]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/processor.h
x86/pti: Put the LDT in its own PGD if PTI is on
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head_32.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_64
93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 int x86_tlbsize;
95 #endif
96 __u8 x86_virt_bits;
97 __u8 x86_phys_bits;
98 /* CPUID returned core id bits: */
99 __u8 x86_coreid_bits;
100 __u8 cu_id;
101 /* Max extended CPUID function supported: */
102 __u32 extended_cpuid_level;
103 /* Maximum supported CPUID level, -1=no CPUID: */
104 int cpuid_level;
105 __u32 x86_capability[NCAPINTS + NBUGINTS];
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 /* Index into per_cpu list: */
130 u16 cpu_index;
131 u32 microcode;
132 } __randomize_layout;
133
134 struct cpuid_regs {
135 u32 eax, ebx, ecx, edx;
136 };
137
138 enum cpuid_regs_idx {
139 CPUID_EAX = 0,
140 CPUID_EBX,
141 CPUID_ECX,
142 CPUID_EDX,
143 };
144
145 #define X86_VENDOR_INTEL 0
146 #define X86_VENDOR_CYRIX 1
147 #define X86_VENDOR_AMD 2
148 #define X86_VENDOR_UMC 3
149 #define X86_VENDOR_CENTAUR 5
150 #define X86_VENDOR_TRANSMETA 7
151 #define X86_VENDOR_NSC 8
152 #define X86_VENDOR_NUM 9
153
154 #define X86_VENDOR_UNKNOWN 0xff
155
156 /*
157 * capabilities of CPUs
158 */
159 extern struct cpuinfo_x86 boot_cpu_data;
160 extern struct cpuinfo_x86 new_cpu_data;
161
162 #include <linux/thread_info.h>
163
164 extern struct x86_hw_tss doublefault_tss;
165 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
166 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
167
168 #ifdef CONFIG_SMP
169 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
170 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
171 #else
172 #define cpu_info boot_cpu_data
173 #define cpu_data(cpu) boot_cpu_data
174 #endif
175
176 extern const struct seq_operations cpuinfo_op;
177
178 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
179
180 extern void cpu_detect(struct cpuinfo_x86 *c);
181
182 extern void early_cpu_init(void);
183 extern void identify_boot_cpu(void);
184 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
185 extern void print_cpu_info(struct cpuinfo_x86 *);
186 void print_cpu_msr(struct cpuinfo_x86 *);
187 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
188 extern u32 get_scattered_cpuid_leaf(unsigned int level,
189 unsigned int sub_leaf,
190 enum cpuid_regs_idx reg);
191 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
192 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
193
194 extern void detect_extended_topology(struct cpuinfo_x86 *c);
195 extern void detect_ht(struct cpuinfo_x86 *c);
196
197 #ifdef CONFIG_X86_32
198 extern int have_cpuid_p(void);
199 #else
200 static inline int have_cpuid_p(void)
201 {
202 return 1;
203 }
204 #endif
205 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
206 unsigned int *ecx, unsigned int *edx)
207 {
208 /* ecx is often an input as well as an output. */
209 asm volatile("cpuid"
210 : "=a" (*eax),
211 "=b" (*ebx),
212 "=c" (*ecx),
213 "=d" (*edx)
214 : "0" (*eax), "2" (*ecx)
215 : "memory");
216 }
217
218 #define native_cpuid_reg(reg) \
219 static inline unsigned int native_cpuid_##reg(unsigned int op) \
220 { \
221 unsigned int eax = op, ebx, ecx = 0, edx; \
222 \
223 native_cpuid(&eax, &ebx, &ecx, &edx); \
224 \
225 return reg; \
226 }
227
228 /*
229 * Native CPUID functions returning a single datum.
230 */
231 native_cpuid_reg(eax)
232 native_cpuid_reg(ebx)
233 native_cpuid_reg(ecx)
234 native_cpuid_reg(edx)
235
236 /*
237 * Friendlier CR3 helpers.
