]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/processor.h
79739e5f939a29d0aa653ca062945584817acb49
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head_32.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_64
93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 int x86_tlbsize;
95 #endif
96 __u8 x86_virt_bits;
97 __u8 x86_phys_bits;
98 /* CPUID returned core id bits: */
99 __u8 x86_coreid_bits;
100 __u8 cu_id;
101 /* Max extended CPUID function supported: */
102 __u32 extended_cpuid_level;
103 /* Maximum supported CPUID level, -1=no CPUID: */
104 int cpuid_level;
105 __u32 x86_capability[NCAPINTS + NBUGINTS];
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 /* Index into per_cpu list: */
130 u16 cpu_index;
131 u32 microcode;
132 } __randomize_layout;
133
134 struct cpuid_regs {
135 u32 eax, ebx, ecx, edx;
136 };
137
138 enum cpuid_regs_idx {
139 CPUID_EAX = 0,
140 CPUID_EBX,
141 CPUID_ECX,
142 CPUID_EDX,
143 };
144
145 #define X86_VENDOR_INTEL 0
146 #define X86_VENDOR_CYRIX 1
147 #define X86_VENDOR_AMD 2
148 #define X86_VENDOR_UMC 3
149 #define X86_VENDOR_CENTAUR 5
150 #define X86_VENDOR_TRANSMETA 7
151 #define X86_VENDOR_NSC 8
152 #define X86_VENDOR_NUM 9
153
154 #define X86_VENDOR_UNKNOWN 0xff
155
156 /*
157 * capabilities of CPUs
158 */
159 extern struct cpuinfo_x86 boot_cpu_data;
160 extern struct cpuinfo_x86 new_cpu_data;
161
162 #include <linux/thread_info.h>
163
164 extern struct tss_struct doublefault_tss;
165 extern __u32 cpu_caps_cleared[NCAPINTS];
166 extern __u32 cpu_caps_set[NCAPINTS];
167
168 #ifdef CONFIG_SMP
169 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
170 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
171 #else
172 #define cpu_info boot_cpu_data
173 #define cpu_data(cpu) boot_cpu_data
174 #endif
175
176 extern const struct seq_operations cpuinfo_op;
177
178 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
179
180 extern void cpu_detect(struct cpuinfo_x86 *c);
181
182 extern void early_cpu_init(void);
183 extern void identify_boot_cpu(void);
184 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
185 extern void print_cpu_info(struct cpuinfo_x86 *);
186 void print_cpu_msr(struct cpuinfo_x86 *);
187 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
188 extern u32 get_scattered_cpuid_leaf(unsigned int level,
189 unsigned int sub_leaf,
190 enum cpuid_regs_idx reg);
191 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
192 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
193
194 extern void detect_extended_topology(struct cpuinfo_x86 *c);
195 extern void detect_ht(struct cpuinfo_x86 *c);
196
197 #ifdef CONFIG_X86_32
198 extern int have_cpuid_p(void);
199 #else
200 static inline int have_cpuid_p(void)
201 {
202 return 1;
203 }
204 #endif
205 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
206 unsigned int *ecx, unsigned int *edx)
207 {
208 /* ecx is often an input as well as an output. */
209 asm volatile("cpuid"
210 : "=a" (*eax),
211 "=b" (*ebx),
212 "=c" (*ecx),
213 "=d" (*edx)
214 : "0" (*eax), "2" (*ecx)
215 : "memory");
216 }
217
218 #define native_cpuid_reg(reg) \
219 static inline unsigned int native_cpuid_##reg(unsigned int op) \
220 { \
221 unsigned int eax = op, ebx, ecx = 0, edx; \
222 \
223 native_cpuid(&eax, &ebx, &ecx, &edx); \
224 \
225 return reg; \
226 }
227
228 /*
229 * Native CPUID functions returning a single datum.
230 */
231 native_cpuid_reg(eax)
232 native_cpuid_reg(ebx)
233 native_cpuid_reg(ecx)
234 native_cpuid_reg(edx)
235
236 /*
237 * Friendlier CR3 helpers.
