]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/include/asm/processor.h
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35
36 /*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42 #define NET_IP_ALIGN 0
43
44 #define HBP_NUM 4
45
46 /*
47 * These alignment constraints are for performance in the vSMP case,
48 * but in the task_struct case we must also meet hardware imposed
49 * alignment requirements of the FPU state:
50 */
51 #ifdef CONFIG_X86_VSMP
52 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
53 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
54 #else
55 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
56 # define ARCH_MIN_MMSTRUCT_ALIGN 0
57 #endif
58
59 enum tlb_infos {
60 ENTRIES,
61 NR_INFO
62 };
63
64 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
65 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
66 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
67 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
71
72 /*
73 * CPU type and hardware bug flags. Kept separately for each CPU.
74 * Members of this structure are referenced in head_32.S, so think twice
75 * before touching them. [mj]
76 */
77
78 struct cpuinfo_x86 {
79 __u8 x86; /* CPU family */
80 __u8 x86_vendor; /* CPU vendor */
81 __u8 x86_model;
82 __u8 x86_stepping;
83 #ifdef CONFIG_X86_64
84 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
85 int x86_tlbsize;
86 #endif
87 __u8 x86_virt_bits;
88 __u8 x86_phys_bits;
89 /* CPUID returned core id bits: */
90 __u8 x86_coreid_bits;
91 __u8 cu_id;
92 /* Max extended CPUID function supported: */
93 __u32 extended_cpuid_level;
94 /* Maximum supported CPUID level, -1=no CPUID: */
95 int cpuid_level;
96 /*
97 * Align to size of unsigned long because the x86_capability array
98 * is passed to bitops which require the alignment. Use unnamed
99 * union to enforce the array is aligned to size of unsigned long.
100 */
101 union {
102 __u32 x86_capability[NCAPINTS + NBUGINTS];
103 unsigned long x86_capability_alignment;
104 };
105 char x86_vendor_id[16];
106 char x86_model_id[64];
107 /* in KB - valid for CPUS which support this call: */
108 unsigned int x86_cache_size;
109 int x86_cache_alignment; /* In bytes */
110 /* Cache QoS architectural values: */
111 int x86_cache_max_rmid; /* max index */
112 int x86_cache_occ_scale; /* scale to bytes */
113 int x86_power;
114 unsigned long loops_per_jiffy;
115 /* cpuid returned max cores value: */
116 u16 x86_max_cores;
117 u16 apicid;
118 u16 initial_apicid;
119 u16 x86_clflush_size;
120 /* number of cores as seen by the OS: */
121 u16 booted_cores;
122 /* Physical processor id: */
123 u16 phys_proc_id;
124 /* Logical processor id: */
125 u16 logical_proc_id;
126 /* Core id: */
127 u16 cpu_core_id;
128 u16 cpu_die_id;
129 u16 logical_die_id;
130 /* Index into per_cpu list: */
131 u16 cpu_index;
132 u32 microcode;
133 /* Address space bits used by the cache internally */
134 u8 x86_cache_bits;
135 unsigned initialized : 1;
136 } __randomize_layout;
137
138 struct cpuid_regs {
139 u32 eax, ebx, ecx, edx;
140 };
141
142 enum cpuid_regs_idx {
143 CPUID_EAX = 0,
144 CPUID_EBX,
145 CPUID_ECX,
146 CPUID_EDX,
147 };
148
149 #define X86_VENDOR_INTEL 0
150 #define X86_VENDOR_CYRIX 1
151 #define X86_VENDOR_AMD 2
152 #define X86_VENDOR_UMC 3
153 #define X86_VENDOR_CENTAUR 5
154 #define X86_VENDOR_TRANSMETA 7
155 #define X86_VENDOR_NSC 8
156 #define X86_VENDOR_HYGON 9
157 #define X86_VENDOR_ZHAOXIN 10
158 #define X86_VENDOR_NUM 11
159
160 #define X86_VENDOR_UNKNOWN 0xff
161
162 /*
163 * capabilities of CPUs
164 */
165 extern struct cpuinfo_x86 boot_cpu_data;
166 extern struct cpuinfo_x86 new_cpu_data;
167
168 extern struct x86_hw_tss doublefault_tss;
169 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
170 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
171
