]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/include/asm/processor.h
x86/process/64: Move cpu_current_top_of_stack out of TSS
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
38
39 /*
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
42 *
43 * Based on this we disable the IP header alignment in network drivers.
44 */
45 #define NET_IP_ALIGN 0
46
47 #define HBP_NUM 4
48
49 /*
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
53 */
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
57 #else
58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN 0
60 #endif
61
62 enum tlb_infos {
63 ENTRIES,
64 NR_INFO
65 };
66
67 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74
75 /*
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
79 */
80
81 struct cpuinfo_x86 {
82 __u8 x86; /* CPU family */
83 __u8 x86_vendor; /* CPU vendor */
84 __u8 x86_model;
85 __u8 x86_stepping;
86 #ifdef CONFIG_X86_64
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 int x86_tlbsize;
89 #endif
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability[NVMXINTS];
92 #endif
93 __u8 x86_virt_bits;
94 __u8 x86_phys_bits;
95 /* CPUID returned core id bits: */
96 __u8 x86_coreid_bits;
97 __u8 cu_id;
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level;
100 /* Maximum supported CPUID level, -1=no CPUID: */
101 int cpuid_level;
102 /*
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
106 */
107 union {
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 unsigned long x86_capability_alignment;
110 };
111 char x86_vendor_id[16];
112 char x86_model_id[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size;
115 int x86_cache_alignment; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid; /* max index */
118 int x86_cache_occ_scale; /* scale to bytes */
119 int x86_cache_mbm_width_offset;
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 u16 cpu_die_id;
136 u16 logical_die_id;
137 /* Index into per_cpu list: */
138 u16 cpu_index;
139 u32 microcode;
140 /* Address space bits used by the cache internally */
141 u8 x86_cache_bits;
142 unsigned initialized : 1;
143 } __randomize_layout;
144
145 struct cpuid_regs {
146 u32 eax, ebx, ecx, edx;
147 };
148
149 enum cpuid_regs_idx {
150 CPUID_EAX = 0,
151 CPUID_EBX,
152 CPUID_ECX,
153 CPUID_EDX,
154 };
155
156 #define X86_VENDOR_INTEL 0
157 #define X86_VENDOR_CYRIX 1
158 #define X86_VENDOR_AMD 2
159 #define X86_VENDOR_UMC 3
160 #define X86_VENDOR_CENTAUR 5
161 #define X86_VENDOR_TRANSMETA 7
162 #define X86_VENDOR_NSC 8
163 #define X86_VENDOR_HYGON 9
164 #define X86_VENDOR_ZHAOXIN 10
165 #define X86_VENDOR_NUM 11
166
167 #define X86_VENDOR_UNKNOWN 0xff
168
169 /*
170 * capabilities of CPUs
171 */
172 extern struct cpuinfo_x86 boot_cpu_data;
173 extern struct cpuinfo_x86 new_cpu_data;
174
175 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
176 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
177
178 #ifdef CONFIG_SMP
179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
181 #else
182 #define cpu_info boot_cpu_data
183 #define cpu_data(cpu) boot_cpu_data
184 #endif
185
186 extern const struct seq_operations cpuinfo_op;
187
188 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189
190 extern void cpu_detect(struct cpuinfo_x86 *c);
191
192 static inline unsigned long long l1tf_pfn_limit(void)
193 {
194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195 }
196
197 extern void early_cpu_init(void);
198 extern void identify_boot_cpu(void);
199 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200 extern void print_cpu_info(struct cpuinfo_x86 *);
201 void print_cpu_msr(struct cpuinfo_x86 *);
202
203 #ifdef CONFIG_X86_32
204 extern int have_cpuid_p(void);
205 #else
206 static inline int have_cpuid_p(void)
207 {
208 return 1;
209 }
210 #endif
211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213 {
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222 }
223
224 #define native_cpuid_reg(reg) \
225 static inline unsigned int native_cpuid_##reg(unsigned int op) \
226 { \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232 }
233
234 /*
235 * Native CPUID functions returning a single datum.
