pte_flags(a) & _PAGE_PROTNONE) &&
645 mm_tlb_flush_pending(mm))
646 return true;
647
648 return false;
649 }
650
651 static inline int pte_hidden(pte_t pte)
652 {
653 return pte_flags(pte) & _PAGE_HIDDEN;
654 }
655
656 static inline int pmd_present(pmd_t pmd)
657 {
658 /*
659 * Checking for _PAGE_PSE is needed too because
660 * split_huge_page will temporarily clear the present bit (but
661 * the _PAGE_PSE flag will remain set at all times while the
662 * _PAGE_PRESENT bit is clear).
663 */
664 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
665 }
666
667 #ifdef CONFIG_NUMA_BALANCING
668 /*
669 * These work without NUMA balancing but the kernel does not care. See the
670 * comment in include/asm-generic/pgtable.h
671 */
672 static inline int pte_protnone(pte_t pte)
673 {
674 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
675 == _PAGE_PROTNONE;
676 }
677
678 static inline int pmd_protnone(pmd_t pmd)
679 {
680 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
681 == _PAGE_PROTNONE;
682 }
683 #endif /* CONFIG_NUMA_BALANCING */
684
685 static inline int pmd_none(pmd_t pmd)
686 {
687 /* Only check low word on 32-bit platforms, since it might be
688 out of sync with upper half. */
689 unsigned long val = native_pmd_val(pmd);
690 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
691 }
692
693 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
694 {
695 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
696 }
697
698 /*
699 * Currently stuck as a macro due to indirect forward reference to
700 * linux/mmzone.h's __section_mem_map_addr() definition:
701 */
702 #define pmd_page(pmd) \
703 pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
704
705 /*
706 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
707 *
708 * this macro returns the index of the entry in the pmd page which would
709 * control the given virtual address
710 */
711 static inline unsigned long pmd_index(unsigned long address)
712 {
713 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
714 }
715
716 /*
717 * Conversion functions: convert a page and protection to a page entry,
718 * and a page entry and page directory to the page they refer to.
719 *
720 * (Currently stuck as a macro because of indirect forward reference
721 * to linux/mm.h:page_to_nid())
722 */
723 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
724
725 /*
726 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
727 *
728 * this function returns the index of the entry in the pte page which would
729 * control the given virtual address
730 */
731 static inline unsigned long pte_index(unsigned long address)
732 {
733 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
734 }
735
736 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
737 {
738 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
739 }
740
741 static inline int pmd_bad(pmd_t pmd)
742 {
743 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
744 }
745
746 static inline unsigned long pages_to_mb(unsigned long npg)
747 {
748 return npg >> (20 - PAGE_SHIFT);
749 }
750
751 #if CONFIG_PGTABLE_LEVELS > 2
752 static inline int pud_none(pud_t pud)
753 {
754 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
755 }
756
757 static inline int pud_present(pud_t pud)
758 {
759 return pud_flags(pud) & _PAGE_PRESENT;
760 }
761
762 static inline unsigned long pud_page_vaddr(pud_t pud)
763 {
764 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
765 }
766
767 /*
768 * Currently stuck as a macro due to indirect forward reference to
769 * linux/mmzone.h's __section_mem_map_addr() definition:
770 */
771 #define pud_page(pud) \
772 pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
773
774 /* Find an entry in the second-level page table.. */
775 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
776 {
777 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
778 }
779
780 static inline int pud_large(pud_t pud)
781 {
782 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
783 (_PAGE_PSE | _PAGE_PRESENT);
784 }
785
786 static inline int pud_bad(pud_t pud)
787 {
788 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
789 }
790 #else
791 static inline int pud_large(pud_t pud)
792 {
793 return 0;
794 }
795 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
796
797 static inline unsigned long pud_index(unsigned long address)
798 {
799 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
800 }
801
802 #if CONFIG_PGTABLE_LEVELS > 3
803 static inline int p4d_none(p4d_t p4d)
804 {
805 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
806 }
807
808 static inline int p4d_present(p4d_t p4d)
809 {
810 return p4d_flags(p4d) & _PAGE_PRESENT;
811 }
812
813 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
814 {
815 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
816 }
817
818 /*
819 * Currently stuck as a macro due to indirect forward reference to
820 * linux/mmzone.h's __section_mem_map_addr() definition:
821 */
822 #define p4d_page(p4d) \
823 pfn_to_page((p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT)
824
825 /* Find an entry in the third-level page table.. */
826 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
827 {
828 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
829 }
830
831 static inline int p4d_bad(p4d_t p4d)
832 {
833 return (p4d_flags(p4d) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
834 }
835 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
836
837 static inline unsigned long p4d_index(unsigned long address)
838 {
839 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
840 }
841
842 #if CONFIG_PGTABLE_LEVELS > 4
843 static inline int pgd_present(pgd_t pgd)
844 {
845 return pgd_flags(pgd) & _PAGE_PRESENT;
846 }
847
848 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
849 {
850 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
851 }
852
853 /*
854 * Currently stuck as a macro due to indirect forward reference to
855 * linux/mmzone.h's __section_mem_map_addr() definition:
856 */
857 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
858
859 /* to find an entry in a page-table-directory. */
860 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
861 {
862 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
863 }
864
865 static inline int pgd_bad(pgd_t pgd)
866 {
867 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
868 }
869
870 static inline int pgd_none(pgd_t pgd)
871 {
872 /*
873 * There is no need to do a workaround for the KNL stray
874 * A/D bit erratum here. PGDs only point to page tables
875 * except on 32-bit non-PAE which is not supported on
876 * KNL.