238 */
239 static inline unsigned long read_cr3_pa(void)
240 {
241 return __read_cr3() & CR3_ADDR_MASK;
242 }
243
244 static inline void load_cr3(pgd_t *pgdir)
245 {
246 write_cr3(__pa(pgdir));
247 }
248
249 #ifdef CONFIG_X86_32
250 /* This is the TSS defined by the hardware. */
251 struct x86_hw_tss {
252 unsigned short back_link, __blh;
253 unsigned long sp0;
254 unsigned short ss0, __ss0h;
255 unsigned long sp1;
256
257 /*
258 * We don't use ring 1, so ss1 is a convenient scratch space in
259 * the same cacheline as sp0. We use ss1 to cache the value in
260 * MSR_IA32_SYSENTER_CS. When we context switch
261 * MSR_IA32_SYSENTER_CS, we first check if the new value being
262 * written matches ss1, and, if it's not, then we wrmsr the new
263 * value and update ss1.
264 *
265 * The only reason we context switch MSR_IA32_SYSENTER_CS is
266 * that we set it to zero in vm86 tasks to avoid corrupting the
267 * stack if we were to go through the sysenter path from vm86
268 * mode.
269 */
270 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
271
272 unsigned short __ss1h;
273 unsigned long sp2;
274 unsigned short ss2, __ss2h;
275 unsigned long __cr3;
276 unsigned long ip;
277 unsigned long flags;
278 unsigned long ax;
279 unsigned long cx;
280 unsigned long dx;
281 unsigned long bx;
282 unsigned long sp;
283 unsigned long bp;
284 unsigned long si;
285 unsigned long di;
286 unsigned short es, __esh;
287 unsigned short cs, __csh;
288 unsigned short ss, __ssh;
289 unsigned short ds, __dsh;
290 unsigned short fs, __fsh;
291 unsigned short gs, __gsh;
292 unsigned short ldt, __ldth;
293 unsigned short trace;
294 unsigned short io_bitmap_base;
295
296 } __attribute__((packed));
297 #else
298 struct x86_hw_tss {
299 u32 reserved1;
300 u64 sp0;
301 u64 sp1;
302 u64 sp2;
303 u64 reserved2;
304 u64 ist[7];
305 u32 reserved3;
306 u32 reserved4;
307 u16 reserved5;
308 u16 io_bitmap_base;
309
310 } __attribute__((packed));
311 #endif
312
313 /*
314 * IO-bitmap sizes:
315 */
316 #define IO_BITMAP_BITS 65536
317 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
318 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
319 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
320 #define INVALID_IO_BITMAP_OFFSET 0x8000
321
322 struct tss_struct {
323 /*
324 * The hardware state:
325 */
326 struct x86_hw_tss x86_tss;
327
328 /*
329 * The extra 1 is there because the CPU will access an
330 * additional byte beyond the end of the IO permission
331 * bitmap. The extra byte must be all 1 bits, and must
332 * be within the limit.
333 */
334 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
335
336 #ifdef CONFIG_X86_32
337 /*
338 * Space for the temporary SYSENTER stack.
339 */
340 unsigned long SYSENTER_stack_canary;
341 unsigned long SYSENTER_stack[64];
342 #endif
343
344 } ____cacheline_aligned;
345
346 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
347
348 /*
349 * sizeof(unsigned long) coming from an extra "long" at the end
350 * of the iobitmap.
351 *
352 * -1? seg base+limit should be pointing to the address of the
353 * last valid byte
354 */
355 #define __KERNEL_TSS_LIMIT \
356 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
357
358 #ifdef CONFIG_X86_32
359 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
360 #endif
361
362 /*
363 * Save the original ist values for checking stack pointers during debugging
364 */
365 struct orig_ist {
366 unsigned long ist[7];
367 };
368
369 #ifdef CONFIG_X86_64
370 DECLARE_PER_CPU(struct orig_ist, orig_ist);
371
372 union irq_stack_union {
373 char irq_stack[IRQ_STACK_SIZE];
374 /*
375 * GCC hardcodes the stack canary as %gs:40. Since the
376 * irq_stack is the object at %gs:0, we reserve the bottom
377 * 48 bytes of the irq stack for the canary.