238 */
239 static inline unsigned long read_cr3_pa(void)
240 {
241 return __read_cr3() & CR3_ADDR_MASK;
242 }
243
244 static inline void load_cr3(pgd_t *pgdir)
245 {
246 write_cr3(__pa(pgdir));
247 }
248
249 /*
250 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
251 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
252 * unrelated to the task-switch mechanism:
253 */
254 #ifdef CONFIG_X86_32
255 /* This is the TSS defined by the hardware. */
256 struct x86_hw_tss {
257 unsigned short back_link, __blh;
258 unsigned long sp0;
259 unsigned short ss0, __ss0h;
260 unsigned long sp1;
261
262 /*
263 * We don't use ring 1, so ss1 is a convenient scratch space in
264 * the same cacheline as sp0. We use ss1 to cache the value in
265 * MSR_IA32_SYSENTER_CS. When we context switch
266 * MSR_IA32_SYSENTER_CS, we first check if the new value being
267 * written matches ss1, and, if it's not, then we wrmsr the new
268 * value and update ss1.
269 *
270 * The only reason we context switch MSR_IA32_SYSENTER_CS is
271 * that we set it to zero in vm86 tasks to avoid corrupting the
272 * stack if we were to go through the sysenter path from vm86
273 * mode.
274 */
275 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
276
277 unsigned short __ss1h;
278 unsigned long sp2;
279 unsigned short ss2, __ss2h;
280 unsigned long __cr3;
281 unsigned long ip;
282 unsigned long flags;
283 unsigned long ax;
284 unsigned long cx;
285 unsigned long dx;
286 unsigned long bx;
287 unsigned long sp;
288 unsigned long bp;
289 unsigned long si;
290 unsigned long di;
291 unsigned short es, __esh;
292 unsigned short cs, __csh;
293 unsigned short ss, __ssh;
294 unsigned short ds, __dsh;
295 unsigned short fs, __fsh;
296 unsigned short gs, __gsh;
297 unsigned short ldt, __ldth;
298 unsigned short trace;
299 unsigned short io_bitmap_base;
300
301 } __attribute__((packed));
302 #else
303 struct x86_hw_tss {
304 u32 reserved1;
305 u64 sp0;
306
307 /*
308 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
309 * Linux does not use ring 1, so sp1 is not otherwise needed.
310 */
311 u64 sp1;
312
313 u64 sp2;
314 u64 reserved2;
315 u64 ist[7];
316 u32 reserved3;
317 u32 reserved4;
318 u16 reserved5;
319 u16 io_bitmap_base;
320
321 } __attribute__((packed));
322 #endif
323
324 /*
325 * IO-bitmap sizes:
326 */
327 #define IO_BITMAP_BITS 65536
328 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
329 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
330 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
331 #define INVALID_IO_BITMAP_OFFSET 0x8000
332
333 struct entry_stack {
334 unsigned long words[64];
335 };
336
337 struct entry_stack_page {
338 struct entry_stack stack;
339 } __aligned(PAGE_SIZE);
340
341 struct tss_struct {
342 /*
343 * The fixed hardware portion. This must not cross a page boundary
344 * at risk of violating the SDM's advice and potentially triggering
345 * errata.
346 */
347 struct x86_hw_tss x86_tss;
348
349 /*
350 * The extra 1 is there because the CPU will access an
351 * additional byte beyond the end of the IO permission
352 * bitmap. The extra byte must be all 1 bits, and must
353 * be within the limit.
354 */
355 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
356 } __aligned(PAGE_SIZE);
357
358 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
359
360 /*
361 * sizeof(unsigned long) coming from an extra "long" at the end
362 * of the iobitmap.
363 *
364 * -1? seg base+limit should be pointing to the address of the
365 * last valid byte
366 */
367 #define __KERNEL_TSS_LIMIT \
368 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
369
370 #ifdef CONFIG_X86_32
371 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
372 #else
373 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
374 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
375 #endif
376
377 /*
378 * Save the original ist values for checking stack pointers during debugging
379 */
380 struct orig_ist {
381 unsigned long ist[7];
382 };
383
384 #ifdef CONFIG_X86_64
385 DECLARE_PER_CPU(struct orig_ist, orig_ist);
386
387 union irq_stack_union {
388 char irq_stack[IRQ_STACK_SIZE];
389 /*
390 * GCC hardcodes the stack canary as %gs:40. Since the
391 * irq_stack is the object at %gs:0, we reserve the bottom
392 * 48 bytes of the irq stack for the canary.