172 #ifdef CONFIG_SMP
173 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
175 #else
176 #define cpu_info boot_cpu_data
177 #define cpu_data(cpu) boot_cpu_data
178 #endif
179
180 extern const struct seq_operations cpuinfo_op;
181
182 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
183
184 extern void cpu_detect(struct cpuinfo_x86 *c);
185
186 static inline unsigned long long l1tf_pfn_limit(void)
187 {
188 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
189 }
190
191 extern void early_cpu_init(void);
192 extern void identify_boot_cpu(void);
193 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
194 extern void print_cpu_info(struct cpuinfo_x86 *);
195 void print_cpu_msr(struct cpuinfo_x86 *);
196
197 #ifdef CONFIG_X86_32
198 extern int have_cpuid_p(void);
199 #else
200 static inline int have_cpuid_p(void)
201 {
202 return 1;
203 }
204 #endif
205 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
206 unsigned int *ecx, unsigned int *edx)
207 {
208 /* ecx is often an input as well as an output. */
209 asm volatile("cpuid"
210 : "=a" (*eax),
211 "=b" (*ebx),
212 "=c" (*ecx),
213 "=d" (*edx)
214 : "0" (*eax), "2" (*ecx)
215 : "memory");
216 }
217
218 #define native_cpuid_reg(reg) \
219 static inline unsigned int native_cpuid_##reg(unsigned int op) \
220 { \
221 unsigned int eax = op, ebx, ecx = 0, edx; \
222 \
223 native_cpuid(&eax, &ebx, &ecx, &edx); \
224 \
225 return reg; \
226 }
227
228 /*
229 * Native CPUID functions returning a single datum.
230 */
231 native_cpuid_reg(eax)
232 native_cpuid_reg(ebx)
233 native_cpuid_reg(ecx)
234 native_cpuid_reg(edx)
235
236 /*
237 * Friendlier CR3 helpers.
238 */
239 static inline unsigned long read_cr3_pa(void)
240 {
241 return __read_cr3() & CR3_ADDR_MASK;
242 }
243
244 static inline unsigned long native_read_cr3_pa(void)
245 {
246 return __native_read_cr3() & CR3_ADDR_MASK;
247 }
248
249 static inline void load_cr3(pgd_t *pgdir)
250 {
251 write_cr3(__sme_pa(pgdir));
252 }
253
254 /*
255 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
256 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
257 * unrelated to the task-switch mechanism:
258 */
259 #ifdef CONFIG_X86_32
260 /* This is the TSS defined by the hardware. */
261 struct x86_hw_tss {
262 unsigned short back_link, __blh;
263 unsigned long sp0;
264 unsigned short ss0, __ss0h;
265 unsigned long sp1;
266
267 /*
268 * We don't use ring 1, so ss1 is a convenient scratch space in
269 * the same cacheline as sp0. We use ss1 to cache the value in
270 * MSR_IA32_SYSENTER_CS. When we context switch
271 * MSR_IA32_SYSENTER_CS, we first check if the new value being
272 * written matches ss1, and, if it's not, then we wrmsr the new
273 * value and update ss1.
274 *
275 * The only reason we context switch MSR_IA32_SYSENTER_CS is
276 * that we set it to zero in vm86 tasks to avoid corrupting the
277 * stack if we were to go through the sysenter path from vm86
278 * mode.
279 */
280 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
281
282 unsigned short __ss1h;
283 unsigned long sp2;
284 unsigned short ss2, __ss2h;
285 unsigned long __cr3;
286 unsigned long ip;
287 unsigned long flags;
288 unsigned long ax;
289 unsigned long cx;
290 unsigned long dx;
291 unsigned long bx;
292 unsigned long sp;
293 unsigned long bp;
294 unsigned long si;
295 unsigned long di;
296 unsigned short es, __esh;
297 unsigned short cs, __csh;
298 unsigned short ss, __ssh;
299 unsigned short ds, __dsh;
300 unsigned short fs, __fsh;
301 unsigned short gs, __gsh;
302 unsigned short ldt, __ldth;
303 unsigned short trace;
304 unsigned short io_bitmap_base;
305
306 } __attribute__((packed));
307 #else
308 struct x86_hw_tss {
309 u32 reserved1;
310 u64 sp0;
311
312 /*
313 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
314 * Linux does not use ring 1, so sp1 is not otherwise needed.
