]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/include/asm/processor.h
x86/irq/64: Adjust the per CPU irq stack pointer by 8
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
38
39 /*
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
42 *
43 * Based on this we disable the IP header alignment in network drivers.
44 */
45 #define NET_IP_ALIGN 0
46
47 #define HBP_NUM 4
48
49 /*
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
53 */
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
57 #else
58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN 0
60 #endif
61
62 enum tlb_infos {
63 ENTRIES,
64 NR_INFO
65 };
66
67 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74
75 /*
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
79 */
80
81 struct cpuinfo_x86 {
82 __u8 x86; /* CPU family */
83 __u8 x86_vendor; /* CPU vendor */
84 __u8 x86_model;
85 __u8 x86_stepping;
86 #ifdef CONFIG_X86_64
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 int x86_tlbsize;
89 #endif
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability[NVMXINTS];
92 #endif
93 __u8 x86_virt_bits;
94 __u8 x86_phys_bits;
95 /* CPUID returned core id bits: */
96 __u8 x86_coreid_bits;
97 __u8 cu_id;
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level;
100 /* Maximum supported CPUID level, -1=no CPUID: */
101 int cpuid_level;
102 /*
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
106 */
107 union {
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 unsigned long x86_capability_alignment;
110 };
111 char x86_vendor_id[16];
112 char x86_model_id[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size;
115 int x86_cache_alignment; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid; /* max index */
118 int x86_cache_occ_scale; /* scale to bytes */
119 int x86_cache_mbm_width_offset;
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 u16 cpu_die_id;
136 u16 logical_die_id;
137 /* Index into per_cpu list: */
138 u16 cpu_index;
139 u32 microcode;
140 /* Address space bits used by the cache internally */
141 u8 x86_cache_bits;
142 unsigned initialized : 1;
143 } __randomize_layout;
144
145 struct cpuid_regs {
146 u32 eax, ebx, ecx, edx;
147 };
148
149 enum cpuid_regs_idx {
150 CPUID_EAX = 0,
151 CPUID_EBX,
152 CPUID_ECX,
153 CPUID_EDX,
154 };
155
156 #define X86_VENDOR_INTEL 0
157 #define X86_VENDOR_CYRIX 1
158 #define X86_VENDOR_AMD 2
159 #define X86_VENDOR_UMC 3
160 #define X86_VENDOR_CENTAUR 5
161 #define X86_VENDOR_TRANSMETA 7
162 #define X86_VENDOR_NSC 8
163 #define X86_VENDOR_HYGON 9
164 #define X86_VENDOR_ZHAOXIN 10
165 #define X86_VENDOR_NUM 11
166
167 #define X86_VENDOR_UNKNOWN 0xff
168
169 /*
170 * capabilities of CPUs
171 */
172 extern struct cpuinfo_x86 boot_cpu_data;
173 extern struct cpuinfo_x86 new_cpu_data;
174
175 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
176 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
177
178 #ifdef CONFIG_SMP
179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
181 #else
182 #define cpu_info boot_cpu_data
183 #define cpu_data(cpu) boot_cpu_data
184 #endif
185
186 extern const struct seq_operations cpuinfo_op;
187
188 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189
190 extern void cpu_detect(struct cpuinfo_x86 *c);
191
192 static inline unsigned long long l1tf_pfn_limit(void)
193 {
194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195 }
196
197 extern void early_cpu_init(void);
198 extern void identify_boot_cpu(void);
199 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200 extern void print_cpu_info(struct cpuinfo_x86 *);
201 void print_cpu_msr(struct cpuinfo_x86 *);
202
203 #ifdef CONFIG_X86_32
204 extern int have_cpuid_p(void);
205 #else
206 static inline int have_cpuid_p(void)
207 {
208 return 1;
209 }
210 #endif
211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213 {
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222 }
223
224 #define native_cpuid_reg(reg) \
225 static inline unsigned int native_cpuid_##reg(unsigned int op) \
226 { \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232 }
233
234 /*
235 * Native CPUID functions returning a single datum.