393 */
394 struct {
395 char gs_base[40];
396 unsigned long stack_canary;
397 };
398 };
399
400 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
401 DECLARE_INIT_PER_CPU(irq_stack_union);
402
403 DECLARE_PER_CPU(char *, irq_stack_ptr);
404 DECLARE_PER_CPU(unsigned int, irq_count);
405 extern asmlinkage void ignore_sysret(void);
406 #else /* X86_64 */
407 #ifdef CONFIG_CC_STACKPROTECTOR
408 /*
409 * Make sure stack canary segment base is cached-aligned:
410 * "For Intel Atom processors, avoid non zero segment base address
411 * that is not aligned to cache line boundary at all cost."
412 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
413 */
414 struct stack_canary {
415 char __pad[20]; /* canary at %gs:20 */
416 unsigned long canary;
417 };
418 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
419 #endif
420 /*
421 * per-CPU IRQ handling stacks
422 */
423 struct irq_stack {
424 u32 stack[THREAD_SIZE/sizeof(u32)];
425 } __aligned(THREAD_SIZE);
426
427 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
428 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
429 #endif /* X86_64 */
430
431 extern unsigned int fpu_kernel_xstate_size;
432 extern unsigned int fpu_user_xstate_size;
433
434 struct perf_event;
435
436 typedef struct {
437 unsigned long seg;
438 } mm_segment_t;
439
440 struct thread_struct {
441 /* Cached TLS descriptors: */
442 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
443 #ifdef CONFIG_X86_32
444 unsigned long sp0;
445 #endif
446 unsigned long sp;
447 #ifdef CONFIG_X86_32
448 unsigned long sysenter_cs;
449 #else
450 unsigned short es;
451 unsigned short ds;
452 unsigned short fsindex;
453 unsigned short gsindex;
454 #endif
455
456 u32 status; /* thread synchronous flags */
457
458 #ifdef CONFIG_X86_64
459 unsigned long fsbase;
460 unsigned long gsbase;
461 #else
462 /*
463 * XXX: this could presumably be unsigned short. Alternatively,
464 * 32-bit kernels could be taught to use fsindex instead.
465 */
466 unsigned long fs;
467 unsigned long gs;
468 #endif
469
470 /* Save middle states of ptrace breakpoints */
471 struct perf_event *ptrace_bps[HBP_NUM];
472 /* Debug status used for traps, single steps, etc... */
473 unsigned long debugreg6;
474 /* Keep track of the exact dr7 value set by the user */
475 unsigned long ptrace_dr7;
476 /* Fault info: */
477 unsigned long cr2;
478 unsigned long trap_nr;
479 unsigned long error_code;
480 #ifdef CONFIG_VM86
481 /* Virtual 86 mode info */
482 struct vm86 *vm86;
483 #endif
484 /* IO permissions: */
485 unsigned long *io_bitmap_ptr;
486 unsigned long iopl;
487 /* Max allowed port in the bitmap, in bytes: */
488 unsigned io_bitmap_max;
489
490 mm_segment_t addr_limit;
491
492 unsigned int sig_on_uaccess_err:1;
493 unsigned int uaccess_err:1; /* uaccess failed */
494
495 /* Floating point and extended processor state */
496 struct fpu fpu;
497 /*
498 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
499 * the end.
500 */
501 };
502
503 /*
504 * Thread-synchronous status.
505 *
506 * This is different from the flags in that nobody else
507 * ever touches our thread-synchronous status, so we don't
508 * have to worry about atomic accesses.
509 */
510 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
511
512 /*
513 * Set IOPL bits in EFLAGS from given mask
514 */
515 static inline void native_set_iopl_mask(unsigned mask)
516 {
517 #ifdef CONFIG_X86_32
518 unsigned int reg;
519
520 asm volatile ("pushfl;"
521 "popl %0;"
522 "andl %1, %0;"
523 "orl %2, %0;"
524 "pushl %0;"
525 "popfl"
526 : "=&r" (reg)
527 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
528 #endif
529 }
530
531 static inline void
532 native_load_sp0(unsigned long sp0)
533 {
534 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
535 }
536
537 static inline void native_swapgs(void)
538 {
539 #ifdef CONFIG_X86_64
540 asm volatile("swapgs" ::: "memory");
541 #endif
542 }
543
544 static inline unsigned long current_top_of_stack(void)
545 {
546 /*
547 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
548 * and around vm86 mode and sp0 on x86_64 is special because of the
549 * entry trampoline.
