]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/include/asm/processor.h
Merge remote-tracking branches 'asoc/topic/msm8916', 'asoc/topic/mtk', 'asoc/topic...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head_32.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_64
93 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
94 int x86_tlbsize;
95 #endif
96 __u8 x86_virt_bits;
97 __u8 x86_phys_bits;
98 /* CPUID returned core id bits: */
99 __u8 x86_coreid_bits;
100 __u8 cu_id;
101 /* Max extended CPUID function supported: */
102 __u32 extended_cpuid_level;
103 /* Maximum supported CPUID level, -1=no CPUID: */
104 int cpuid_level;
105 __u32 x86_capability[NCAPINTS + NBUGINTS];
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 /* Index into per_cpu list: */
130 u16 cpu_index;
131 u32 microcode;
132 };
133
134 struct cpuid_regs {
135 u32 eax, ebx, ecx, edx;
136 };
137
138 enum cpuid_regs_idx {
139 CPUID_EAX = 0,
140 CPUID_EBX,
141 CPUID_ECX,
142 CPUID_EDX,
143 };
144
145 #define X86_VENDOR_INTEL 0
146 #define X86_VENDOR_CYRIX 1
147 #define X86_VENDOR_AMD 2
148 #define X86_VENDOR_UMC 3
149 #define X86_VENDOR_CENTAUR 5
150 #define X86_VENDOR_TRANSMETA 7
151 #define X86_VENDOR_NSC 8
152 #define X86_VENDOR_NUM 9
153
154 #define X86_VENDOR_UNKNOWN 0xff
155
156 /*
157 * capabilities of CPUs
158 */
159 extern struct cpuinfo_x86 boot_cpu_data;
160 extern struct cpuinfo_x86 new_cpu_data;
161
162 extern struct tss_struct doublefault_tss;
163 extern __u32 cpu_caps_cleared[NCAPINTS];
164 extern __u32 cpu_caps_set[NCAPINTS];
165
166 #ifdef CONFIG_SMP
167 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
169 #else
170 #define cpu_info boot_cpu_data
171 #define cpu_data(cpu) boot_cpu_data
172 #endif
173
174 extern const struct seq_operations cpuinfo_op;
175
176 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
177
178 extern void cpu_detect(struct cpuinfo_x86 *c);
179
180 extern void early_cpu_init(void);
181 extern void identify_boot_cpu(void);
182 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183 extern void print_cpu_info(struct cpuinfo_x86 *);
184 void print_cpu_msr(struct cpuinfo_x86 *);
185 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186 extern u32 get_scattered_cpuid_leaf(unsigned int level,
187 unsigned int sub_leaf,
188 enum cpuid_regs_idx reg);
189 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191
192 extern void detect_extended_topology(struct cpuinfo_x86 *c);
193 extern void detect_ht(struct cpuinfo_x86 *c);
194
195 #ifdef CONFIG_X86_32
196 extern int have_cpuid_p(void);
197 #else
198 static inline int have_cpuid_p(void)
199 {
200 return 1;
201 }
202 #endif
203 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204 unsigned int *ecx, unsigned int *edx)
205 {
206 /* ecx is often an input as well as an output. */
207 asm volatile("cpuid"
208 : "=a" (*eax),
209 "=b" (*ebx),
210 "=c" (*ecx),
211 "=d" (*edx)
212 : "0" (*eax), "2" (*ecx)
213 : "memory");
214 }
215
216 #define native_cpuid_reg(reg) \
217 static inline unsigned int native_cpuid_##reg(unsigned int op) \
218 { \
219 unsigned int eax = op, ebx, ecx = 0, edx; \
220 \
221 native_cpuid(&eax, &ebx, &ecx, &edx); \
222 \
223 return reg; \
224 }
225
226 /*
227 * Native CPUID functions returning a single datum.