236 */
237 native_cpuid_reg(eax)
238 native_cpuid_reg(ebx)
239 native_cpuid_reg(ecx)
240 native_cpuid_reg(edx)
241
242 /*
243 * Friendlier CR3 helpers.
244 */
245 static inline unsigned long read_cr3_pa(void)
246 {
247 return __read_cr3() & CR3_ADDR_MASK;
248 }
249
250 static inline unsigned long native_read_cr3_pa(void)
251 {
252 return __native_read_cr3() & CR3_ADDR_MASK;
253 }
254
255 static inline void load_cr3(pgd_t *pgdir)
256 {
257 write_cr3(__sme_pa(pgdir));
258 }
259
260 /*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265 #ifdef CONFIG_X86_32
266 /* This is the TSS defined by the hardware. */
267 struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312 } __attribute__((packed));
313 #else
314 struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317
318 /*
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 */
322 u64 sp1;
323
324 /*
325 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
327 * the user RSP value.
328 */
329 u64 sp2;
330
331 u64 reserved2;
332 u64 ist[7];
333 u32 reserved3;
334 u32 reserved4;
335 u16 reserved5;
336 u16 io_bitmap_base;
337
338 } __attribute__((packed));
339 #endif
340
341 /*
342 * IO-bitmap sizes:
343 */
344 #define IO_BITMAP_BITS 65536
345 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
346 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
347
348 #define IO_BITMAP_OFFSET_VALID_MAP \
349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
350 offsetof(struct tss_struct, x86_tss))
351
352 #define IO_BITMAP_OFFSET_VALID_ALL \
353 (offsetof(struct tss_struct, io_bitmap.mapall) - \
354 offsetof(struct tss_struct, x86_tss))
355
356 #ifdef CONFIG_X86_IOPL_IOPERM
357 /*
358 * sizeof(unsigned long) coming from an extra "long" at the end of the
359 * iobitmap. The limit is inclusive, i.e. the last valid byte.
360 */
361 # define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 sizeof(unsigned long) - 1)
364 #else
365 # define __KERNEL_TSS_LIMIT \
366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
367 #endif
368
369 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
371
372 struct entry_stack {
373 char stack[PAGE_SIZE];
374 };
375
376 struct entry_stack_page {
377 struct entry_stack stack;
378 } __aligned(PAGE_SIZE);
379
380 /*
381 * All IO bitmap related data stored in the TSS:
382 */
383 struct x86_io_bitmap {
384 /* The sequence number of the last active bitmap. */
385 u64 prev_sequence;
386
387 /*
388 * Store the dirty size of the last io bitmap offender. The next
389 * one will have to do the cleanup as the switch out to a non io
390 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 * outside of the TSS limit. So for sane tasks there is no need to
392 * actually touch the io_bitmap at all.
393 */
394 unsigned int prev_max;
395
396 /*
397 * The extra 1 is there because the CPU will access an
398 * additional byte beyond the end of the IO permission
399 * bitmap. The extra byte must be all 1 bits, and must
400 * be within the limit.
401 */
402 unsigned long bitmap[IO_BITMAP_LONGS + 1];
403
404 /*
405 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 * except the additional byte at the end.
407 */
408 unsigned long mapall[IO_BITMAP_LONGS + 1];
409 };
410
411 struct tss_struct {
412 /*
413 * The fixed hardware portion. This must not cross a page boundary
414 * at risk of violating the SDM's advice and potentially triggering
415 * errata.
416 */
417 struct x86_hw_tss x86_tss;
418
419 struct x86_io_bitmap io_bitmap;
420 } __aligned(PAGE_SIZE);
421
422 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
423
424 /* Per CPU interrupt stacks */
425 struct irq_stack {
426 char stack[IRQ_STACK_SIZE];
427 } __aligned(IRQ_STACK_SIZE);
428
429 #ifdef CONFIG_X86_32
430 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
431 #else
432 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
433 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
434 #endif
435
436 #ifdef CONFIG_X86_64
437 struct fixed_percpu_data {
438 /*
439 * GCC hardcodes the stack canary as %gs:40. Since the
440 * irq_stack is the object at %gs:0, we reserve the bottom
441 * 48 bytes of the irq stack for the canary.