315 */
316 u64 sp1;
317
318 /*
319 * Since Linux does not use ring 2, the 'sp2' slot is unused by
320 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
321 * the user RSP value.
322 */
323 u64 sp2;
324
325 u64 reserved2;
326 u64 ist[7];
327 u32 reserved3;
328 u32 reserved4;
329 u16 reserved5;
330 u16 io_bitmap_base;
331
332 } __attribute__((packed));
333 #endif
334
335 /*
336 * IO-bitmap sizes:
337 */
338 #define IO_BITMAP_BITS 65536
339 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
340 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
341 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
342 #define INVALID_IO_BITMAP_OFFSET 0x8000
343
344 struct entry_stack {
345 unsigned long words[64];
346 };
347
348 struct entry_stack_page {
349 struct entry_stack stack;
350 } __aligned(PAGE_SIZE);
351
352 struct tss_struct {
353 /*
354 * The fixed hardware portion. This must not cross a page boundary
355 * at risk of violating the SDM's advice and potentially triggering
356 * errata.
357 */
358 struct x86_hw_tss x86_tss;
359
360 /*
361 * The extra 1 is there because the CPU will access an
362 * additional byte beyond the end of the IO permission
363 * bitmap. The extra byte must be all 1 bits, and must
364 * be within the limit.
365 */
366 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
367 } __aligned(PAGE_SIZE);
368
369 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
370
371 /*
372 * sizeof(unsigned long) coming from an extra "long" at the end
373 * of the iobitmap.
374 *
375 * -1? seg base+limit should be pointing to the address of the
376 * last valid byte
377 */
378 #define __KERNEL_TSS_LIMIT \
379 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
380
381 /* Per CPU interrupt stacks */
382 struct irq_stack {
383 char stack[IRQ_STACK_SIZE];
384 } __aligned(IRQ_STACK_SIZE);
385
386 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
387
388 #ifdef CONFIG_X86_32
389 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
390 #else
391 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
392 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
393 #endif
394
395 #ifdef CONFIG_X86_64
396 struct fixed_percpu_data {
397 /*
398 * GCC hardcodes the stack canary as %gs:40. Since the
399 * irq_stack is the object at %gs:0, we reserve the bottom
400 * 48 bytes of the irq stack for the canary.
401 */
402 char gs_base[40];
403 unsigned long stack_canary;
404 };
405
406 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
407 DECLARE_INIT_PER_CPU(fixed_percpu_data);
408
409 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
410 {
411 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
412 }
413
414 DECLARE_PER_CPU(unsigned int, irq_count);
415 extern asmlinkage void ignore_sysret(void);
416
417 #if IS_ENABLED(CONFIG_KVM)
418 /* Save actual FS/GS selectors and bases to current->thread */
419 void save_fsgs_for_kvm(void);
420 #endif
421 #else /* X86_64 */
422 #ifdef CONFIG_STACKPROTECTOR
423 /*
424 * Make sure stack canary segment base is cached-aligned:
425 * "For Intel Atom processors, avoid non zero segment base address
426 * that is not aligned to cache line boundary at all cost."
427 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
428 */
429 struct stack_canary {
430 char __pad[20]; /* canary at %gs:20 */
431 unsigned long canary;
432 };
433 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
434 #endif
435 /* Per CPU softirq stack pointer */
436 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
437 #endif /* X86_64 */
438
439 extern unsigned int fpu_kernel_xstate_size;
440 extern unsigned int fpu_user_xstate_size;
441
442 struct perf_event;
443
444 typedef struct {
445 unsigned long seg;
446 } mm_segment_t;
447
448 struct thread_struct {
449 /* Cached TLS descriptors: */
450 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
451 #ifdef CONFIG_X86_32
452 unsigned long sp0;
453 #endif
454 unsigned long sp;
455 #ifdef CONFIG_X86_32
456 unsigned long sysenter_cs;
457 #else
458 unsigned short es;
459 unsigned short ds;
460 unsigned short fsindex;
461 unsigned short gsindex;
462 #endif
463
464 #ifdef CONFIG_X86_64
465 unsigned long fsbase;
466 unsigned long gsbase;
467 #else
468 /*
469 * XXX: this could presumably be unsigned short. Alternatively,
470 * 32-bit kernels could be taught to use fsindex instead.
