]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/processor.h
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head_32.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_64
93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 int x86_tlbsize;
95 #endif
96 __u8 x86_virt_bits;
97 __u8 x86_phys_bits;
98 /* CPUID returned core id bits: */
99 __u8 x86_coreid_bits;
100 __u8 cu_id;
101 /* Max extended CPUID function supported: */
102 __u32 extended_cpuid_level;
103 /* Maximum supported CPUID level, -1=no CPUID: */
104 int cpuid_level;
105 __u32 x86_capability[NCAPINTS + NBUGINTS];
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 /* Index into per_cpu list: */
130 u16 cpu_index;
131 u32 microcode;
132 } __randomize_layout;
133
134 struct cpuid_regs {
135 u32 eax, ebx, ecx, edx;
136 };
137
138 enum cpuid_regs_idx {
139 CPUID_EAX = 0,
140 CPUID_EBX,
141 CPUID_ECX,
142 CPUID_EDX,
143 };
144
145 #define X86_VENDOR_INTEL 0
146 #define X86_VENDOR_CYRIX 1
147 #define X86_VENDOR_AMD 2
148 #define X86_VENDOR_UMC 3
149 #define X86_VENDOR_CENTAUR 5
150 #define X86_VENDOR_TRANSMETA 7
151 #define X86_VENDOR_NSC 8
152 #define X86_VENDOR_NUM 9
153
154 #define X86_VENDOR_UNKNOWN 0xff
155
156 /*
157 * capabilities of CPUs
158 */
159 extern struct cpuinfo_x86 boot_cpu_data;
160 extern struct cpuinfo_x86 new_cpu_data;
161
162 extern struct tss_struct doublefault_tss;
163 extern __u32 cpu_caps_cleared[NCAPINTS];
164 extern __u32 cpu_caps_set[NCAPINTS];
165
166 #ifdef CONFIG_SMP
167 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
169 #else
170 #define cpu_info boot_cpu_data
171 #define cpu_data(cpu) boot_cpu_data
172 #endif
173
174 extern const struct seq_operations cpuinfo_op;
175
176 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
177
178 extern void cpu_detect(struct cpuinfo_x86 *c);
179
180 extern void early_cpu_init(void);
181 extern void identify_boot_cpu(void);
182 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183 extern void print_cpu_info(struct cpuinfo_x86 *);
184 void print_cpu_msr(struct cpuinfo_x86 *);
185 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186 extern u32 get_scattered_cpuid_leaf(unsigned int level,
187 unsigned int sub_leaf,
188 enum cpuid_regs_idx reg);
189 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191
192 extern void detect_extended_topology(struct cpuinfo_x86 *c);
193 extern void detect_ht(struct cpuinfo_x86 *c);
194
195 #ifdef CONFIG_X86_32
196 extern int have_cpuid_p(void);
197 #else
198 static inline int have_cpuid_p(void)
199 {
200 return 1;
201 }
202 #endif
203 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204 unsigned int *ecx, unsigned int *edx)
205 {
206 /* ecx is often an input as well as an output. */
207 asm volatile("cpuid"
208 : "=a" (*eax),
209 "=b" (*ebx),
210 "=c" (*ecx),
211 "=d" (*edx)
212 : "0" (*eax), "2" (*ecx)
213 : "memory");
214 }
215
216 #define native_cpuid_reg(reg) \
217 static inline unsigned int native_cpuid_##reg(unsigned int op) \
218 { \
219 unsigned int eax = op, ebx, ecx = 0, edx; \
220 \
221 native_cpuid(&eax, &ebx, &ecx, &edx); \
222 \
223 return reg; \
224 }
225
226 /*
227 * Native CPUID functions returning a single datum.
228 */
229 native_cpuid_reg(eax)
230 native_cpuid_reg(ebx)
231 native_cpuid_reg(ecx)
232 native_cpuid_reg(edx)
233
234 /*
235 * Friendlier CR3 helpers.