550 */
551 return this_cpu_read_stable(cpu_current_top_of_stack);
552 }
553
554 static inline bool on_thread_stack(void)
555 {
556 return (unsigned long)(current_top_of_stack() -
557 current_stack_pointer()) < THREAD_SIZE;
558 }
559
560 #ifdef CONFIG_PARAVIRT
561 #include <asm/paravirt.h>
562 #else
563 #define __cpuid native_cpuid
564
565 static inline void load_sp0(unsigned long sp0)
566 {
567 native_load_sp0(sp0);
568 }
569
570 #define set_iopl_mask native_set_iopl_mask
571 #endif /* CONFIG_PARAVIRT */
572
573 /* Free all resources held by a thread. */
574 extern void release_thread(struct task_struct *);
575
576 unsigned long get_wchan(struct task_struct *p);
577
578 /*
579 * Generic CPUID function
580 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
581 * resulting in stale register contents being returned.
582 */
583 static inline void cpuid(unsigned int op,
584 unsigned int *eax, unsigned int *ebx,
585 unsigned int *ecx, unsigned int *edx)
586 {
587 *eax = op;
588 *ecx = 0;
589 __cpuid(eax, ebx, ecx, edx);
590 }
591
592 /* Some CPUID calls want 'count' to be placed in ecx */
593 static inline void cpuid_count(unsigned int op, int count,
594 unsigned int *eax, unsigned int *ebx,
595 unsigned int *ecx, unsigned int *edx)
596 {
597 *eax = op;
598 *ecx = count;
599 __cpuid(eax, ebx, ecx, edx);
600 }
601
602 /*
603 * CPUID functions returning a single datum
604 */
605 static inline unsigned int cpuid_eax(unsigned int op)
606 {
607 unsigned int eax, ebx, ecx, edx;
608
609 cpuid(op, &eax, &ebx, &ecx, &edx);
610
611 return eax;
612 }
613
614 static inline unsigned int cpuid_ebx(unsigned int op)
615 {
616 unsigned int eax, ebx, ecx, edx;
617
618 cpuid(op, &eax, &ebx, &ecx, &edx);
619
620 return ebx;
621 }
622
623 static inline unsigned int cpuid_ecx(unsigned int op)
624 {
625 unsigned int eax, ebx, ecx, edx;
626
627 cpuid(op, &eax, &ebx, &ecx, &edx);
628
629 return ecx;
630 }
631
632 static inline unsigned int cpuid_edx(unsigned int op)
633 {
634 unsigned int eax, ebx, ecx, edx;
635
636 cpuid(op, &eax, &ebx, &ecx, &edx);
637
638 return edx;
639 }
640
641 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
642 static __always_inline void rep_nop(void)
643 {
644 asm volatile("rep; nop" ::: "memory");
645 }
646
647 static __always_inline void cpu_relax(void)
648 {
649 rep_nop();
650 }
651
652 /*
653 * This function forces the icache and prefetched instruction stream to
654 * catch up with reality in two very specific cases:
655 *
656 * a) Text was modified using one virtual address and is about to be executed
657 * from the same physical page at a different virtual address.
658 *
659 * b) Text was modified on a different CPU, may subsequently be
660 * executed on this CPU, and you want to make sure the new version
661 * gets executed. This generally means you're calling this in a IPI.
662 *
663 * If you're calling this for a different reason, you're probably doing
664 * it wrong.
665 */
666 static inline void sync_core(void)
667 {
668 /*
669 * There are quite a few ways to do this. IRET-to-self is nice
670 * because it works on every CPU, at any CPL (so it's compatible
671 * with paravirtualization), and it never exits to a hypervisor.
672 * The only down sides are that it's a bit slow (it seems to be
673 * a bit more than 2x slower than the fastest options) and that
674 * it unmasks NMIs. The "push %cs" is needed because, in
675 * paravirtual environments, __KERNEL_CS may not be a valid CS
676 * value when we do IRET directly.