471 */
472 unsigned long fs;
473 unsigned long gs;
474 #endif
475
476 /* Save middle states of ptrace breakpoints */
477 struct perf_event *ptrace_bps[HBP_NUM];
478 /* Debug status used for traps, single steps, etc... */
479 unsigned long debugreg6;
480 /* Keep track of the exact dr7 value set by the user */
481 unsigned long ptrace_dr7;
482 /* Fault info: */
483 unsigned long cr2;
484 unsigned long trap_nr;
485 unsigned long error_code;
486 #ifdef CONFIG_VM86
487 /* Virtual 86 mode info */
488 struct vm86 *vm86;
489 #endif
490 /* IO permissions: */
491 unsigned long *io_bitmap_ptr;
492 unsigned long iopl;
493 /* Max allowed port in the bitmap, in bytes: */
494 unsigned io_bitmap_max;
495
496 mm_segment_t addr_limit;
497
498 unsigned int sig_on_uaccess_err:1;
499 unsigned int uaccess_err:1; /* uaccess failed */
500
501 /* Floating point and extended processor state */
502 struct fpu fpu;
503 /*
504 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
505 * the end.
506 */
507 };
508
509 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
510 static inline void arch_thread_struct_whitelist(unsigned long *offset,
511 unsigned long *size)
512 {
513 *offset = offsetof(struct thread_struct, fpu.state);
514 *size = fpu_kernel_xstate_size;
515 }
516
517 /*
518 * Thread-synchronous status.
519 *
520 * This is different from the flags in that nobody else
521 * ever touches our thread-synchronous status, so we don't
522 * have to worry about atomic accesses.
523 */
524 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
525
526 /*
527 * Set IOPL bits in EFLAGS from given mask
528 */
529 static inline void native_set_iopl_mask(unsigned mask)
530 {
531 #ifdef CONFIG_X86_32
532 unsigned int reg;
533
534 asm volatile ("pushfl;"
535 "popl %0;"
536 "andl %1, %0;"
537 "orl %2, %0;"
538 "pushl %0;"
539 "popfl"
540 : "=&r" (reg)
541 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
542 #endif
543 }
544
545 static inline void
546 native_load_sp0(unsigned long sp0)
547 {
548 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
549 }
550
551 static inline void native_swapgs(void)
552 {
553 #ifdef CONFIG_X86_64
554 asm volatile("swapgs" ::: "memory");
555 #endif
556 }
557
558 static inline unsigned long current_top_of_stack(void)
559 {
560 /*
561 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
562 * and around vm86 mode and sp0 on x86_64 is special because of the
563 * entry trampoline.
564 */
565 return this_cpu_read_stable(cpu_current_top_of_stack);
566 }
567
568 static inline bool on_thread_stack(void)
569 {
570 return (unsigned long)(current_top_of_stack() -
571 current_stack_pointer) < THREAD_SIZE;
572 }
573
574 #ifdef CONFIG_PARAVIRT_XXL
575 #include <asm/paravirt.h>
576 #else
577 #define __cpuid native_cpuid
578
579 static inline void load_sp0(unsigned long sp0)
580 {
581 native_load_sp0(sp0);
582 }
583
584 #define set_iopl_mask native_set_iopl_mask
585 #endif /* CONFIG_PARAVIRT_XXL */
586
587 /* Free all resources held by a thread. */
588 extern void release_thread(struct task_struct *);
589
590 unsigned long get_wchan(struct task_struct *p);
591
592 /*
593 * Generic CPUID function
594 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
595 * resulting in stale register contents being returned.