228 */
229 native_cpuid_reg(eax)
230 native_cpuid_reg(ebx)
231 native_cpuid_reg(ecx)
232 native_cpuid_reg(edx)
233
234 static inline void load_cr3(pgd_t *pgdir)
235 {
236 write_cr3(__pa(pgdir));
237 }
238
239 #ifdef CONFIG_X86_32
240 /* This is the TSS defined by the hardware. */
241 struct x86_hw_tss {
242 unsigned short back_link, __blh;
243 unsigned long sp0;
244 unsigned short ss0, __ss0h;
245 unsigned long sp1;
246
247 /*
248 * We don't use ring 1, so ss1 is a convenient scratch space in
249 * the same cacheline as sp0. We use ss1 to cache the value in
250 * MSR_IA32_SYSENTER_CS. When we context switch
251 * MSR_IA32_SYSENTER_CS, we first check if the new value being
252 * written matches ss1, and, if it's not, then we wrmsr the new
253 * value and update ss1.
254 *
255 * The only reason we context switch MSR_IA32_SYSENTER_CS is
256 * that we set it to zero in vm86 tasks to avoid corrupting the
257 * stack if we were to go through the sysenter path from vm86
258 * mode.
259 */
260 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
261
262 unsigned short __ss1h;
263 unsigned long sp2;
264 unsigned short ss2, __ss2h;
265 unsigned long __cr3;
266 unsigned long ip;
267 unsigned long flags;
268 unsigned long ax;
269 unsigned long cx;
270 unsigned long dx;
271 unsigned long bx;
272 unsigned long sp;
273 unsigned long bp;
274 unsigned long si;
275 unsigned long di;
276 unsigned short es, __esh;
277 unsigned short cs, __csh;
278 unsigned short ss, __ssh;
279 unsigned short ds, __dsh;
280 unsigned short fs, __fsh;
281 unsigned short gs, __gsh;
282 unsigned short ldt, __ldth;
283 unsigned short trace;
284 unsigned short io_bitmap_base;
285
286 } __attribute__((packed));
287 #else
288 struct x86_hw_tss {
289 u32 reserved1;
290 u64 sp0;
291 u64 sp1;
292 u64 sp2;
293 u64 reserved2;
294 u64 ist[7];
295 u32 reserved3;
296 u32 reserved4;
297 u16 reserved5;
298 u16 io_bitmap_base;
299
300 } __attribute__((packed));
301 #endif
302
303 /*
304 * IO-bitmap sizes:
305 */
306 #define IO_BITMAP_BITS 65536
307 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
308 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
309 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
310 #define INVALID_IO_BITMAP_OFFSET 0x8000
311
312 struct tss_struct {
313 /*
314 * The hardware state:
315 */
316 struct x86_hw_tss x86_tss;
317
318 /*
319 * The extra 1 is there because the CPU will access an
320 * additional byte beyond the end of the IO permission
321 * bitmap. The extra byte must be all 1 bits, and must
322 * be within the limit.
323 */
324 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
325
326 #ifdef CONFIG_X86_32
327 /*
328 * Space for the temporary SYSENTER stack.
329 */
330 unsigned long SYSENTER_stack_canary;
331 unsigned long SYSENTER_stack[64];
332 #endif
333
334 } ____cacheline_aligned;
335
336 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
337
338 /*
339 * sizeof(unsigned long) coming from an extra "long" at the end
340 * of the iobitmap.
341 *
342 * -1? seg base+limit should be pointing to the address of the
343 * last valid byte
344 */
345 #define __KERNEL_TSS_LIMIT \
346 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
347
348 #ifdef CONFIG_X86_32
349 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
350 #endif
351
352 /*
353 * Save the original ist values for checking stack pointers during debugging
354 */
355 struct orig_ist {
356 unsigned long ist[7];
357 };
358
359 #ifdef CONFIG_X86_64
360 DECLARE_PER_CPU(struct orig_ist, orig_ist);
361
362 union irq_stack_union {
363 char irq_stack[IRQ_STACK_SIZE];
364 /*
365 * GCC hardcodes the stack canary as %gs:40. Since the
366 * irq_stack is the object at %gs:0, we reserve the bottom
367 * 48 bytes of the irq stack for the canary.