677 *
678 * In case NMI unmasking or performance ever becomes a problem,
679 * the next best option appears to be MOV-to-CR2 and an
680 * unconditional jump. That sequence also works on all CPUs,
681 * but it will fault at CPL3 (i.e. Xen PV and lguest).
682 *
683 * CPUID is the conventional way, but it's nasty: it doesn't
684 * exist on some 486-like CPUs, and it usually exits to a
685 * hypervisor.
686 *
687 * Like all of Linux's memory ordering operations, this is a
688 * compiler barrier as well.
689 */
690 register void *__sp asm(_ASM_SP);
691
692 #ifdef CONFIG_X86_32
693 asm volatile (
694 "pushfl\n\t"
695 "pushl %%cs\n\t"
696 "pushl $1f\n\t"
697 "iret\n\t"
698 "1:"
699 : "+r" (__sp) : : "memory");
700 #else
701 unsigned int tmp;
702
703 asm volatile (
704 "mov %%ss, %0\n\t"
705 "pushq %q0\n\t"
706 "pushq %%rsp\n\t"
707 "addq $8, (%%rsp)\n\t"
708 "pushfq\n\t"
709 "mov %%cs, %0\n\t"
710 "pushq %q0\n\t"
711 "pushq $1f\n\t"
712 "iretq\n\t"
713 "1:"
714 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
715 #endif
716 }
717
718 extern void select_idle_routine(const struct cpuinfo_x86 *c);
719 extern void amd_e400_c1e_apic_setup(void);
720
721 extern unsigned long boot_option_idle_override;
722
723 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
724 IDLE_POLL};
725
726 extern void enable_sep_cpu(void);
727 extern int sysenter_setup(void);
728
729 extern void early_trap_init(void);
730 void early_trap_pf_init(void);
731
732 /* Defined in head.S */
733 extern struct desc_ptr early_gdt_descr;
734
735 extern void cpu_set_gdt(int);
736 extern void switch_to_new_gdt(int);
737 extern void load_direct_gdt(int);
738 extern void load_fixmap_gdt(int);
739 extern void load_percpu_segment(int);
740 extern void cpu_init(void);
741
742 static inline unsigned long get_debugctlmsr(void)
743 {
744 unsigned long debugctlmsr = 0;
745
746 #ifndef CONFIG_X86_DEBUGCTLMSR
747 if (boot_cpu_data.x86 < 6)
748 return 0;
749 #endif
750 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
751
752 return debugctlmsr;
753 }
754
755 static inline void update_debugctlmsr(unsigned long debugctlmsr)
756 {
757 #ifndef CONFIG_X86_DEBUGCTLMSR
758 if (boot_cpu_data.x86 < 6)
759 return;
760 #endif
761 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
762 }
763
764 extern void set_task_blockstep(struct task_struct *task, bool on);
765
766 /* Boot loader type from the setup header: */
767 extern int bootloader_type;
768 extern int bootloader_version;
769
770 extern char ignore_fpu_irq;
771
772 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
773 #define ARCH_HAS_PREFETCHW
774 #define ARCH_HAS_SPINLOCK_PREFETCH
775
776 #ifdef CONFIG_X86_32
777 # define BASE_PREFETCH ""
778 # define ARCH_HAS_PREFETCH
779 #else
780 # define BASE_PREFETCH "prefetcht0 %P1"
781 #endif
782
783 /*
784 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
785 *
786 * It's not worth to care about 3dnow prefetches for the K6
787 * because they are microcoded there and very slow.
788 */
789 static inline void prefetch(const void *x)
790 {
791 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
792 X86_FEATURE_XMM,
793 "m" (*(const char *)x));
794 }
795
796 /*
797 * 3dnow prefetch to get an exclusive cache line.
798 * Useful for spinlocks to avoid one state transition in the
799 * cache coherency protocol:
800 */
801 static inline void prefetchw(const void *x)
802 {
803 alternative_input(BASE_PREFETCH, "prefetchw %P1",
804 X86_FEATURE_3DNOWPREFETCH,
805 "m" (*(const char *)x));
806 }
807
808 static inline void spin_lock_prefetch(const void *x)
809 {
810 prefetchw(x);
811 }
812
813 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
814 TOP_OF_KERNEL_STACK_PADDING)
815
816 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
817
818 #define task_pt_regs(task) \
819 ({ \
820 unsigned long __ptr = (unsigned long)task_stack_page(task); \
821 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
822 ((struct pt_regs *)__ptr) - 1; \
823 })
824
825 #ifdef CONFIG_X86_32
826 /*
827 * User space process size: 3GB (default).
