]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/include/asm/processor.h
Merge branch 'WIP.x86/boot' into x86/boot, to pick up ready branch
[mirror_ubuntu-focal-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_32
93 char wp_works_ok; /* It doesn't on 386's */
94
95 /* Problems on some 486Dx4's and old 386's: */
96 char rfu;
97 char pad0;
98 char pad1;
99 #else
100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 int x86_tlbsize;
102 #endif
103 __u8 x86_virt_bits;
104 __u8 x86_phys_bits;
105 /* CPUID returned core id bits: */
106 __u8 x86_coreid_bits;
107 __u8 cu_id;
108 /* Max extended CPUID function supported: */
109 __u32 extended_cpuid_level;
110 /* Maximum supported CPUID level, -1=no CPUID: */
111 int cpuid_level;
112 __u32 x86_capability[NCAPINTS + NBUGINTS];
113 char x86_vendor_id[16];
114 char x86_model_id[64];
115 /* in KB - valid for CPUS which support this call: */
116 int x86_cache_size;
117 int x86_cache_alignment; /* In bytes */
118 /* Cache QoS architectural values: */
119 int x86_cache_max_rmid; /* max index */
120 int x86_cache_occ_scale; /* scale to bytes */
121 int x86_power;
122 unsigned long loops_per_jiffy;
123 /* cpuid returned max cores value: */
124 u16 x86_max_cores;
125 u16 apicid;
126 u16 initial_apicid;
127 u16 x86_clflush_size;
128 /* number of cores as seen by the OS: */
129 u16 booted_cores;
130 /* Physical processor id: */
131 u16 phys_proc_id;
132 /* Logical processor id: */
133 u16 logical_proc_id;
134 /* Core id: */
135 u16 cpu_core_id;
136 /* Index into per_cpu list: */
137 u16 cpu_index;
138 u32 microcode;
139 };
140
141 struct cpuid_regs {
142 u32 eax, ebx, ecx, edx;
143 };
144
145 enum cpuid_regs_idx {
146 CPUID_EAX = 0,
147 CPUID_EBX,
148 CPUID_ECX,
149 CPUID_EDX,
150 };
151
152 #define X86_VENDOR_INTEL 0
153 #define X86_VENDOR_CYRIX 1
154 #define X86_VENDOR_AMD 2
155 #define X86_VENDOR_UMC 3
156 #define X86_VENDOR_CENTAUR 5
157 #define X86_VENDOR_TRANSMETA 7
158 #define X86_VENDOR_NSC 8
159 #define X86_VENDOR_NUM 9
160
161 #define X86_VENDOR_UNKNOWN 0xff
162
163 /*
164 * capabilities of CPUs
165 */
166 extern struct cpuinfo_x86 boot_cpu_data;
167 extern struct cpuinfo_x86 new_cpu_data;
168
169 extern struct tss_struct doublefault_tss;
170 extern __u32 cpu_caps_cleared[NCAPINTS];
171 extern __u32 cpu_caps_set[NCAPINTS];
172
173 #ifdef CONFIG_SMP
174 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
176 #else
177 #define cpu_info boot_cpu_data
178 #define cpu_data(cpu) boot_cpu_data
179 #endif
180
181 extern const struct seq_operations cpuinfo_op;
182
183 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
184
185 extern void cpu_detect(struct cpuinfo_x86 *c);
186
187 extern void early_cpu_init(void);
188 extern void identify_boot_cpu(void);
189 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
190 extern void print_cpu_info(struct cpuinfo_x86 *);
191 void print_cpu_msr(struct cpuinfo_x86 *);
192 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
193 extern u32 get_scattered_cpuid_leaf(unsigned int level,
194 unsigned int sub_leaf,
195 enum cpuid_regs_idx reg);
196 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
197 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
198
199 extern void detect_extended_topology(struct cpuinfo_x86 *c);
200 extern void detect_ht(struct cpuinfo_x86 *c);
201
202 #ifdef CONFIG_X86_32
203 extern int have_cpuid_p(void);
204 #else
205 static inline int have_cpuid_p(void)
206 {
207 return 1;
208 }
209 #endif
210 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
211 unsigned int *ecx, unsigned int *edx)
212 {
213 /* ecx is often an input as well as an output. */
214 asm volatile("cpuid"
215 : "=a" (*eax),
216 "=b" (*ebx),
217 "=c" (*ecx),
218 "=d" (*edx)
219 : "0" (*eax), "2" (*ecx)
220 : "memory");
221 }
222
223 #define native_cpuid_reg(reg) \
224 static inline unsigned int native_cpuid_##reg(unsigned int op) \
225 { \
226 unsigned int eax = op, ebx, ecx = 0, edx; \
227 \
228 native_cpuid(&eax, &ebx, &ecx, &edx); \
229 \
230 return reg; \
231 }
232
233 /*
234 * Native CPUID functions returning a single datum.
235 */
236 native_cpuid_reg(eax)
237 native_cpuid_reg(ebx)
238 native_cpuid_reg(ecx)
239 native_cpuid_reg(edx)
240
241 static inline void load_cr3(pgd_t *pgdir)
242 {
243 write_cr3(__pa(pgdir));
244 }
245
246 #ifdef CONFIG_X86_32
247 /* This is the TSS defined by the hardware. */
248 struct x86_hw_tss {
249 unsigned short back_link, __blh;
250 unsigned long sp0;
251 unsigned short ss0, __ss0h;
252 unsigned long sp1;
253
254 /*
255 * We don't use ring 1, so ss1 is a convenient scratch space in
256 * the same cacheline as sp0. We use ss1 to cache the value in
257 * MSR_IA32_SYSENTER_CS. When we context switch
258 * MSR_IA32_SYSENTER_CS, we first check if the new value being
259 * written matches ss1, and, if it's not, then we wrmsr the new
260 * value and update ss1.