236 */
237 native_cpuid_reg(eax)
238 native_cpuid_reg(ebx)
239 native_cpuid_reg(ecx)
240 native_cpuid_reg(edx)
241
242 /*
243 * Friendlier CR3 helpers.
244 */
245 static inline unsigned long read_cr3_pa(void)
246 {
247 return __read_cr3() & CR3_ADDR_MASK;
248 }
249
250 static inline unsigned long native_read_cr3_pa(void)
251 {
252 return __native_read_cr3() & CR3_ADDR_MASK;
253 }
254
255 static inline void load_cr3(pgd_t *pgdir)
256 {
257 write_cr3(__sme_pa(pgdir));
258 }
259
260 /*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265 #ifdef CONFIG_X86_32
266 /* This is the TSS defined by the hardware. */
267 struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312 } __attribute__((packed));
313 #else
314 struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317 u64 sp1;
318
319 /*
320 * Since Linux does not use ring 2, the 'sp2' slot is unused by
321 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
322 * the user RSP value.
323 */
324 u64 sp2;
325
326 u64 reserved2;
327 u64 ist[7];
328 u32 reserved3;
329 u32 reserved4;
330 u16 reserved5;
331 u16 io_bitmap_base;
332
333 } __attribute__((packed));
334 #endif
335
336 /*
337 * IO-bitmap sizes:
338 */
339 #define IO_BITMAP_BITS 65536
340 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
341 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
342
343 #define IO_BITMAP_OFFSET_VALID_MAP \
344 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
345 offsetof(struct tss_struct, x86_tss))
346
347 #define IO_BITMAP_OFFSET_VALID_ALL \
348 (offsetof(struct tss_struct, io_bitmap.mapall) - \
349 offsetof(struct tss_struct, x86_tss))
350
351 #ifdef CONFIG_X86_IOPL_IOPERM
352 /*
353 * sizeof(unsigned long) coming from an extra "long" at the end of the
354 * iobitmap. The limit is inclusive, i.e. the last valid byte.
355 */
356 # define __KERNEL_TSS_LIMIT \
357 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
358 sizeof(unsigned long) - 1)
359 #else
360 # define __KERNEL_TSS_LIMIT \
361 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
362 #endif
363
364 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
365 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
366
367 struct entry_stack {
368 char stack[PAGE_SIZE];
369 };
370
371 struct entry_stack_page {
372 struct entry_stack stack;
373 } __aligned(PAGE_SIZE);
374
375 /*
376 * All IO bitmap related data stored in the TSS:
377 */
378 struct x86_io_bitmap {
379 /* The sequence number of the last active bitmap. */
380 u64 prev_sequence;
381
382 /*
383 * Store the dirty size of the last io bitmap offender. The next
384 * one will have to do the cleanup as the switch out to a non io
385 * bitmap user will just set x86_tss.io_bitmap_base to a value
386 * outside of the TSS limit. So for sane tasks there is no need to
387 * actually touch the io_bitmap at all.
388 */
389 unsigned int prev_max;
390
391 /*
392 * The extra 1 is there because the CPU will access an
393 * additional byte beyond the end of the IO permission
394 * bitmap. The extra byte must be all 1 bits, and must
395 * be within the limit.
396 */
397 unsigned long bitmap[IO_BITMAP_LONGS + 1];
398
399 /*
400 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
401 * except the additional byte at the end.
402 */
403 unsigned long mapall[IO_BITMAP_LONGS + 1];
404 };
405
406 struct tss_struct {
407 /*
408 * The fixed hardware portion. This must not cross a page boundary
409 * at risk of violating the SDM's advice and potentially triggering
410 * errata.
411 */
412 struct x86_hw_tss x86_tss;
413
414 struct x86_io_bitmap io_bitmap;
415 } __aligned(PAGE_SIZE);
416
417 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
418
419 /* Per CPU interrupt stacks */
420 struct irq_stack {
421 char stack[IRQ_STACK_SIZE];
422 } __aligned(IRQ_STACK_SIZE);
423
424 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
425
426 #ifdef CONFIG_X86_64
427 struct fixed_percpu_data {
428 /*
429 * GCC hardcodes the stack canary as %gs:40. Since the
430 * irq_stack is the object at %gs:0, we reserve the bottom
431 * 48 bytes of the irq stack for the canary.