596 */
597 static inline void cpuid(unsigned int op,
598 unsigned int *eax, unsigned int *ebx,
599 unsigned int *ecx, unsigned int *edx)
600 {
601 *eax = op;
602 *ecx = 0;
603 __cpuid(eax, ebx, ecx, edx);
604 }
605
606 /* Some CPUID calls want 'count' to be placed in ecx */
607 static inline void cpuid_count(unsigned int op, int count,
608 unsigned int *eax, unsigned int *ebx,
609 unsigned int *ecx, unsigned int *edx)
610 {
611 *eax = op;
612 *ecx = count;
613 __cpuid(eax, ebx, ecx, edx);
614 }
615
616 /*
617 * CPUID functions returning a single datum
618 */
619 static inline unsigned int cpuid_eax(unsigned int op)
620 {
621 unsigned int eax, ebx, ecx, edx;
622
623 cpuid(op, &eax, &ebx, &ecx, &edx);
624
625 return eax;
626 }
627
628 static inline unsigned int cpuid_ebx(unsigned int op)
629 {
630 unsigned int eax, ebx, ecx, edx;
631
632 cpuid(op, &eax, &ebx, &ecx, &edx);
633
634 return ebx;
635 }
636
637 static inline unsigned int cpuid_ecx(unsigned int op)
638 {
639 unsigned int eax, ebx, ecx, edx;
640
641 cpuid(op, &eax, &ebx, &ecx, &edx);
642
643 return ecx;
644 }
645
646 static inline unsigned int cpuid_edx(unsigned int op)
647 {
648 unsigned int eax, ebx, ecx, edx;
649
650 cpuid(op, &eax, &ebx, &ecx, &edx);
651
652 return edx;
653 }
654
655 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
656 static __always_inline void rep_nop(void)
657 {
658 asm volatile("rep; nop" ::: "memory");
659 }
660
661 static __always_inline void cpu_relax(void)
662 {
663 rep_nop();
664 }
665
666 /*
667 * This function forces the icache and prefetched instruction stream to
668 * catch up with reality in two very specific cases:
669 *
670 * a) Text was modified using one virtual address and is about to be executed
671 * from the same physical page at a different virtual address.
672 *
673 * b) Text was modified on a different CPU, may subsequently be
674 * executed on this CPU, and you want to make sure the new version
675 * gets executed. This generally means you're calling this in a IPI.
676 *
677 * If you're calling this for a different reason, you're probably doing
678 * it wrong.
679 */
680 static inline void sync_core(void)
681 {
682 /*
683 * There are quite a few ways to do this. IRET-to-self is nice
684 * because it works on every CPU, at any CPL (so it's compatible
685 * with paravirtualization), and it never exits to a hypervisor.
686 * The only down sides are that it's a bit slow (it seems to be
687 * a bit more than 2x slower than the fastest options) and that
688 * it unmasks NMIs. The "push %cs" is needed because, in
689 * paravirtual environments, __KERNEL_CS may not be a valid CS
690 * value when we do IRET directly.
691 *
692 * In case NMI unmasking or performance ever becomes a problem,
693 * the next best option appears to be MOV-to-CR2 and an
694 * unconditional jump. That sequence also works on all CPUs,
695 * but it will fault at CPL3 (i.e. Xen PV).
696 *
697 * CPUID is the conventional way, but it's nasty: it doesn't
698 * exist on some 486-like CPUs, and it usually exits to a
699 * hypervisor.
700 *
701 * Like all of Linux's memory ordering operations, this is a
702 * compiler barrier as well.