368 */
369 struct {
370 char gs_base[40];
371 unsigned long stack_canary;
372 };
373 };
374
375 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
376 DECLARE_INIT_PER_CPU(irq_stack_union);
377
378 DECLARE_PER_CPU(char *, irq_stack_ptr);
379 DECLARE_PER_CPU(unsigned int, irq_count);
380 extern asmlinkage void ignore_sysret(void);
381 #else /* X86_64 */
382 #ifdef CONFIG_CC_STACKPROTECTOR
383 /*
384 * Make sure stack canary segment base is cached-aligned:
385 * "For Intel Atom processors, avoid non zero segment base address
386 * that is not aligned to cache line boundary at all cost."
387 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
388 */
389 struct stack_canary {
390 char __pad[20]; /* canary at %gs:20 */
391 unsigned long canary;
392 };
393 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
394 #endif
395 /*
396 * per-CPU IRQ handling stacks
397 */
398 struct irq_stack {
399 u32 stack[THREAD_SIZE/sizeof(u32)];
400 } __aligned(THREAD_SIZE);
401
402 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
403 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
404 #endif /* X86_64 */
405
406 extern unsigned int fpu_kernel_xstate_size;
407 extern unsigned int fpu_user_xstate_size;
408
409 struct perf_event;
410
411 typedef struct {
412 unsigned long seg;
413 } mm_segment_t;
414
415 struct thread_struct {
416 /* Cached TLS descriptors: */
417 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
418 unsigned long sp0;
419 unsigned long sp;
420 #ifdef CONFIG_X86_32
421 unsigned long sysenter_cs;
422 #else
423 unsigned short es;
424 unsigned short ds;
425 unsigned short fsindex;
426 unsigned short gsindex;
427 #endif
428
429 u32 status; /* thread synchronous flags */
430
431 #ifdef CONFIG_X86_64
432 unsigned long fsbase;
433 unsigned long gsbase;
434 #else
435 /*
436 * XXX: this could presumably be unsigned short. Alternatively,
437 * 32-bit kernels could be taught to use fsindex instead.
438 */
439 unsigned long fs;
440 unsigned long gs;
441 #endif
442
443 /* Save middle states of ptrace breakpoints */
444 struct perf_event *ptrace_bps[HBP_NUM];
445 /* Debug status used for traps, single steps, etc... */
446 unsigned long debugreg6;
447 /* Keep track of the exact dr7 value set by the user */
448 unsigned long ptrace_dr7;
449 /* Fault info: */
450 unsigned long cr2;
451 unsigned long trap_nr;
452 unsigned long error_code;
453 #ifdef CONFIG_VM86
454 /* Virtual 86 mode info */
455 struct vm86 *vm86;
456 #endif
457 /* IO permissions: */
458 unsigned long *io_bitmap_ptr;
459 unsigned long iopl;
460 /* Max allowed port in the bitmap, in bytes: */
461 unsigned io_bitmap_max;
462
463 mm_segment_t addr_limit;
464
465 unsigned int sig_on_uaccess_err:1;
466 unsigned int uaccess_err:1; /* uaccess failed */
467
468 /* Floating point and extended processor state */
469 struct fpu fpu;
470 /*
471 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
472 * the end.
473 */
474 };
475
476 /*
477 * Thread-synchronous status.
478 *
479 * This is different from the flags in that nobody else
480 * ever touches our thread-synchronous status, so we don't
481 * have to worry about atomic accesses.