236 */
237 static inline unsigned long read_cr3_pa(void)
238 {
239 return __read_cr3() & CR3_ADDR_MASK;
240 }
241
242 static inline void load_cr3(pgd_t *pgdir)
243 {
244 write_cr3(__pa(pgdir));
245 }
246
247 #ifdef CONFIG_X86_32
248 /* This is the TSS defined by the hardware. */
249 struct x86_hw_tss {
250 unsigned short back_link, __blh;
251 unsigned long sp0;
252 unsigned short ss0, __ss0h;
253 unsigned long sp1;
254
255 /*
256 * We don't use ring 1, so ss1 is a convenient scratch space in
257 * the same cacheline as sp0. We use ss1 to cache the value in
258 * MSR_IA32_SYSENTER_CS. When we context switch
259 * MSR_IA32_SYSENTER_CS, we first check if the new value being
260 * written matches ss1, and, if it's not, then we wrmsr the new
261 * value and update ss1.
262 *
263 * The only reason we context switch MSR_IA32_SYSENTER_CS is
264 * that we set it to zero in vm86 tasks to avoid corrupting the
265 * stack if we were to go through the sysenter path from vm86
266 * mode.
267 */
268 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
269
270 unsigned short __ss1h;
271 unsigned long sp2;
272 unsigned short ss2, __ss2h;
273 unsigned long __cr3;
274 unsigned long ip;
275 unsigned long flags;
276 unsigned long ax;
277 unsigned long cx;
278 unsigned long dx;
279 unsigned long bx;
280 unsigned long sp;
281 unsigned long bp;
282 unsigned long si;
283 unsigned long di;
284 unsigned short es, __esh;
285 unsigned short cs, __csh;
286 unsigned short ss, __ssh;
287 unsigned short ds, __dsh;
288 unsigned short fs, __fsh;
289 unsigned short gs, __gsh;
290 unsigned short ldt, __ldth;
291 unsigned short trace;
292 unsigned short io_bitmap_base;
293
294 } __attribute__((packed));
295 #else
296 struct x86_hw_tss {
297 u32 reserved1;
298 u64 sp0;
299 u64 sp1;
300 u64 sp2;
301 u64 reserved2;
302 u64 ist[7];
303 u32 reserved3;
304 u32 reserved4;
305 u16 reserved5;
306 u16 io_bitmap_base;
307
308 } __attribute__((packed));
309 #endif
310
311 /*
312 * IO-bitmap sizes:
313 */
314 #define IO_BITMAP_BITS 65536
315 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
316 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
317 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
318 #define INVALID_IO_BITMAP_OFFSET 0x8000
319
320 struct tss_struct {
321 /*
322 * The hardware state:
323 */
324 struct x86_hw_tss x86_tss;
325
326 /*
327 * The extra 1 is there because the CPU will access an
328 * additional byte beyond the end of the IO permission
329 * bitmap. The extra byte must be all 1 bits, and must
330 * be within the limit.
331 */
332 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
333
334 #ifdef CONFIG_X86_32
335 /*
336 * Space for the temporary SYSENTER stack.
337 */
338 unsigned long SYSENTER_stack_canary;
339 unsigned long SYSENTER_stack[64];
340 #endif
341
342 } ____cacheline_aligned;
343
344 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
345
346 /*
347 * sizeof(unsigned long) coming from an extra "long" at the end
348 * of the iobitmap.
349 *
350 * -1? seg base+limit should be pointing to the address of the
351 * last valid byte
352 */
353 #define __KERNEL_TSS_LIMIT \
354 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
355
356 #ifdef CONFIG_X86_32
357 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
358 #endif
359
360 /*
361 * Save the original ist values for checking stack pointers during debugging
362 */
363 struct orig_ist {
364 unsigned long ist[7];
365 };
366
367 #ifdef CONFIG_X86_64
368 DECLARE_PER_CPU(struct orig_ist, orig_ist);
369
370 union irq_stack_union {
371 char irq_stack[IRQ_STACK_SIZE];
372 /*
373 * GCC hardcodes the stack canary as %gs:40. Since the
374 * irq_stack is the object at %gs:0, we reserve the bottom
375 * 48 bytes of the irq stack for the canary.