703 */
704 #ifdef CONFIG_X86_32
705 asm volatile (
706 "pushfl\n\t"
707 "pushl %%cs\n\t"
708 "pushl $1f\n\t"
709 "iret\n\t"
710 "1:"
711 : ASM_CALL_CONSTRAINT : : "memory");
712 #else
713 unsigned int tmp;
714
715 asm volatile (
716 UNWIND_HINT_SAVE
717 "mov %%ss, %0\n\t"
718 "pushq %q0\n\t"
719 "pushq %%rsp\n\t"
720 "addq $8, (%%rsp)\n\t"
721 "pushfq\n\t"
722 "mov %%cs, %0\n\t"
723 "pushq %q0\n\t"
724 "pushq $1f\n\t"
725 "iretq\n\t"
726 UNWIND_HINT_RESTORE
727 "1:"
728 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
729 #endif
730 }
731
732 extern void select_idle_routine(const struct cpuinfo_x86 *c);
733 extern void amd_e400_c1e_apic_setup(void);
734
735 extern unsigned long boot_option_idle_override;
736
737 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
738 IDLE_POLL};
739
740 extern void enable_sep_cpu(void);
741 extern int sysenter_setup(void);
742
743
744 /* Defined in head.S */
745 extern struct desc_ptr early_gdt_descr;
746
747 extern void switch_to_new_gdt(int);
748 extern void load_direct_gdt(int);
749 extern void load_fixmap_gdt(int);
750 extern void load_percpu_segment(int);
751 extern void cpu_init(void);
752 extern void cr4_init(void);
753
754 static inline unsigned long get_debugctlmsr(void)
755 {
756 unsigned long debugctlmsr = 0;
757
758 #ifndef CONFIG_X86_DEBUGCTLMSR
759 if (boot_cpu_data.x86 < 6)
760 return 0;
761 #endif
762 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
763
764 return debugctlmsr;
765 }
766
767 static inline void update_debugctlmsr(unsigned long debugctlmsr)
768 {
769 #ifndef CONFIG_X86_DEBUGCTLMSR
770 if (boot_cpu_data.x86 < 6)
771 return;
772 #endif
773 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
774 }
775
776 extern void set_task_blockstep(struct task_struct *task, bool on);
777
778 /* Boot loader type from the setup header: */
779 extern int bootloader_type;
780 extern int bootloader_version;
781
782 extern char ignore_fpu_irq;
783
784 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
785 #define ARCH_HAS_PREFETCHW
786 #define ARCH_HAS_SPINLOCK_PREFETCH
787
788 #ifdef CONFIG_X86_32
789 # define BASE_PREFETCH ""
790 # define ARCH_HAS_PREFETCH
791 #else
792 # define BASE_PREFETCH "prefetcht0 %P1"
793 #endif
794
795 /*
796 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
797 *
798 * It's not worth to care about 3dnow prefetches for the K6
799 * because they are microcoded there and very slow.
800 */
801 static inline void prefetch(const void *x)
802 {
803 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
804 X86_FEATURE_XMM,
805 "m" (*(const char *)x));
806 }
807
808 /*
809 * 3dnow prefetch to get an exclusive cache line.
810 * Useful for spinlocks to avoid one state transition in the
811 * cache coherency protocol:
812 */
813 static inline void prefetchw(const void *x)
814 {
815 alternative_input(BASE_PREFETCH, "prefetchw %P1",
816 X86_FEATURE_3DNOWPREFETCH,
817 "m" (*(const char *)x));
818 }
819
820 static inline void spin_lock_prefetch(const void *x)
821 {
822 prefetchw(x);
823 }
824
825 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
826 TOP_OF_KERNEL_STACK_PADDING)
827
828 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
829
830 #define task_pt_regs(task) \
831 ({ \
832 unsigned long __ptr = (unsigned long)task_stack_page(task); \
833 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
834 ((struct pt_regs *)__ptr) - 1; \
835 })
836
837 #ifdef CONFIG_X86_32
838 /*
839 * User space process size: 3GB (default).
840 */
841 #define IA32_PAGE_OFFSET PAGE_OFFSET
842 #define TASK_SIZE PAGE_OFFSET
843 #define TASK_SIZE_LOW TASK_SIZE
844 #define TASK_SIZE_MAX TASK_SIZE
845 #define DEFAULT_MAP_WINDOW TASK_SIZE
846 #define STACK_TOP TASK_SIZE
847 #define STACK_TOP_MAX STACK_TOP
848
849 #define INIT_THREAD { \
850 .sp0 = TOP_OF_INIT_STACK, \
851 .sysenter_cs = __KERNEL_CS, \
852 .io_bitmap_ptr = NULL, \
853 .addr_limit = KERNEL_DS, \
854 }
855
856 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
857
858 #else
859 /*
860 * User space process size. This is the first address outside the user range.
861 * There are a few constraints that determine this:
862 *
863 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
864 * address, then that syscall will enter the kernel with a
865 * non-canonical return address, and SYSRET will explode dangerously.