482 */
483 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
484
485 /*
486 * Set IOPL bits in EFLAGS from given mask
487 */
488 static inline void native_set_iopl_mask(unsigned mask)
489 {
490 #ifdef CONFIG_X86_32
491 unsigned int reg;
492
493 asm volatile ("pushfl;"
494 "popl %0;"
495 "andl %1, %0;"
496 "orl %2, %0;"
497 "pushl %0;"
498 "popfl"
499 : "=&r" (reg)
500 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
501 #endif
502 }
503
504 static inline void
505 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
506 {
507 tss->x86_tss.sp0 = thread->sp0;
508 #ifdef CONFIG_X86_32
509 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
510 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
511 tss->x86_tss.ss1 = thread->sysenter_cs;
512 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
513 }
514 #endif
515 }
516
517 static inline void native_swapgs(void)
518 {
519 #ifdef CONFIG_X86_64
520 asm volatile("swapgs" ::: "memory");
521 #endif
522 }
523
524 static inline unsigned long current_top_of_stack(void)
525 {
526 #ifdef CONFIG_X86_64
527 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
528 #else
529 /* sp0 on x86_32 is special in and around vm86 mode. */
530 return this_cpu_read_stable(cpu_current_top_of_stack);
531 #endif
532 }
533
534 #ifdef CONFIG_PARAVIRT
535 #include <asm/paravirt.h>
536 #else
537 #define __cpuid native_cpuid
538
539 static inline void load_sp0(struct tss_struct *tss,
540 struct thread_struct *thread)
541 {
542 native_load_sp0(tss, thread);
543 }
544
545 #define set_iopl_mask native_set_iopl_mask
546 #endif /* CONFIG_PARAVIRT */
547
548 /* Free all resources held by a thread. */
549 extern void release_thread(struct task_struct *);
550
551 unsigned long get_wchan(struct task_struct *p);
552
553 /*
554 * Generic CPUID function
555 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
556 * resulting in stale register contents being returned.
557 */
558 static inline void cpuid(unsigned int op,
559 unsigned int *eax, unsigned int *ebx,
560 unsigned int *ecx, unsigned int *edx)
561 {
562 *eax = op;
563 *ecx = 0;
564 __cpuid(eax, ebx, ecx, edx);
565 }
566
567 /* Some CPUID calls want 'count' to be placed in ecx */
568 static inline void cpuid_count(unsigned int op, int count,
569 unsigned int *eax, unsigned int *ebx,
570 unsigned int *ecx, unsigned int *edx)
571 {
572 *eax = op;
573 *ecx = count;
574 __cpuid(eax, ebx, ecx, edx);
575 }
576
577 /*
578 * CPUID functions returning a single datum
579 */
580 static inline unsigned int cpuid_eax(unsigned int op)
581 {
582 unsigned int eax, ebx, ecx, edx;
583
584 cpuid(op, &eax, &ebx, &ecx, &edx);
585
586 return eax;
587 }
588
589 static inline unsigned int cpuid_ebx(unsigned int op)
590 {
591 unsigned int eax, ebx, ecx, edx;
592
593 cpuid(op, &eax, &ebx, &ecx, &edx);
594
595 return ebx;
596 }
597
598 static inline unsigned int cpuid_ecx(unsigned int op)
599 {
600 unsigned int eax, ebx, ecx, edx;
601
602 cpuid(op, &eax, &ebx, &ecx, &edx);
603
604 return ecx;
605 }
606
607 static inline unsigned int cpuid_edx(unsigned int op)
608 {
609 unsigned int eax, ebx, ecx, edx;
610
611 cpuid(op, &eax, &ebx, &ecx, &edx);
612
613 return edx;
614 }
615
616 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
617 static __always_inline void rep_nop(void)
618 {
619 asm volatile("rep; nop" ::: "memory");
620 }
621
622 static __always_inline void cpu_relax(void)
623 {
624 rep_nop();
625 }
626
627 /*
628 * This function forces the icache and prefetched instruction stream to
629 * catch up with reality in two very specific cases:
630 *
631 * a) Text was modified using one virtual address and is about to be executed
632 * from the same physical page at a different virtual address.
633 *
634 * b) Text was modified on a different CPU, may subsequently be
635 * executed on this CPU, and you want to make sure the new version
636 * gets executed. This generally means you're calling this in a IPI.
637 *
638 * If you're calling this for a different reason, you're probably doing
639 * it wrong.
640 */
641 static inline void sync_core(void)
642 {
643 /*
644 * There are quite a few ways to do this. IRET-to-self is nice
645 * because it works on every CPU, at any CPL (so it's compatible
646 * with paravirtualization), and it never exits to a hypervisor.
647 * The only down sides are that it's a bit slow (it seems to be
648 * a bit more than 2x slower than the fastest options) and that
649 * it unmasks NMIs. The "push %cs" is needed because, in
650 * paravirtual environments, __KERNEL_CS may not be a valid CS
651 * value when we do IRET directly.
652 *
653 * In case NMI unmasking or performance ever becomes a problem,
654 * the next best option appears to be MOV-to-CR2 and an
655 * unconditional jump. That sequence also works on all CPUs,
656 * but it will fault at CPL3 (i.e. Xen PV and lguest).