376 */
377 struct {
378 char gs_base[40];
379 unsigned long stack_canary;
380 };
381 };
382
383 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
384 DECLARE_INIT_PER_CPU(irq_stack_union);
385
386 DECLARE_PER_CPU(char *, irq_stack_ptr);
387 DECLARE_PER_CPU(unsigned int, irq_count);
388 extern asmlinkage void ignore_sysret(void);
389 #else /* X86_64 */
390 #ifdef CONFIG_CC_STACKPROTECTOR
391 /*
392 * Make sure stack canary segment base is cached-aligned:
393 * "For Intel Atom processors, avoid non zero segment base address
394 * that is not aligned to cache line boundary at all cost."
395 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
396 */
397 struct stack_canary {
398 char __pad[20]; /* canary at %gs:20 */
399 unsigned long canary;
400 };
401 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
402 #endif
403 /*
404 * per-CPU IRQ handling stacks
405 */
406 struct irq_stack {
407 u32 stack[THREAD_SIZE/sizeof(u32)];
408 } __aligned(THREAD_SIZE);
409
410 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
411 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
412 #endif /* X86_64 */
413
414 extern unsigned int fpu_kernel_xstate_size;
415 extern unsigned int fpu_user_xstate_size;
416
417 struct perf_event;
418
419 typedef struct {
420 unsigned long seg;
421 } mm_segment_t;
422
423 struct thread_struct {
424 /* Cached TLS descriptors: */
425 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
426 unsigned long sp0;
427 unsigned long sp;
428 #ifdef CONFIG_X86_32
429 unsigned long sysenter_cs;
430 #else
431 unsigned short es;
432 unsigned short ds;
433 unsigned short fsindex;
434 unsigned short gsindex;
435 #endif
436
437 u32 status; /* thread synchronous flags */
438
439 #ifdef CONFIG_X86_64
440 unsigned long fsbase;
441 unsigned long gsbase;
442 #else
443 /*
444 * XXX: this could presumably be unsigned short. Alternatively,
445 * 32-bit kernels could be taught to use fsindex instead.
446 */
447 unsigned long fs;
448 unsigned long gs;
449 #endif
450
451 /* Save middle states of ptrace breakpoints */
452 struct perf_event *ptrace_bps[HBP_NUM];
453 /* Debug status used for traps, single steps, etc... */
454 unsigned long debugreg6;
455 /* Keep track of the exact dr7 value set by the user */
456 unsigned long ptrace_dr7;
457 /* Fault info: */
458 unsigned long cr2;
459 unsigned long trap_nr;
460 unsigned long error_code;
461 #ifdef CONFIG_VM86
462 /* Virtual 86 mode info */
463 struct vm86 *vm86;
464 #endif
465 /* IO permissions: */
466 unsigned long *io_bitmap_ptr;
467 unsigned long iopl;
468 /* Max allowed port in the bitmap, in bytes: */
469 unsigned io_bitmap_max;
470
471 mm_segment_t addr_limit;
472
473 unsigned int sig_on_uaccess_err:1;
474 unsigned int uaccess_err:1; /* uaccess failed */
475
476 /* Floating point and extended processor state */
477 struct fpu fpu;
478 /*
479 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
480 * the end.
481 */
482 };
483
484 /*
485 * Thread-synchronous status.
486 *
487 * This is different from the flags in that nobody else
488 * ever touches our thread-synchronous status, so we don't
489 * have to worry about atomic accesses.
490 */
491 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
492
493 /*
494 * Set IOPL bits in EFLAGS from given mask
495 */
496 static inline void native_set_iopl_mask(unsigned mask)
497 {
498 #ifdef CONFIG_X86_32
499 unsigned int reg;
500
501 asm volatile ("pushfl;"
502 "popl %0;"
503 "andl %1, %0;"
504 "orl %2, %0;"
505 "pushl %0;"
506 "popfl"
507 : "=&r" (reg)
508 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
509 #endif
510 }
511
512 static inline void
513 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
514 {
515 tss->x86_tss.sp0 = thread->sp0;
516 #ifdef CONFIG_X86_32
517 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
518 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
519 tss->x86_tss.ss1 = thread->sysenter_cs;
520 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
521 }
522 #endif
523 }
524
525 static inline void native_swapgs(void)
526 {
527 #ifdef CONFIG_X86_64
528 asm volatile("swapgs" ::: "memory");
529 #endif
530 }
531
532 static inline unsigned long current_top_of_stack(void)
533 {
534 #ifdef CONFIG_X86_64
535 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
536 #else
537 /* sp0 on x86_32 is special in and around vm86 mode. */
538 return this_cpu_read_stable(cpu_current_top_of_stack);
539 #endif
540 }
541
542 #ifdef CONFIG_PARAVIRT
543 #include <asm/paravirt.h>
544 #else
545 #define __cpuid native_cpuid
546
547 static inline void load_sp0(struct tss_struct *tss,
548 struct thread_struct *thread)
549 {
550 native_load_sp0(tss, thread);
551 }
552
553 #define set_iopl_mask native_set_iopl_mask
554 #endif /* CONFIG_PARAVIRT */
555
556 /* Free all resources held by a thread. */
557 extern void release_thread(struct task_struct *);
558
559 unsigned long get_wchan(struct task_struct *p);
560
561 /*
562 * Generic CPUID function
563 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
564 * resulting in stale register contents being returned.