877 */
878 return !native_pgd_val(pgd);
879 }
880 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
881
882 #endif /* __ASSEMBLY__ */
883
884 /*
885 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
886 *
887 * this macro returns the index of the entry in the pgd page which would
888 * control the given virtual address
889 */
890 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
891
892 /*
893 * pgd_offset() returns a (pgd_t *)
894 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
895 */
896 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
897 /*
898 * a shortcut which implies the use of the kernel's pgd, instead
899 * of a process's
900 */
901 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
902
903
904 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
905 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
906
907 #ifndef __ASSEMBLY__
908
909 extern int direct_gbpages;
910 void init_mem_mapping(void);
911 void early_alloc_pgt_buf(void);
912 extern void memblock_find_dma_reserve(void);
913
914 #ifdef CONFIG_X86_64
915 /* Realmode trampoline initialization. */
916 extern pgd_t trampoline_pgd_entry;
917 static inline void __meminit init_trampoline_default(void)
918 {
919 /* Default trampoline pgd value */
920 trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
921 }
922 # ifdef CONFIG_RANDOMIZE_MEMORY
923 void __meminit init_trampoline(void);
924 # else
925 # define init_trampoline init_trampoline_default
926 # endif
927 #else
928 static inline void init_trampoline(void) { }
929 #endif
930
931 /* local pte updates need not use xchg for locking */
932 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
933 {
934 pte_t res = *ptep;
935
936 /* Pure native function needs no input for mm, addr */
937 native_pte_clear(NULL, 0, ptep);
938 return res;
939 }
940
941 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
942 {
943 pmd_t res = *pmdp;
944
945 native_pmd_clear(pmdp);
946 return res;
947 }
948
949 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
950 {
951 pud_t res = *pudp;
952
953 native_pud_clear(pudp);
954 return res;
955 }
956
957 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
958 pte_t *ptep , pte_t pte)
959 {
960 native_set_pte(ptep, pte);
961 }
962
963 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
964 pmd_t *pmdp , pmd_t pmd)
965 {
966 native_set_pmd(pmdp, pmd);
967 }
968
969 static inline void native_set_pud_at(struct mm_struct *mm, unsigned long addr,
970 pud_t *pudp, pud_t pud)
971 {
972 native_set_pud(pudp, pud);
973 }
974
975 #ifndef CONFIG_PARAVIRT
976 /*
977 * Rules for using pte_update - it must be called after any PTE update which
978 * has not been done using the set_pte / clear_pte interfaces. It is used by
979 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
980 * updates should either be sets, clears, or set_pte_atomic for P->P
981 * transitions, which means this hook should only be called for user PTEs.
982 * This hook implies a P->P protection or access change has taken place, which
983 * requires a subsequent TLB flush.
984 */
985 #define pte_update(mm, addr, ptep) do { } while (0)
986 #endif
987
988 /*
989 * We only update the dirty/accessed state if we set
990 * the dirty bit by hand in the kernel, since the hardware
991 * will do the accessed bit for us, and we don't want to
992 * race with other CPU's that might be updating the dirty
993 * bit at the same time.