432 */
433 char gs_base[40];
434 unsigned long stack_canary;
435 };
436
437 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
438 DECLARE_INIT_PER_CPU(fixed_percpu_data);
439
440 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
441 {
442 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
443 }
444
445 DECLARE_PER_CPU(void *, hardirq_stack_ptr);
446 DECLARE_PER_CPU(bool, hardirq_stack_inuse);
447 extern asmlinkage void ignore_sysret(void);
448
449 /* Save actual FS/GS selectors and bases to current->thread */
450 void current_save_fsgs(void);
451 #else /* X86_64 */
452 #ifdef CONFIG_STACKPROTECTOR
453 /*
454 * Make sure stack canary segment base is cached-aligned:
455 * "For Intel Atom processors, avoid non zero segment base address
456 * that is not aligned to cache line boundary at all cost."
457 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
458 */
459 struct stack_canary {
460 char __pad[20]; /* canary at %gs:20 */
461 unsigned long canary;
462 };
463 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
464 #endif
465 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
466 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
467 #endif /* !X86_64 */
468
469 extern unsigned int fpu_kernel_xstate_size;
470 extern unsigned int fpu_user_xstate_size;
471
472 struct perf_event;
473
474 struct thread_struct {
475 /* Cached TLS descriptors: */
476 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
477 #ifdef CONFIG_X86_32
478 unsigned long sp0;
479 #endif
480 unsigned long sp;
481 #ifdef CONFIG_X86_32
482 unsigned long sysenter_cs;
483 #else
484 unsigned short es;
485 unsigned short ds;
486 unsigned short fsindex;
487 unsigned short gsindex;
488 #endif
489
490 #ifdef CONFIG_X86_64
491 unsigned long fsbase;
492 unsigned long gsbase;
493 #else
494 /*
495 * XXX: this could presumably be unsigned short. Alternatively,
496 * 32-bit kernels could be taught to use fsindex instead.
497 */
498 unsigned long fs;
499 unsigned long gs;
500 #endif
501
502 /* Save middle states of ptrace breakpoints */
503 struct perf_event *ptrace_bps[HBP_NUM];
504 /* Debug status used for traps, single steps, etc... */
505 unsigned long virtual_dr6;
506 /* Keep track of the exact dr7 value set by the user */
507 unsigned long ptrace_dr7;
508 /* Fault info: */
509 unsigned long cr2;
510 unsigned long trap_nr;
511 unsigned long error_code;
512 #ifdef CONFIG_VM86
513 /* Virtual 86 mode info */
514 struct vm86 *vm86;
515 #endif
516 /* IO permissions: */
517 struct io_bitmap *io_bitmap;
518
519 /*
520 * IOPL. Privilege level dependent I/O permission which is
521 * emulated via the I/O bitmap to prevent user space from disabling
522 * interrupts.
523 */
524 unsigned long iopl_emul;
525
526 unsigned int sig_on_uaccess_err:1;
527
528 /* Floating point and extended processor state */
529 struct fpu fpu;
530 /*
531 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
532 * the end.
533 */
534 };
535
536 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
537 static inline void arch_thread_struct_whitelist(unsigned long *offset,
538 unsigned long *size)
539 {
540 *offset = offsetof(struct thread_struct, fpu.state);
541 *size = fpu_kernel_xstate_size;
542 }
543
544 static inline void
545 native_load_sp0(unsigned long sp0)
546 {
547 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
548 }
549
550 static __always_inline void native_swapgs(void)
551 {
552 #ifdef CONFIG_X86_64
553 asm volatile("swapgs" ::: "memory");
554 #endif
555 }
556
557 static inline unsigned long current_top_of_stack(void)
558 {
559 /*
560 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
561 * and around vm86 mode and sp0 on x86_64 is special because of the
562 * entry trampoline.