565 */
566 static inline void cpuid(unsigned int op,
567 unsigned int *eax, unsigned int *ebx,
568 unsigned int *ecx, unsigned int *edx)
569 {
570 *eax = op;
571 *ecx = 0;
572 __cpuid(eax, ebx, ecx, edx);
573 }
574
575 /* Some CPUID calls want 'count' to be placed in ecx */
576 static inline void cpuid_count(unsigned int op, int count,
577 unsigned int *eax, unsigned int *ebx,
578 unsigned int *ecx, unsigned int *edx)
579 {
580 *eax = op;
581 *ecx = count;
582 __cpuid(eax, ebx, ecx, edx);
583 }
584
585 /*
586 * CPUID functions returning a single datum
587 */
588 static inline unsigned int cpuid_eax(unsigned int op)
589 {
590 unsigned int eax, ebx, ecx, edx;
591
592 cpuid(op, &eax, &ebx, &ecx, &edx);
593
594 return eax;
595 }
596
597 static inline unsigned int cpuid_ebx(unsigned int op)
598 {
599 unsigned int eax, ebx, ecx, edx;
600
601 cpuid(op, &eax, &ebx, &ecx, &edx);
602
603 return ebx;
604 }
605
606 static inline unsigned int cpuid_ecx(unsigned int op)
607 {
608 unsigned int eax, ebx, ecx, edx;
609
610 cpuid(op, &eax, &ebx, &ecx, &edx);
611
612 return ecx;
613 }
614
615 static inline unsigned int cpuid_edx(unsigned int op)
616 {
617 unsigned int eax, ebx, ecx, edx;
618
619 cpuid(op, &eax, &ebx, &ecx, &edx);
620
621 return edx;
622 }
623
624 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
625 static __always_inline void rep_nop(void)
626 {
627 asm volatile("rep; nop" ::: "memory");
628 }
629
630 static __always_inline void cpu_relax(void)
631 {
632 rep_nop();
633 }
634
635 /*
636 * This function forces the icache and prefetched instruction stream to
637 * catch up with reality in two very specific cases:
638 *
639 * a) Text was modified using one virtual address and is about to be executed
640 * from the same physical page at a different virtual address.
641 *
642 * b) Text was modified on a different CPU, may subsequently be
643 * executed on this CPU, and you want to make sure the new version
644 * gets executed. This generally means you're calling this in a IPI.
645 *
646 * If you're calling this for a different reason, you're probably doing
647 * it wrong.
648 */
649 static inline void sync_core(void)
650 {
651 /*
652 * There are quite a few ways to do this. IRET-to-self is nice
653 * because it works on every CPU, at any CPL (so it's compatible
654 * with paravirtualization), and it never exits to a hypervisor.
655 * The only down sides are that it's a bit slow (it seems to be
656 * a bit more than 2x slower than the fastest options) and that
657 * it unmasks NMIs. The "push %cs" is needed because, in
658 * paravirtual environments, __KERNEL_CS may not be a valid CS
659 * value when we do IRET directly.
660 *
661 * In case NMI unmasking or performance ever becomes a problem,
662 * the next best option appears to be MOV-to-CR2 and an
663 * unconditional jump. That sequence also works on all CPUs,
664 * but it will fault at CPL3 (i.e. Xen PV and lguest).