378 */
379 struct {
380 char gs_base[40];
381 unsigned long stack_canary;
382 };
383 };
384
385 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
386 DECLARE_INIT_PER_CPU(irq_stack_union);
387
388 DECLARE_PER_CPU(char *, irq_stack_ptr);
389 DECLARE_PER_CPU(unsigned int, irq_count);
390 extern asmlinkage void ignore_sysret(void);
391 #else /* X86_64 */
392 #ifdef CONFIG_CC_STACKPROTECTOR
393 /*
394 * Make sure stack canary segment base is cached-aligned:
395 * "For Intel Atom processors, avoid non zero segment base address
396 * that is not aligned to cache line boundary at all cost."
397 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
398 */
399 struct stack_canary {
400 char __pad[20]; /* canary at %gs:20 */
401 unsigned long canary;
402 };
403 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
404 #endif
405 /*
406 * per-CPU IRQ handling stacks
407 */
408 struct irq_stack {
409 u32 stack[THREAD_SIZE/sizeof(u32)];
410 } __aligned(THREAD_SIZE);
411
412 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
413 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
414 #endif /* X86_64 */
415
416 extern unsigned int fpu_kernel_xstate_size;
417 extern unsigned int fpu_user_xstate_size;
418
419 struct perf_event;
420
421 typedef struct {
422 unsigned long seg;
423 } mm_segment_t;
424
425 struct thread_struct {
426 /* Cached TLS descriptors: */
427 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
428 #ifdef CONFIG_X86_32
429 unsigned long sp0;
430 #endif
431 unsigned long sp;
432 #ifdef CONFIG_X86_32
433 unsigned long sysenter_cs;
434 #else
435 unsigned short es;
436 unsigned short ds;
437 unsigned short fsindex;
438 unsigned short gsindex;
439 #endif
440
441 u32 status; /* thread synchronous flags */
442
443 #ifdef CONFIG_X86_64
444 unsigned long fsbase;
445 unsigned long gsbase;
446 #else
447 /*
448 * XXX: this could presumably be unsigned short. Alternatively,
449 * 32-bit kernels could be taught to use fsindex instead.
450 */
451 unsigned long fs;
452 unsigned long gs;
453 #endif
454
455 /* Save middle states of ptrace breakpoints */
456 struct perf_event *ptrace_bps[HBP_NUM];
457 /* Debug status used for traps, single steps, etc... */
458 unsigned long debugreg6;
459 /* Keep track of the exact dr7 value set by the user */
460 unsigned long ptrace_dr7;
461 /* Fault info: */
462 unsigned long cr2;
463 unsigned long trap_nr;
464 unsigned long error_code;
465 #ifdef CONFIG_VM86
466 /* Virtual 86 mode info */
467 struct vm86 *vm86;
468 #endif
469 /* IO permissions: */
470 unsigned long *io_bitmap_ptr;
471 unsigned long iopl;
472 /* Max allowed port in the bitmap, in bytes: */
473 unsigned io_bitmap_max;
474
475 mm_segment_t addr_limit;
476
477 unsigned int sig_on_uaccess_err:1;
478 unsigned int uaccess_err:1; /* uaccess failed */
479
480 /* Floating point and extended processor state */
481 struct fpu fpu;
482 /*
483 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
484 * the end.
485 */
486 };
487
488 /*
489 * Thread-synchronous status.
490 *
491 * This is different from the flags in that nobody else
492 * ever touches our thread-synchronous status, so we don't
493 * have to worry about atomic accesses.