828 */
829 #define IA32_PAGE_OFFSET PAGE_OFFSET
830 #define TASK_SIZE PAGE_OFFSET
831 #define TASK_SIZE_MAX TASK_SIZE
832 #define STACK_TOP TASK_SIZE
833 #define STACK_TOP_MAX STACK_TOP
834
835 #define INIT_THREAD { \
836 .sp0 = TOP_OF_INIT_STACK, \
837 .sysenter_cs = __KERNEL_CS, \
838 .io_bitmap_ptr = NULL, \
839 .addr_limit = KERNEL_DS, \
840 }
841
842 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
843
844 #else
845 /*
846 * User space process size. This is the first address outside the user range.
847 * There are a few constraints that determine this:
848 *
849 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
850 * address, then that syscall will enter the kernel with a
851 * non-canonical return address, and SYSRET will explode dangerously.
852 * We avoid this particular problem by preventing anything executable
853 * from being mapped at the maximum canonical address.
854 *
855 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
856 * CPUs malfunction if they execute code from the highest canonical page.
857 * They'll speculate right off the end of the canonical space, and
858 * bad things happen. This is worked around in the same way as the
859 * Intel problem.
860 *
861 * With page table isolation enabled, we map the LDT in ... [stay tuned]
862 */
863 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
864
865 /* This decides where the kernel will search for a free chunk of vm
866 * space during mmap's.
867 */
868 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
869 0xc0000000 : 0xFFFFe000)
870
871 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
872 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
873 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
874 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
875
876 #define STACK_TOP TASK_SIZE
877 #define STACK_TOP_MAX TASK_SIZE_MAX
878
879 #define INIT_THREAD { \
880 .addr_limit = KERNEL_DS, \
881 }
882
883 extern unsigned long KSTK_ESP(struct task_struct *task);
884
885 #endif /* CONFIG_X86_64 */
886
887 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
888 unsigned long new_sp);
889
890 /*
891 * This decides where the kernel will search for a free chunk of vm
892 * space during mmap's.
893 */
894 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
895 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE)
896
897 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
898
899 /* Get/set a process' ability to use the timestamp counter instruction */
900 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
901 #define SET_TSC_CTL(val) set_tsc_mode((val))
902
903 extern int get_tsc_mode(unsigned long adr);
904 extern int set_tsc_mode(unsigned int val);
905
906 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
907
908 /* Register/unregister a process' MPX related resource */
909 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
910 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
911
912 #ifdef CONFIG_X86_INTEL_MPX
913 extern int mpx_enable_management(void);
914 extern int mpx_disable_management(void);
915 #else
916 static inline int mpx_enable_management(void)
917 {
918 return -EINVAL;
919 }
920 static inline int mpx_disable_management(void)
921 {
922 return -EINVAL;
923 }
924 #endif /* CONFIG_X86_INTEL_MPX */
925
926 #ifdef CONFIG_CPU_SUP_AMD
927 extern u16 amd_get_nb_id(int cpu);
928 extern u32 amd_get_nodes_per_socket(void);
929 #else
930 static inline u16 amd_get_nb_id(int cpu) { return 0; }
931 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
932 #endif
933
934 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
935 {
936 uint32_t base, eax, signature[3];
937
938 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
939 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
940
941 if (!memcmp(sig, signature, 12) &&
942 (leaves == 0 || ((eax - base) >= leaves)))
943 return base;
944 }
945
946 return 0;
947 }
948
949 extern unsigned long arch_align_stack(unsigned long sp);
950 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
951
952 void default_idle(void);
953 #ifdef CONFIG_XEN
954 bool xen_set_default_idle(void);
955 #else
956 #define xen_set_default_idle 0
957 #endif
958
959 void stop_this_cpu(void *dummy);
960 void df_debug(struct pt_regs *regs, long error_code);
961 #endif /* _ASM_X86_PROCESSOR_H */