994 */
995 struct vm_area_struct;
996
997 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
998 extern int ptep_set_access_flags(struct vm_area_struct *vma,
999 unsigned long address, pte_t *ptep,
1000 pte_t entry, int dirty);
1001
1002 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1003 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1004 unsigned long addr, pte_t *ptep);
1005
1006 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1007 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1008 unsigned long address, pte_t *ptep);
1009
1010 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1011 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1012 pte_t *ptep)
1013 {
1014 pte_t pte = native_ptep_get_and_clear(ptep);
1015 pte_update(mm, addr, ptep);
1016 return pte;
1017 }
1018
1019 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1020 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1021 unsigned long addr, pte_t *ptep,
1022 int full)
1023 {
1024 pte_t pte;
1025 if (full) {
1026 /*
1027 * Full address destruction in progress; paravirt does not
1028 * care about updates and native needs no locking
1029 */
1030 pte = native_local_ptep_get_and_clear(ptep);
1031 } else {
1032 pte = ptep_get_and_clear(mm, addr, ptep);
1033 }
1034 return pte;
1035 }
1036
1037 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1038 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1039 unsigned long addr, pte_t *ptep)
1040 {
1041 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1042 pte_update(mm, addr, ptep);
1043 }
1044
1045 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1046
1047 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1048
1049 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1050 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1051 unsigned long address, pmd_t *pmdp,
1052 pmd_t entry, int dirty);
1053 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1054 unsigned long address, pud_t *pudp,
1055 pud_t entry, int dirty);
1056
1057 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1058 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1059 unsigned long addr, pmd_t *pmdp);
1060 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1061 unsigned long addr, pud_t *pudp);
1062
1063 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1064 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pmd_t *pmdp);
1066
1067
1068 #define __HAVE_ARCH_PMD_WRITE
1069 static inline int pmd_write(pmd_t pmd)
1070 {
1071 return pmd_flags(pmd) & _PAGE_RW;
1072 }
1073
1074 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1075 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1076 pmd_t *pmdp)
1077 {
1078 return native_pmdp_get_and_clear(pmdp);
1079 }
1080
1081 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1082 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1083 unsigned long addr, pud_t *pudp)
1084 {
1085 return native_pudp_get_and_clear(pudp);
1086 }
1087
1088 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1089 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1090 unsigned long addr, pmd_t *pmdp)
1091 {
1092 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1093 }
1094
1095 /*
1096 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1097 *
1098 * dst - pointer to pgd range anwhere on a pgd page
1099 * src - ""
1100 * count - the number of pgds to copy.
1101 *
1102 * dst and src can be on the same page, but the range must not overlap,
1103 * and must not cross a page boundary.
1104 */
1105 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1106 {
1107 memcpy(dst, src, count * sizeof(pgd_t));
1108 }
1109
1110 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1111 static inline int page_level_shift(enum pg_level level)
1112 {
1113 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1114 }
1115 static inline unsigned long page_level_size(enum pg_level level)
1116 {
1117 return 1UL << page_level_shift(level);
1118 }
1119 static inline unsigned long page_level_mask(enum pg_level level)
1120 {
1121 return ~(page_level_size(level) - 1);
1122 }
1123
1124 /*
1125 * The x86 doesn't have any external MMU info: the kernel page
1126 * tables contain all the necessary information.
1127 */
1128 static inline void update_mmu_cache(struct vm_area_struct *vma,
1129 unsigned long addr, pte_t *ptep)
1130 {
1131 }
1132 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1133 unsigned long addr, pmd_t *pmd)
1134 {
1135 }
1136 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1137 unsigned long addr, pud_t *pud)
1138 {
1139 }
1140
1141 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1142 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1143 {
1144 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1145 }
1146
1147 static inline int pte_swp_soft_dirty(pte_t pte)
1148 {
1149 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1150 }
1151
1152 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1153 {
1154 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1155 }
1156 #endif
1157
1158 #define PKRU_AD_BIT 0x1
1159 #define PKRU_WD_BIT 0x2
1160 #define PKRU_BITS_PER_PKEY 2
1161
1162 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1163 {
1164 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1165 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1166 }
1167
1168 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1169 {
1170 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1171 /*
1172 * Access-disable disables writes too so we need to check
1173 * both bits here.
1174 */
1175 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1176 }
1177
1178 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1179 {
1180 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1181 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1182 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1183 #else
1184 return 0;
1185 #endif
1186 }
1187
1188 #include <asm-generic/pgtable.h>
1189 #endif /* __ASSEMBLY__ */
1190
1191 #endif /* _ASM_X86_PGTABLE_H */