494 */
495 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
496
497 /*
498 * Set IOPL bits in EFLAGS from given mask
499 */
500 static inline void native_set_iopl_mask(unsigned mask)
501 {
502 #ifdef CONFIG_X86_32
503 unsigned int reg;
504
505 asm volatile ("pushfl;"
506 "popl %0;"
507 "andl %1, %0;"
508 "orl %2, %0;"
509 "pushl %0;"
510 "popfl"
511 : "=&r" (reg)
512 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
513 #endif
514 }
515
516 static inline void
517 native_load_sp0(unsigned long sp0)
518 {
519 this_cpu_write(cpu_tss.x86_tss.sp0, sp0);
520 }
521
522 static inline void native_swapgs(void)
523 {
524 #ifdef CONFIG_X86_64
525 asm volatile("swapgs" ::: "memory");
526 #endif
527 }
528
529 static inline unsigned long current_top_of_stack(void)
530 {
531 #ifdef CONFIG_X86_64
532 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
533 #else
534 /* sp0 on x86_32 is special in and around vm86 mode. */
535 return this_cpu_read_stable(cpu_current_top_of_stack);
536 #endif
537 }
538
539 static inline bool on_thread_stack(void)
540 {
541 return (unsigned long)(current_top_of_stack() -
542 current_stack_pointer()) < THREAD_SIZE;
543 }
544
545 #ifdef CONFIG_PARAVIRT
546 #include <asm/paravirt.h>
547 #else
548 #define __cpuid native_cpuid
549
550 static inline void load_sp0(unsigned long sp0)
551 {
552 native_load_sp0(sp0);
553 }
554
555 #define set_iopl_mask native_set_iopl_mask
556 #endif /* CONFIG_PARAVIRT */
557
558 /* Free all resources held by a thread. */
559 extern void release_thread(struct task_struct *);
560
561 unsigned long get_wchan(struct task_struct *p);
562
563 /*
564 * Generic CPUID function
565 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
566 * resulting in stale register contents being returned.
567 */
568 static inline void cpuid(unsigned int op,
569 unsigned int *eax, unsigned int *ebx,
570 unsigned int *ecx, unsigned int *edx)
571 {
572 *eax = op;
573 *ecx = 0;
574 __cpuid(eax, ebx, ecx, edx);
575 }
576
577 /* Some CPUID calls want 'count' to be placed in ecx */
578 static inline void cpuid_count(unsigned int op, int count,
579 unsigned int *eax, unsigned int *ebx,
580 unsigned int *ecx, unsigned int *edx)
581 {
582 *eax = op;
583 *ecx = count;
584 __cpuid(eax, ebx, ecx, edx);
585 }
586
587 /*
588 * CPUID functions returning a single datum
589 */
590 static inline unsigned int cpuid_eax(unsigned int op)
591 {
592 unsigned int eax, ebx, ecx, edx;
593
594 cpuid(op, &eax, &ebx, &ecx, &edx);
595
596 return eax;
597 }
598
599 static inline unsigned int cpuid_ebx(unsigned int op)
600 {
601 unsigned int eax, ebx, ecx, edx;
602
603 cpuid(op, &eax, &ebx, &ecx, &edx);
604
605 return ebx;
606 }
607
608 static inline unsigned int cpuid_ecx(unsigned int op)
609 {
610 unsigned int eax, ebx, ecx, edx;
611
612 cpuid(op, &eax, &ebx, &ecx, &edx);
613
614 return ecx;
615 }
616
617 static inline unsigned int cpuid_edx(unsigned int op)
618 {
619 unsigned int eax, ebx, ecx, edx;
620
621 cpuid(op, &eax, &ebx, &ecx, &edx);
622
623 return edx;
624 }
625
626 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
627 static __always_inline void rep_nop(void)
628 {
629 asm volatile("rep; nop" ::: "memory");
630 }
631
632 static __always_inline void cpu_relax(void)
633 {
634 rep_nop();
635 }
636
637 /*
638 * This function forces the icache and prefetched instruction stream to
639 * catch up with reality in two very specific cases:
640 *
641 * a) Text was modified using one virtual address and is about to be executed
642 * from the same physical page at a different virtual address.
643 *
644 * b) Text was modified on a different CPU, may subsequently be
645 * executed on this CPU, and you want to make sure the new version
646 * gets executed. This generally means you're calling this in a IPI.
647 *
648 * If you're calling this for a different reason, you're probably doing
649 * it wrong.
650 */
651 static inline void sync_core(void)
652 {
653 /*
654 * There are quite a few ways to do this. IRET-to-self is nice
655 * because it works on every CPU, at any CPL (so it's compatible
656 * with paravirtualization), and it never exits to a hypervisor.