442 */
443 char gs_base[40];
444 unsigned long stack_canary;
445 };
446
447 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
448 DECLARE_INIT_PER_CPU(fixed_percpu_data);
449
450 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
451 {
452 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
453 }
454
455 DECLARE_PER_CPU(void *, hardirq_stack_ptr);
456 DECLARE_PER_CPU(bool, hardirq_stack_inuse);
457 extern asmlinkage void ignore_sysret(void);
458
459 /* Save actual FS/GS selectors and bases to current->thread */
460 void current_save_fsgs(void);
461 #else /* X86_64 */
462 #ifdef CONFIG_STACKPROTECTOR
463 /*
464 * Make sure stack canary segment base is cached-aligned:
465 * "For Intel Atom processors, avoid non zero segment base address
466 * that is not aligned to cache line boundary at all cost."
467 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
468 */
469 struct stack_canary {
470 char __pad[20]; /* canary at %gs:20 */
471 unsigned long canary;
472 };
473 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
474 #endif
475 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
476 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
477 #endif /* !X86_64 */
478
479 extern unsigned int fpu_kernel_xstate_size;
480 extern unsigned int fpu_user_xstate_size;
481
482 struct perf_event;
483
484 struct thread_struct {
485 /* Cached TLS descriptors: */
486 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
487 #ifdef CONFIG_X86_32
488 unsigned long sp0;
489 #endif
490 unsigned long sp;
491 #ifdef CONFIG_X86_32
492 unsigned long sysenter_cs;
493 #else
494 unsigned short es;
495 unsigned short ds;
496 unsigned short fsindex;
497 unsigned short gsindex;
498 #endif
499
500 #ifdef CONFIG_X86_64
501 unsigned long fsbase;
502 unsigned long gsbase;
503 #else
504 /*
505 * XXX: this could presumably be unsigned short. Alternatively,
506 * 32-bit kernels could be taught to use fsindex instead.
507 */
508 unsigned long fs;
509 unsigned long gs;
510 #endif
511
512 /* Save middle states of ptrace breakpoints */
513 struct perf_event *ptrace_bps[HBP_NUM];
514 /* Debug status used for traps, single steps, etc... */
515 unsigned long virtual_dr6;
516 /* Keep track of the exact dr7 value set by the user */
517 unsigned long ptrace_dr7;
518 /* Fault info: */
519 unsigned long cr2;
520 unsigned long trap_nr;
521 unsigned long error_code;
522 #ifdef CONFIG_VM86
523 /* Virtual 86 mode info */
524 struct vm86 *vm86;
525 #endif
526 /* IO permissions: */
527 struct io_bitmap *io_bitmap;
528
529 /*
530 * IOPL. Priviledge level dependent I/O permission which is
531 * emulated via the I/O bitmap to prevent user space from disabling
532 * interrupts.
533 */
534 unsigned long iopl_emul;
535
536 unsigned int sig_on_uaccess_err:1;
537
538 /* Floating point and extended processor state */
539 struct fpu fpu;
540 /*
541 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
542 * the end.
543 */
544 };
545
546 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
547 static inline void arch_thread_struct_whitelist(unsigned long *offset,
548 unsigned long *size)
549 {
550 *offset = offsetof(struct thread_struct, fpu.state);
551 *size = fpu_kernel_xstate_size;
552 }
553
554 /*
555 * Thread-synchronous status.
556 *
557 * This is different from the flags in that nobody else
558 * ever touches our thread-synchronous status, so we don't
559 * have to worry about atomic accesses.
560 */
561 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
562
563 static inline void
564 native_load_sp0(unsigned long sp0)
565 {
566 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
567 }
568
569 static __always_inline void native_swapgs(void)
570 {
571 #ifdef CONFIG_X86_64
572 asm volatile("swapgs" ::: "memory");
573 #endif
574 }
575
576 static inline unsigned long current_top_of_stack(void)
577 {
578 /*
579 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
580 * and around vm86 mode and sp0 on x86_64 is special because of the
581 * entry trampoline.