563 */
564 return this_cpu_read_stable(cpu_current_top_of_stack);
565 }
566
567 static inline bool on_thread_stack(void)
568 {
569 return (unsigned long)(current_top_of_stack() -
570 current_stack_pointer) < THREAD_SIZE;
571 }
572
573 #ifdef CONFIG_PARAVIRT_XXL
574 #include <asm/paravirt.h>
575 #else
576 #define __cpuid native_cpuid
577
578 static inline void load_sp0(unsigned long sp0)
579 {
580 native_load_sp0(sp0);
581 }
582
583 #endif /* CONFIG_PARAVIRT_XXL */
584
585 /* Free all resources held by a thread. */
586 extern void release_thread(struct task_struct *);
587
588 unsigned long get_wchan(struct task_struct *p);
589
590 /*
591 * Generic CPUID function
592 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
593 * resulting in stale register contents being returned.
594 */
595 static inline void cpuid(unsigned int op,
596 unsigned int *eax, unsigned int *ebx,
597 unsigned int *ecx, unsigned int *edx)
598 {
599 *eax = op;
600 *ecx = 0;
601 __cpuid(eax, ebx, ecx, edx);
602 }
603
604 /* Some CPUID calls want 'count' to be placed in ecx */
605 static inline void cpuid_count(unsigned int op, int count,
606 unsigned int *eax, unsigned int *ebx,
607 unsigned int *ecx, unsigned int *edx)
608 {
609 *eax = op;
610 *ecx = count;
611 __cpuid(eax, ebx, ecx, edx);
612 }
613
614 /*
615 * CPUID functions returning a single datum
616 */
617 static inline unsigned int cpuid_eax(unsigned int op)
618 {
619 unsigned int eax, ebx, ecx, edx;
620
621 cpuid(op, &eax, &ebx, &ecx, &edx);
622
623 return eax;
624 }
625
626 static inline unsigned int cpuid_ebx(unsigned int op)
627 {
628 unsigned int eax, ebx, ecx, edx;
629
630 cpuid(op, &eax, &ebx, &ecx, &edx);
631
632 return ebx;
633 }
634
635 static inline unsigned int cpuid_ecx(unsigned int op)
636 {
637 unsigned int eax, ebx, ecx, edx;
638
639 cpuid(op, &eax, &ebx, &ecx, &edx);
640
641 return ecx;
642 }
643
644 static inline unsigned int cpuid_edx(unsigned int op)
645 {
646 unsigned int eax, ebx, ecx, edx;
647
648 cpuid(op, &eax, &ebx, &ecx, &edx);
649
650 return edx;
651 }
652
653 extern void select_idle_routine(const struct cpuinfo_x86 *c);
654 extern void amd_e400_c1e_apic_setup(void);
655
656 extern unsigned long boot_option_idle_override;
657
658 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
659 IDLE_POLL};
660
661 extern void enable_sep_cpu(void);
662 extern int sysenter_setup(void);
663
664
665 /* Defined in head.S */
666 extern struct desc_ptr early_gdt_descr;
667
668 extern void switch_to_new_gdt(int);
669 extern void load_direct_gdt(int);
670 extern void load_fixmap_gdt(int);
671 extern void load_percpu_segment(int);
672 extern void cpu_init(void);
673 extern void cpu_init_exception_handling(void);
674 extern void cr4_init(void);
675
676 static inline unsigned long get_debugctlmsr(void)
677 {
678 unsigned long debugctlmsr = 0;
679
680 #ifndef CONFIG_X86_DEBUGCTLMSR
681 if (boot_cpu_data.x86 < 6)
682 return 0;
683 #endif
684 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
685
686 return debugctlmsr;
687 }
688
689 static inline void update_debugctlmsr(unsigned long debugctlmsr)
690 {
691 #ifndef CONFIG_X86_DEBUGCTLMSR
692 if (boot_cpu_data.x86 < 6)
693 return;
694 #endif
695 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
696 }
697
698 extern void set_task_blockstep(struct task_struct *task, bool on);
699
700 /* Boot loader type from the setup header: */
701 extern int bootloader_type;
702 extern int bootloader_version;
703
704 extern char ignore_fpu_irq;
705
706 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
707 #define ARCH_HAS_PREFETCHW
708 #define ARCH_HAS_SPINLOCK_PREFETCH
709
710 #ifdef CONFIG_X86_32
711 # define BASE_PREFETCH ""
712 # define ARCH_HAS_PREFETCH
713 #else
714 # define BASE_PREFETCH "prefetcht0 %P1"
715 #endif
716
717 /*
718 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
719 *
720 * It's not worth to care about 3dnow prefetches for the K6
721 * because they are microcoded there and very slow.