665 *
666 * CPUID is the conventional way, but it's nasty: it doesn't
667 * exist on some 486-like CPUs, and it usually exits to a
668 * hypervisor.
669 *
670 * Like all of Linux's memory ordering operations, this is a
671 * compiler barrier as well.
672 */
673 register void *__sp asm(_ASM_SP);
674
675 #ifdef CONFIG_X86_32
676 asm volatile (
677 "pushfl\n\t"
678 "pushl %%cs\n\t"
679 "pushl $1f\n\t"
680 "iret\n\t"
681 "1:"
682 : "+r" (__sp) : : "memory");
683 #else
684 unsigned int tmp;
685
686 asm volatile (
687 "mov %%ss, %0\n\t"
688 "pushq %q0\n\t"
689 "pushq %%rsp\n\t"
690 "addq $8, (%%rsp)\n\t"
691 "pushfq\n\t"
692 "mov %%cs, %0\n\t"
693 "pushq %q0\n\t"
694 "pushq $1f\n\t"
695 "iretq\n\t"
696 "1:"
697 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
698 #endif
699 }
700
701 extern void select_idle_routine(const struct cpuinfo_x86 *c);
702 extern void amd_e400_c1e_apic_setup(void);
703
704 extern unsigned long boot_option_idle_override;
705
706 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
707 IDLE_POLL};
708
709 extern void enable_sep_cpu(void);
710 extern int sysenter_setup(void);
711
712 extern void early_trap_init(void);
713 void early_trap_pf_init(void);
714
715 /* Defined in head.S */
716 extern struct desc_ptr early_gdt_descr;
717
718 extern void cpu_set_gdt(int);
719 extern void switch_to_new_gdt(int);
720 extern void load_direct_gdt(int);
721 extern void load_fixmap_gdt(int);
722 extern void load_percpu_segment(int);
723 extern void cpu_init(void);
724
725 static inline unsigned long get_debugctlmsr(void)
726 {
727 unsigned long debugctlmsr = 0;
728
729 #ifndef CONFIG_X86_DEBUGCTLMSR
730 if (boot_cpu_data.x86 < 6)
731 return 0;
732 #endif
733 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
734
735 return debugctlmsr;
736 }
737
738 static inline void update_debugctlmsr(unsigned long debugctlmsr)
739 {
740 #ifndef CONFIG_X86_DEBUGCTLMSR
741 if (boot_cpu_data.x86 < 6)
742 return;
743 #endif
744 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
745 }
746
747 extern void set_task_blockstep(struct task_struct *task, bool on);
748
749 /* Boot loader type from the setup header: */
750 extern int bootloader_type;
751 extern int bootloader_version;
752
753 extern char ignore_fpu_irq;
754
755 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
756 #define ARCH_HAS_PREFETCHW
757 #define ARCH_HAS_SPINLOCK_PREFETCH
758
759 #ifdef CONFIG_X86_32
760 # define BASE_PREFETCH ""
761 # define ARCH_HAS_PREFETCH
762 #else
763 # define BASE_PREFETCH "prefetcht0 %P1"
764 #endif
765
766 /*
767 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
768 *
769 * It's not worth to care about 3dnow prefetches for the K6
770 * because they are microcoded there and very slow.
771 */
772 static inline void prefetch(const void *x)
773 {
774 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
775 X86_FEATURE_XMM,
776 "m" (*(const char *)x));
777 }
778
779 /*
780 * 3dnow prefetch to get an exclusive cache line.
781 * Useful for spinlocks to avoid one state transition in the
782 * cache coherency protocol:
783 */
784 static inline void prefetchw(const void *x)
785 {
786 alternative_input(BASE_PREFETCH, "prefetchw %P1",
787 X86_FEATURE_3DNOWPREFETCH,
788 "m" (*(const char *)x));
789 }
790
791 static inline void spin_lock_prefetch(const void *x)
792 {
793 prefetchw(x);
794 }
795
796 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
797 TOP_OF_KERNEL_STACK_PADDING)
798
799 #ifdef CONFIG_X86_32
800 /*
801 * User space process size: 3GB (default).