657 *
658 * CPUID is the conventional way, but it's nasty: it doesn't
659 * exist on some 486-like CPUs, and it usually exits to a
660 * hypervisor.
661 *
662 * Like all of Linux's memory ordering operations, this is a
663 * compiler barrier as well.
664 */
665 register void *__sp asm(_ASM_SP);
666
667 #ifdef CONFIG_X86_32
668 asm volatile (
669 "pushfl\n\t"
670 "pushl %%cs\n\t"
671 "pushl $1f\n\t"
672 "iret\n\t"
673 "1:"
674 : "+r" (__sp) : : "memory");
675 #else
676 unsigned int tmp;
677
678 asm volatile (
679 "mov %%ss, %0\n\t"
680 "pushq %q0\n\t"
681 "pushq %%rsp\n\t"
682 "addq $8, (%%rsp)\n\t"
683 "pushfq\n\t"
684 "mov %%cs, %0\n\t"
685 "pushq %q0\n\t"
686 "pushq $1f\n\t"
687 "iretq\n\t"
688 "1:"
689 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
690 #endif
691 }
692
693 extern void select_idle_routine(const struct cpuinfo_x86 *c);
694 extern void amd_e400_c1e_apic_setup(void);
695
696 extern unsigned long boot_option_idle_override;
697
698 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
699 IDLE_POLL};
700
701 extern void enable_sep_cpu(void);
702 extern int sysenter_setup(void);
703
704 extern void early_trap_init(void);
705 void early_trap_pf_init(void);
706
707 /* Defined in head.S */
708 extern struct desc_ptr early_gdt_descr;
709
710 extern void cpu_set_gdt(int);
711 extern void switch_to_new_gdt(int);
712 extern void load_direct_gdt(int);
713 extern void load_fixmap_gdt(int);
714 extern void load_percpu_segment(int);
715 extern void cpu_init(void);
716
717 static inline unsigned long get_debugctlmsr(void)
718 {
719 unsigned long debugctlmsr = 0;
720
721 #ifndef CONFIG_X86_DEBUGCTLMSR
722 if (boot_cpu_data.x86 < 6)
723 return 0;
724 #endif
725 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
726
727 return debugctlmsr;
728 }
729
730 static inline void update_debugctlmsr(unsigned long debugctlmsr)
731 {
732 #ifndef CONFIG_X86_DEBUGCTLMSR
733 if (boot_cpu_data.x86 < 6)
734 return;
735 #endif
736 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
737 }
738
739 extern void set_task_blockstep(struct task_struct *task, bool on);
740
741 /* Boot loader type from the setup header: */
742 extern int bootloader_type;
743 extern int bootloader_version;
744
745 extern char ignore_fpu_irq;
746
747 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
748 #define ARCH_HAS_PREFETCHW
749 #define ARCH_HAS_SPINLOCK_PREFETCH
750
751 #ifdef CONFIG_X86_32
752 # define BASE_PREFETCH ""
753 # define ARCH_HAS_PREFETCH
754 #else
755 # define BASE_PREFETCH "prefetcht0 %P1"
756 #endif
757
758 /*
759 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
760 *
761 * It's not worth to care about 3dnow prefetches for the K6
762 * because they are microcoded there and very slow.
763 */
764 static inline void prefetch(const void *x)
765 {
766 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
767 X86_FEATURE_XMM,
768 "m" (*(const char *)x));
769 }
770
771 /*
772 * 3dnow prefetch to get an exclusive cache line.
773 * Useful for spinlocks to avoid one state transition in the
774 * cache coherency protocol:
775 */
776 static inline void prefetchw(const void *x)
777 {
778 alternative_input(BASE_PREFETCH, "prefetchw %P1",
779 X86_FEATURE_3DNOWPREFETCH,
780 "m" (*(const char *)x));
781 }
782
783 static inline void spin_lock_prefetch(const void *x)
784 {
785 prefetchw(x);
786 }
787
788 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
789 TOP_OF_KERNEL_STACK_PADDING)
790
791 #ifdef CONFIG_X86_32
792 /*
793 * User space process size: 3GB (default).