722 */
723 static inline void prefetch(const void *x)
724 {
725 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
726 X86_FEATURE_XMM,
727 "m" (*(const char *)x));
728 }
729
730 /*
731 * 3dnow prefetch to get an exclusive cache line.
732 * Useful for spinlocks to avoid one state transition in the
733 * cache coherency protocol:
734 */
735 static __always_inline void prefetchw(const void *x)
736 {
737 alternative_input(BASE_PREFETCH, "prefetchw %P1",
738 X86_FEATURE_3DNOWPREFETCH,
739 "m" (*(const char *)x));
740 }
741
742 static inline void spin_lock_prefetch(const void *x)
743 {
744 prefetchw(x);
745 }
746
747 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
748 TOP_OF_KERNEL_STACK_PADDING)
749
750 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
751
752 #define task_pt_regs(task) \
753 ({ \
754 unsigned long __ptr = (unsigned long)task_stack_page(task); \
755 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
756 ((struct pt_regs *)__ptr) - 1; \
757 })
758
759 #ifdef CONFIG_X86_32
760 #define INIT_THREAD { \
761 .sp0 = TOP_OF_INIT_STACK, \
762 .sysenter_cs = __KERNEL_CS, \
763 }
764
765 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
766
767 #else
768 #define INIT_THREAD { }
769
770 extern unsigned long KSTK_ESP(struct task_struct *task);
771
772 #endif /* CONFIG_X86_64 */
773
774 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
775 unsigned long new_sp);
776
777 /*
778 * This decides where the kernel will search for a free chunk of vm
779 * space during mmap's.
780 */
781 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
782 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
783
784 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
785
786 /* Get/set a process' ability to use the timestamp counter instruction */
787 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
788 #define SET_TSC_CTL(val) set_tsc_mode((val))
789
790 extern int get_tsc_mode(unsigned long adr);
791 extern int set_tsc_mode(unsigned int val);
792
793 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
794
795 #ifdef CONFIG_CPU_SUP_AMD
796 extern u32 amd_get_nodes_per_socket(void);
797 #else
798 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
799 #endif
800
801 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
802 {
803 uint32_t base, eax, signature[3];
804
805 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
806 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
807
808 if (!memcmp(sig, signature, 12) &&
809 (leaves == 0 || ((eax - base) >= leaves)))
810 return base;
811 }
812
813 return 0;
814 }
815
816 extern unsigned long arch_align_stack(unsigned long sp);
817 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
818 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
819
820 void default_idle(void);
821 #ifdef CONFIG_XEN
822 bool xen_set_default_idle(void);
823 #else
824 #define xen_set_default_idle 0
825 #endif
826
827 void stop_this_cpu(void *dummy);
828 void microcode_check(void);
829
830 enum l1tf_mitigations {
831 L1TF_MITIGATION_OFF,
832 L1TF_MITIGATION_FLUSH_NOWARN,
833 L1TF_MITIGATION_FLUSH,
834 L1TF_MITIGATION_FLUSH_NOSMT,
835 L1TF_MITIGATION_FULL,
836 L1TF_MITIGATION_FULL_FORCE
837 };
838
839 extern enum l1tf_mitigations l1tf_mitigation;
840
841 enum mds_mitigations {
842 MDS_MITIGATION_OFF,
843 MDS_MITIGATION_FULL,
844 MDS_MITIGATION_VMWERV,
845 };
846
847 #endif /* _ASM_X86_PROCESSOR_H */