582 */
583 return this_cpu_read_stable(cpu_current_top_of_stack);
584 }
585
586 static inline bool on_thread_stack(void)
587 {
588 return (unsigned long)(current_top_of_stack() -
589 current_stack_pointer) < THREAD_SIZE;
590 }
591
592 #ifdef CONFIG_PARAVIRT_XXL
593 #include <asm/paravirt.h>
594 #else
595 #define __cpuid native_cpuid
596
597 static inline void load_sp0(unsigned long sp0)
598 {
599 native_load_sp0(sp0);
600 }
601
602 #endif /* CONFIG_PARAVIRT_XXL */
603
604 /* Free all resources held by a thread. */
605 extern void release_thread(struct task_struct *);
606
607 unsigned long get_wchan(struct task_struct *p);
608
609 /*
610 * Generic CPUID function
611 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
612 * resulting in stale register contents being returned.
613 */
614 static inline void cpuid(unsigned int op,
615 unsigned int *eax, unsigned int *ebx,
616 unsigned int *ecx, unsigned int *edx)
617 {
618 *eax = op;
619 *ecx = 0;
620 __cpuid(eax, ebx, ecx, edx);
621 }
622
623 /* Some CPUID calls want 'count' to be placed in ecx */
624 static inline void cpuid_count(unsigned int op, int count,
625 unsigned int *eax, unsigned int *ebx,
626 unsigned int *ecx, unsigned int *edx)
627 {
628 *eax = op;
629 *ecx = count;
630 __cpuid(eax, ebx, ecx, edx);
631 }
632
633 /*
634 * CPUID functions returning a single datum
635 */
636 static inline unsigned int cpuid_eax(unsigned int op)
637 {
638 unsigned int eax, ebx, ecx, edx;
639
640 cpuid(op, &eax, &ebx, &ecx, &edx);
641
642 return eax;
643 }
644
645 static inline unsigned int cpuid_ebx(unsigned int op)
646 {
647 unsigned int eax, ebx, ecx, edx;
648
649 cpuid(op, &eax, &ebx, &ecx, &edx);
650
651 return ebx;
652 }
653
654 static inline unsigned int cpuid_ecx(unsigned int op)
655 {
656 unsigned int eax, ebx, ecx, edx;
657
658 cpuid(op, &eax, &ebx, &ecx, &edx);
659
660 return ecx;
661 }
662
663 static inline unsigned int cpuid_edx(unsigned int op)
664 {
665 unsigned int eax, ebx, ecx, edx;
666
667 cpuid(op, &eax, &ebx, &ecx, &edx);
668
669 return edx;
670 }
671
672 extern void select_idle_routine(const struct cpuinfo_x86 *c);
673 extern void amd_e400_c1e_apic_setup(void);
674
675 extern unsigned long boot_option_idle_override;
676
677 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
678 IDLE_POLL};
679
680 extern void enable_sep_cpu(void);
681 extern int sysenter_setup(void);
682
683
684 /* Defined in head.S */
685 extern struct desc_ptr early_gdt_descr;
686
687 extern void switch_to_new_gdt(int);
688 extern void load_direct_gdt(int);
689 extern void load_fixmap_gdt(int);
690 extern void load_percpu_segment(int);
691 extern void cpu_init(void);
692 extern void cpu_init_exception_handling(void);
693 extern void cr4_init(void);
694
695 static inline unsigned long get_debugctlmsr(void)
696 {
697 unsigned long debugctlmsr = 0;
698
699 #ifndef CONFIG_X86_DEBUGCTLMSR
700 if (boot_cpu_data.x86 < 6)
701 return 0;
702 #endif
703 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
704
705 return debugctlmsr;
706 }
707
708 static inline void update_debugctlmsr(unsigned long debugctlmsr)
709 {
710 #ifndef CONFIG_X86_DEBUGCTLMSR
711 if (boot_cpu_data.x86 < 6)
712 return;
713 #endif
714 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
715 }
716
717 extern void set_task_blockstep(struct task_struct *task, bool on);
718
719 /* Boot loader type from the setup header: */
720 extern int bootloader_type;
721 extern int bootloader_version;
722
723 extern char ignore_fpu_irq;
724
725 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
726 #define ARCH_HAS_PREFETCHW
727 #define ARCH_HAS_SPINLOCK_PREFETCH
728
729 #ifdef CONFIG_X86_32
730 # define BASE_PREFETCH ""
731 # define ARCH_HAS_PREFETCH
732 #else
733 # define BASE_PREFETCH "prefetcht0 %P1"
734 #endif
735
736 /*
737 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
738 *
739 * It's not worth to care about 3dnow prefetches for the K6
740 * because they are microcoded there and very slow.