794 */
795 #define IA32_PAGE_OFFSET PAGE_OFFSET
796 #define TASK_SIZE PAGE_OFFSET
797 #define TASK_SIZE_MAX TASK_SIZE
798 #define STACK_TOP TASK_SIZE
799 #define STACK_TOP_MAX STACK_TOP
800
801 #define INIT_THREAD { \
802 .sp0 = TOP_OF_INIT_STACK, \
803 .sysenter_cs = __KERNEL_CS, \
804 .io_bitmap_ptr = NULL, \
805 .addr_limit = KERNEL_DS, \
806 }
807
808 /*
809 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
810 * This is necessary to guarantee that the entire "struct pt_regs"
811 * is accessible even if the CPU haven't stored the SS/ESP registers
812 * on the stack (interrupt gate does not save these registers
813 * when switching to the same priv ring).
814 * Therefore beware: accessing the ss/esp fields of the
815 * "struct pt_regs" is possible, but they may contain the
816 * completely wrong values.
817 */
818 #define task_pt_regs(task) \
819 ({ \
820 unsigned long __ptr = (unsigned long)task_stack_page(task); \
821 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
822 ((struct pt_regs *)__ptr) - 1; \
823 })
824
825 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
826
827 #else
828 /*
829 * User space process size. 47bits minus one guard page. The guard
830 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
831 * the highest possible canonical userspace address, then that
832 * syscall will enter the kernel with a non-canonical return
833 * address, and SYSRET will explode dangerously. We avoid this
834 * particular problem by preventing anything from being mapped
835 * at the maximum canonical address.
836 */
837 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
838
839 /* This decides where the kernel will search for a free chunk of vm
840 * space during mmap's.
841 */
842 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
843 0xc0000000 : 0xFFFFe000)
844
845 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
846 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
847 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
848 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
849
850 #define STACK_TOP TASK_SIZE
851 #define STACK_TOP_MAX TASK_SIZE_MAX
852
853 #define INIT_THREAD { \
854 .sp0 = TOP_OF_INIT_STACK, \
855 .addr_limit = KERNEL_DS, \
856 }
857
858 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
859 extern unsigned long KSTK_ESP(struct task_struct *task);
860
861 #endif /* CONFIG_X86_64 */
862
863 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
864 unsigned long new_sp);
865
866 /*
867 * This decides where the kernel will search for a free chunk of vm
868 * space during mmap's.
869 */
870 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
871 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE)
872
873 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
874
875 /* Get/set a process' ability to use the timestamp counter instruction */
876 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
877 #define SET_TSC_CTL(val) set_tsc_mode((val))
878
879 extern int get_tsc_mode(unsigned long adr);
880 extern int set_tsc_mode(unsigned int val);
881
882 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
883
884 /* Register/unregister a process' MPX related resource */
885 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
886 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
887
888 #ifdef CONFIG_X86_INTEL_MPX
889 extern int mpx_enable_management(void);
890 extern int mpx_disable_management(void);
891 #else
892 static inline int mpx_enable_management(void)
893 {
894 return -EINVAL;
895 }
896 static inline int mpx_disable_management(void)
897 {
898 return -EINVAL;
899 }
900 #endif /* CONFIG_X86_INTEL_MPX */
901
902 extern u16 amd_get_nb_id(int cpu);
903 extern u32 amd_get_nodes_per_socket(void);
904
905 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
906 {
907 uint32_t base, eax, signature[3];
908
909 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
910 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
911
912 if (!memcmp(sig, signature, 12) &&
913 (leaves == 0 || ((eax - base) >= leaves)))
914 return base;
915 }
916
917 return 0;
918 }
919
920 extern unsigned long arch_align_stack(unsigned long sp);
921 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
922
923 void default_idle(void);
924 #ifdef CONFIG_XEN
925 bool xen_set_default_idle(void);
926 #else
927 #define xen_set_default_idle 0
928 #endif
929
930 void stop_this_cpu(void *dummy);
931 void df_debug(struct pt_regs *regs, long error_code);
932 #endif /* _ASM_X86_PROCESSOR_H */