802 */
803 #define IA32_PAGE_OFFSET PAGE_OFFSET
804 #define TASK_SIZE PAGE_OFFSET
805 #define TASK_SIZE_MAX TASK_SIZE
806 #define STACK_TOP TASK_SIZE
807 #define STACK_TOP_MAX STACK_TOP
808
809 #define INIT_THREAD { \
810 .sp0 = TOP_OF_INIT_STACK, \
811 .sysenter_cs = __KERNEL_CS, \
812 .io_bitmap_ptr = NULL, \
813 .addr_limit = KERNEL_DS, \
814 }
815
816 /*
817 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
818 * This is necessary to guarantee that the entire "struct pt_regs"
819 * is accessible even if the CPU haven't stored the SS/ESP registers
820 * on the stack (interrupt gate does not save these registers
821 * when switching to the same priv ring).
822 * Therefore beware: accessing the ss/esp fields of the
823 * "struct pt_regs" is possible, but they may contain the
824 * completely wrong values.
825 */
826 #define task_pt_regs(task) \
827 ({ \
828 unsigned long __ptr = (unsigned long)task_stack_page(task); \
829 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
830 ((struct pt_regs *)__ptr) - 1; \
831 })
832
833 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
834
835 #else
836 /*
837 * User space process size. 47bits minus one guard page. The guard
838 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
839 * the highest possible canonical userspace address, then that
840 * syscall will enter the kernel with a non-canonical return
841 * address, and SYSRET will explode dangerously. We avoid this
842 * particular problem by preventing anything from being mapped
843 * at the maximum canonical address.
844 */
845 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
846
847 /* This decides where the kernel will search for a free chunk of vm
848 * space during mmap's.
849 */
850 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
851 0xc0000000 : 0xFFFFe000)
852
853 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
854 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
855 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
856 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
857
858 #define STACK_TOP TASK_SIZE
859 #define STACK_TOP_MAX TASK_SIZE_MAX
860
861 #define INIT_THREAD { \
862 .sp0 = TOP_OF_INIT_STACK, \
863 .addr_limit = KERNEL_DS, \
864 }
865
866 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
867 extern unsigned long KSTK_ESP(struct task_struct *task);
868
869 #endif /* CONFIG_X86_64 */
870
871 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
872 unsigned long new_sp);
873
874 /*
875 * This decides where the kernel will search for a free chunk of vm
876 * space during mmap's.
877 */
878 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
879 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE)
880
881 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
882
883 /* Get/set a process' ability to use the timestamp counter instruction */
884 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
885 #define SET_TSC_CTL(val) set_tsc_mode((val))
886
887 extern int get_tsc_mode(unsigned long adr);
888 extern int set_tsc_mode(unsigned int val);
889
890 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
891
892 /* Register/unregister a process' MPX related resource */
893 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
894 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
895
896 #ifdef CONFIG_X86_INTEL_MPX
897 extern int mpx_enable_management(void);
898 extern int mpx_disable_management(void);
899 #else
900 static inline int mpx_enable_management(void)
901 {
902 return -EINVAL;
903 }
904 static inline int mpx_disable_management(void)
905 {
906 return -EINVAL;
907 }
908 #endif /* CONFIG_X86_INTEL_MPX */
909
910 #ifdef CONFIG_CPU_SUP_AMD
911 extern u16 amd_get_nb_id(int cpu);
912 extern u32 amd_get_nodes_per_socket(void);
913 #else
914 static inline u16 amd_get_nb_id(int cpu) { return 0; }
915 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
916 #endif
917
918 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
919 {
920 uint32_t base, eax, signature[3];
921
922 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
923 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
924
925 if (!memcmp(sig, signature, 12) &&
926 (leaves == 0 || ((eax - base) >= leaves)))
927 return base;
928 }
929
930 return 0;
931 }
932
933 extern unsigned long arch_align_stack(unsigned long sp);
934 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
935
936 void default_idle(void);
937 #ifdef CONFIG_XEN
938 bool xen_set_default_idle(void);
939 #else
940 #define xen_set_default_idle 0
941 #endif
942
943 void stop_this_cpu(void *dummy);
944 void df_debug(struct pt_regs *regs, long error_code);
945 #endif /* _ASM_X86_PROCESSOR_H */