741 */
742 static inline void prefetch(const void *x)
743 {
744 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
745 X86_FEATURE_XMM,
746 "m" (*(const char *)x));
747 }
748
749 /*
750 * 3dnow prefetch to get an exclusive cache line.
751 * Useful for spinlocks to avoid one state transition in the
752 * cache coherency protocol:
753 */
754 static __always_inline void prefetchw(const void *x)
755 {
756 alternative_input(BASE_PREFETCH, "prefetchw %P1",
757 X86_FEATURE_3DNOWPREFETCH,
758 "m" (*(const char *)x));
759 }
760
761 static inline void spin_lock_prefetch(const void *x)
762 {
763 prefetchw(x);
764 }
765
766 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
767 TOP_OF_KERNEL_STACK_PADDING)
768
769 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
770
771 #define task_pt_regs(task) \
772 ({ \
773 unsigned long __ptr = (unsigned long)task_stack_page(task); \
774 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
775 ((struct pt_regs *)__ptr) - 1; \
776 })
777
778 #ifdef CONFIG_X86_32
779 #define INIT_THREAD { \
780 .sp0 = TOP_OF_INIT_STACK, \
781 .sysenter_cs = __KERNEL_CS, \
782 }
783
784 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
785
786 #else
787 #define INIT_THREAD { }
788
789 extern unsigned long KSTK_ESP(struct task_struct *task);
790
791 #endif /* CONFIG_X86_64 */
792
793 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
794 unsigned long new_sp);
795
796 /*
797 * This decides where the kernel will search for a free chunk of vm
798 * space during mmap's.
799 */
800 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
801 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
802
803 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
804
805 /* Get/set a process' ability to use the timestamp counter instruction */
806 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
807 #define SET_TSC_CTL(val) set_tsc_mode((val))
808
809 extern int get_tsc_mode(unsigned long adr);
810 extern int set_tsc_mode(unsigned int val);
811
812 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
813
814 #ifdef CONFIG_CPU_SUP_AMD
815 extern u32 amd_get_nodes_per_socket(void);
816 #else
817 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
818 #endif
819
820 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
821 {
822 uint32_t base, eax, signature[3];
823
824 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
825 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
826
827 if (!memcmp(sig, signature, 12) &&
828 (leaves == 0 || ((eax - base) >= leaves)))
829 return base;
830 }
831
832 return 0;
833 }
834
835 extern unsigned long arch_align_stack(unsigned long sp);
836 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
837 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
838
839 void default_idle(void);
840 #ifdef CONFIG_XEN
841 bool xen_set_default_idle(void);
842 #else
843 #define xen_set_default_idle 0
844 #endif
845
846 void stop_this_cpu(void *dummy);
847 void microcode_check(void);
848
849 enum l1tf_mitigations {
850 L1TF_MITIGATION_OFF,
851 L1TF_MITIGATION_FLUSH_NOWARN,
852 L1TF_MITIGATION_FLUSH,
853 L1TF_MITIGATION_FLUSH_NOSMT,
854 L1TF_MITIGATION_FULL,
855 L1TF_MITIGATION_FULL_FORCE
856 };
857
858 extern enum l1tf_mitigations l1tf_mitigation;
859
860 enum mds_mitigations {
861 MDS_MITIGATION_OFF,
862 MDS_MITIGATION_FULL,
863 MDS_MITIGATION_VMWERV,
864 };
865
866 #endif /* _ASM_X86_PROCESSOR_H */