657 * The only down sides are that it's a bit slow (it seems to be
658 * a bit more than 2x slower than the fastest options) and that
659 * it unmasks NMIs. The "push %cs" is needed because, in
660 * paravirtual environments, __KERNEL_CS may not be a valid CS
661 * value when we do IRET directly.
662 *
663 * In case NMI unmasking or performance ever becomes a problem,
664 * the next best option appears to be MOV-to-CR2 and an
665 * unconditional jump. That sequence also works on all CPUs,
666 * but it will fault at CPL3 (i.e. Xen PV and lguest).
667 *
668 * CPUID is the conventional way, but it's nasty: it doesn't
669 * exist on some 486-like CPUs, and it usually exits to a
670 * hypervisor.
671 *
672 * Like all of Linux's memory ordering operations, this is a
673 * compiler barrier as well.
674 */
675 register void *__sp asm(_ASM_SP);
676
677 #ifdef CONFIG_X86_32
678 asm volatile (
679 "pushfl\n\t"
680 "pushl %%cs\n\t"
681 "pushl $1f\n\t"
682 "iret\n\t"
683 "1:"
684 : "+r" (__sp) : : "memory");
685 #else
686 unsigned int tmp;
687
688 asm volatile (
689 "mov %%ss, %0\n\t"
690 "pushq %q0\n\t"
691 "pushq %%rsp\n\t"
692 "addq $8, (%%rsp)\n\t"
693 "pushfq\n\t"
694 "mov %%cs, %0\n\t"
695 "pushq %q0\n\t"
696 "pushq $1f\n\t"
697 "iretq\n\t"
698 "1:"
699 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
700 #endif
701 }
702
703 extern void select_idle_routine(const struct cpuinfo_x86 *c);
704 extern void amd_e400_c1e_apic_setup(void);
705
706 extern unsigned long boot_option_idle_override;
707
708 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
709 IDLE_POLL};
710
711 extern void enable_sep_cpu(void);
712 extern int sysenter_setup(void);
713
714 extern void early_trap_init(void);
715 void early_trap_pf_init(void);
716
717 /* Defined in head.S */
718 extern struct desc_ptr early_gdt_descr;
719
720 extern void cpu_set_gdt(int);
721 extern void switch_to_new_gdt(int);
722 extern void load_direct_gdt(int);
723 extern void load_fixmap_gdt(int);
724 extern void load_percpu_segment(int);
725 extern void cpu_init(void);
726
727 static inline unsigned long get_debugctlmsr(void)
728 {
729 unsigned long debugctlmsr = 0;
730
731 #ifndef CONFIG_X86_DEBUGCTLMSR
732 if (boot_cpu_data.x86 < 6)
733 return 0;
734 #endif
735 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
736
737 return debugctlmsr;
738 }
739
740 static inline void update_debugctlmsr(unsigned long debugctlmsr)
741 {
742 #ifndef CONFIG_X86_DEBUGCTLMSR
743 if (boot_cpu_data.x86 < 6)
744 return;
745 #endif
746 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
747 }
748
749 extern void set_task_blockstep(struct task_struct *task, bool on);
750
751 /* Boot loader type from the setup header: */
752 extern int bootloader_type;
753 extern int bootloader_version;
754
755 extern char ignore_fpu_irq;
756
757 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
758 #define ARCH_HAS_PREFETCHW
759 #define ARCH_HAS_SPINLOCK_PREFETCH
760
761 #ifdef CONFIG_X86_32
762 # define BASE_PREFETCH ""
763 # define ARCH_HAS_PREFETCH
764 #else
765 # define BASE_PREFETCH "prefetcht0 %P1"
766 #endif
767
768 /*
769 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
770 *
771 * It's not worth to care about 3dnow prefetches for the K6
772 * because they are microcoded there and very slow.
773 */
774 static inline void prefetch(const void *x)
775 {
776 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
777 X86_FEATURE_XMM,
778 "m" (*(const char *)x));
779 }
780
781 /*
782 * 3dnow prefetch to get an exclusive cache line.