866 * We avoid this particular problem by preventing anything executable
867 * from being mapped at the maximum canonical address.
868 *
869 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
870 * CPUs malfunction if they execute code from the highest canonical page.
871 * They'll speculate right off the end of the canonical space, and
872 * bad things happen. This is worked around in the same way as the
873 * Intel problem.
874 *
875 * With page table isolation enabled, we map the LDT in ... [stay tuned]
876 */
877 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
878
879 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
880
881 /* This decides where the kernel will search for a free chunk of vm
882 * space during mmap's.
883 */
884 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
885 0xc0000000 : 0xFFFFe000)
886
887 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
888 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
889 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
890 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
891 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
892 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
893
894 #define STACK_TOP TASK_SIZE_LOW
895 #define STACK_TOP_MAX TASK_SIZE_MAX
896
897 #define INIT_THREAD { \
898 .addr_limit = KERNEL_DS, \
899 }
900
901 extern unsigned long KSTK_ESP(struct task_struct *task);
902
903 #endif /* CONFIG_X86_64 */
904
905 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
906 unsigned long new_sp);
907
908 /*
909 * This decides where the kernel will search for a free chunk of vm
910 * space during mmap's.
911 */
912 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
913 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
914
915 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
916
917 /* Get/set a process' ability to use the timestamp counter instruction */
918 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
919 #define SET_TSC_CTL(val) set_tsc_mode((val))
920
921 extern int get_tsc_mode(unsigned long adr);
922 extern int set_tsc_mode(unsigned int val);
923
924 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
925
926 /* Register/unregister a process' MPX related resource */
927 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
928 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
929
930 #ifdef CONFIG_X86_INTEL_MPX
931 extern int mpx_enable_management(void);
932 extern int mpx_disable_management(void);
933 #else
934 static inline int mpx_enable_management(void)
935 {
936 return -EINVAL;
937 }
938 static inline int mpx_disable_management(void)
939 {
940 return -EINVAL;
941 }
942 #endif /* CONFIG_X86_INTEL_MPX */
943
944 #ifdef CONFIG_CPU_SUP_AMD
945 extern u16 amd_get_nb_id(int cpu);
946 extern u32 amd_get_nodes_per_socket(void);
947 #else
948 static inline u16 amd_get_nb_id(int cpu) { return 0; }
949 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
950 #endif
951
952 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
953 {
954 uint32_t base, eax, signature[3];
955
956 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
957 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
958
959 if (!memcmp(sig, signature, 12) &&
960 (leaves == 0 || ((eax - base) >= leaves)))
961 return base;
962 }
963
964 return 0;
965 }
966
967 extern unsigned long arch_align_stack(unsigned long sp);
968 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
969 extern void free_kernel_image_pages(void *begin, void *end);
970
971 void default_idle(void);
972 #ifdef CONFIG_XEN
973 bool xen_set_default_idle(void);
974 #else
975 #define xen_set_default_idle 0
976 #endif
977
978 void stop_this_cpu(void *dummy);
979 void df_debug(struct pt_regs *regs, long error_code);
980 void microcode_check(void);
981
982 enum l1tf_mitigations {
983 L1TF_MITIGATION_OFF,
984 L1TF_MITIGATION_FLUSH_NOWARN,
985 L1TF_MITIGATION_FLUSH,
986 L1TF_MITIGATION_FLUSH_NOSMT,
987 L1TF_MITIGATION_FULL,
988 L1TF_MITIGATION_FULL_FORCE
989 };
990
991 extern enum l1tf_mitigations l1tf_mitigation;
992
993 enum mds_mitigations {
994 MDS_MITIGATION_OFF,
995 MDS_MITIGATION_FULL,
996 MDS_MITIGATION_VMWERV,
997 };
998
999 enum taa_mitigations {
1000 TAA_MITIGATION_OFF,
1001 TAA_MITIGATION_UCODE_NEEDED,
1002 TAA_MITIGATION_VERW,
1003 TAA_MITIGATION_TSX_DISABLED,
1004 };
1005
1006 #endif /* _ASM_X86_PROCESSOR_H */