783 * Useful for spinlocks to avoid one state transition in the
784 * cache coherency protocol:
785 */
786 static inline void prefetchw(const void *x)
787 {
788 alternative_input(BASE_PREFETCH, "prefetchw %P1",
789 X86_FEATURE_3DNOWPREFETCH,
790 "m" (*(const char *)x));
791 }
792
793 static inline void spin_lock_prefetch(const void *x)
794 {
795 prefetchw(x);
796 }
797
798 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
799 TOP_OF_KERNEL_STACK_PADDING)
800
801 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
802
803 #define task_pt_regs(task) \
804 ({ \
805 unsigned long __ptr = (unsigned long)task_stack_page(task); \
806 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
807 ((struct pt_regs *)__ptr) - 1; \
808 })
809
810 #ifdef CONFIG_X86_32
811 /*
812 * User space process size: 3GB (default).
813 */
814 #define IA32_PAGE_OFFSET PAGE_OFFSET
815 #define TASK_SIZE PAGE_OFFSET
816 #define TASK_SIZE_MAX TASK_SIZE
817 #define STACK_TOP TASK_SIZE
818 #define STACK_TOP_MAX STACK_TOP
819
820 #define INIT_THREAD { \
821 .sp0 = TOP_OF_INIT_STACK, \
822 .sysenter_cs = __KERNEL_CS, \
823 .io_bitmap_ptr = NULL, \
824 .addr_limit = KERNEL_DS, \
825 }
826
827 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
828
829 #else
830 /*
831 * User space process size. 47bits minus one guard page. The guard
832 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
833 * the highest possible canonical userspace address, then that
834 * syscall will enter the kernel with a non-canonical return
835 * address, and SYSRET will explode dangerously. We avoid this
836 * particular problem by preventing anything from being mapped
837 * at the maximum canonical address.
838 */
839 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
840
841 /* This decides where the kernel will search for a free chunk of vm
842 * space during mmap's.
843 */
844 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
845 0xc0000000 : 0xFFFFe000)
846
847 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
848 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
849 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
850 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
851
852 #define STACK_TOP TASK_SIZE
853 #define STACK_TOP_MAX TASK_SIZE_MAX
854
855 #define INIT_THREAD { \
856 .addr_limit = KERNEL_DS, \
857 }
858
859 extern unsigned long KSTK_ESP(struct task_struct *task);
860
861 #endif /* CONFIG_X86_64 */
862
863 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
864 unsigned long new_sp);
865
866 /*
867 * This decides where the kernel will search for a free chunk of vm
868 * space during mmap's.
869 */
870 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
871 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE)
872
873 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
874
875 /* Get/set a process' ability to use the timestamp counter instruction */
876 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
877 #define SET_TSC_CTL(val) set_tsc_mode((val))
878
879 extern int get_tsc_mode(unsigned long adr);
880 extern int set_tsc_mode(unsigned int val);
881
882 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
883
884 /* Register/unregister a process' MPX related resource */
885 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
886 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
887
888 #ifdef CONFIG_X86_INTEL_MPX
889 extern int mpx_enable_management(void);
890 extern int mpx_disable_management(void);
891 #else
892 static inline int mpx_enable_management(void)
893 {
894 return -EINVAL;
895 }
896 static inline int mpx_disable_management(void)
897 {
898 return -EINVAL;
899 }
900 #endif /* CONFIG_X86_INTEL_MPX */
901
902 #ifdef CONFIG_CPU_SUP_AMD
903 extern u16 amd_get_nb_id(int cpu);
904 extern u32 amd_get_nodes_per_socket(void);
905 #else
906 static inline u16 amd_get_nb_id(int cpu) { return 0; }
907 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
908 #endif
909
910 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
911 {
912 uint32_t base, eax, signature[3];
913
914 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
915 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
916
917 if (!memcmp(sig, signature, 12) &&
918 (leaves == 0 || ((eax - base) >= leaves)))
919 return base;
920 }
921
922 return 0;
923 }
924
925 extern unsigned long arch_align_stack(unsigned long sp);
926 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
927
928 void default_idle(void);
929 #ifdef CONFIG_XEN
930 bool xen_set_default_idle(void);
931 #else
932 #define xen_set_default_idle 0
933 #endif
934
935 void stop_this_cpu(void *dummy);
936 void df_debug(struct pt_regs *regs, long error_code);
937 #endif /* _ASM_X86_PROCESSOR_H */