261 *
262 * The only reason we context switch MSR_IA32_SYSENTER_CS is
263 * that we set it to zero in vm86 tasks to avoid corrupting the
264 * stack if we were to go through the sysenter path from vm86
265 * mode.
266 */
267 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
268
269 unsigned short __ss1h;
270 unsigned long sp2;
271 unsigned short ss2, __ss2h;
272 unsigned long __cr3;
273 unsigned long ip;
274 unsigned long flags;
275 unsigned long ax;
276 unsigned long cx;
277 unsigned long dx;
278 unsigned long bx;
279 unsigned long sp;
280 unsigned long bp;
281 unsigned long si;
282 unsigned long di;
283 unsigned short es, __esh;
284 unsigned short cs, __csh;
285 unsigned short ss, __ssh;
286 unsigned short ds, __dsh;
287 unsigned short fs, __fsh;
288 unsigned short gs, __gsh;
289 unsigned short ldt, __ldth;
290 unsigned short trace;
291 unsigned short io_bitmap_base;
292
293 } __attribute__((packed));
294 #else
295 struct x86_hw_tss {
296 u32 reserved1;
297 u64 sp0;
298 u64 sp1;
299 u64 sp2;
300 u64 reserved2;
301 u64 ist[7];
302 u32 reserved3;
303 u32 reserved4;
304 u16 reserved5;
305 u16 io_bitmap_base;
306
307 } __attribute__((packed));
308 #endif
309
310 /*
311 * IO-bitmap sizes:
312 */
313 #define IO_BITMAP_BITS 65536
314 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
315 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
316 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
317 #define INVALID_IO_BITMAP_OFFSET 0x8000
318
319 struct tss_struct {
320 /*
321 * The hardware state:
322 */
323 struct x86_hw_tss x86_tss;
324
325 /*
326 * The extra 1 is there because the CPU will access an
327 * additional byte beyond the end of the IO permission
328 * bitmap. The extra byte must be all 1 bits, and must
329 * be within the limit.
330 */
331 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
332
333 #ifdef CONFIG_X86_32
334 /*
335 * Space for the temporary SYSENTER stack.
336 */
337 unsigned long SYSENTER_stack_canary;
338 unsigned long SYSENTER_stack[64];
339 #endif
340
341 } ____cacheline_aligned;
342
343 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
344
345 /*
346 * sizeof(unsigned long) coming from an extra "long" at the end
347 * of the iobitmap.
348 *
349 * -1? seg base+limit should be pointing to the address of the
350 * last valid byte
351 */
352 #define __KERNEL_TSS_LIMIT \
353 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
354
355 #ifdef CONFIG_X86_32
356 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
357 #endif
358
359 /*
360 * Save the original ist values for checking stack pointers during debugging
361 */
362 struct orig_ist {
363 unsigned long ist[7];
364 };
365
366 #ifdef CONFIG_X86_64
367 DECLARE_PER_CPU(struct orig_ist, orig_ist);
368
369 union irq_stack_union {
370 char irq_stack[IRQ_STACK_SIZE];
371 /*
372 * GCC hardcodes the stack canary as %gs:40. Since the
373 * irq_stack is the object at %gs:0, we reserve the bottom
374 * 48 bytes of the irq stack for the canary.
375 */
376 struct {
377 char gs_base[40];
378 unsigned long stack_canary;
379 };
380 };
381
382 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
383 DECLARE_INIT_PER_CPU(irq_stack_union);
384
385 DECLARE_PER_CPU(char *, irq_stack_ptr);
386 DECLARE_PER_CPU(unsigned int, irq_count);
387 extern asmlinkage void ignore_sysret(void);
388 #else /* X86_64 */
389 #ifdef CONFIG_CC_STACKPROTECTOR
390 /*
391 * Make sure stack canary segment base is cached-aligned:
392 * "For Intel Atom processors, avoid non zero segment base address
393 * that is not aligned to cache line boundary at all cost."
394 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
395 */
396 struct stack_canary {
397 char __pad[20]; /* canary at %gs:20 */
398 unsigned long canary;
399 };
400 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
401 #endif
402 /*
403 * per-CPU IRQ handling stacks
404 */
405 struct irq_stack {
406 u32 stack[THREAD_SIZE/sizeof(u32)];
407 } __aligned(THREAD_SIZE);
408
409 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
410 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
411 #endif /* X86_64 */
412
413 extern unsigned int fpu_kernel_xstate_size;
414 extern unsigned int fpu_user_xstate_size;
415
416 struct perf_event;
417
418 typedef struct {
419 unsigned long seg;
420 } mm_segment_t;
421
422 struct thread_struct {
423 /* Cached TLS descriptors: */
424 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
425 unsigned long sp0;
426 unsigned long sp;
427 #ifdef CONFIG_X86_32
428 unsigned long sysenter_cs;
429 #else
430 unsigned short es;
431 unsigned short ds;
432 unsigned short fsindex;
433 unsigned short gsindex;
434 #endif
435
436 u32 status; /* thread synchronous flags */
437
438 #ifdef CONFIG_X86_64
439 unsigned long fsbase;
440 unsigned long gsbase;
441 #else
442 /*
443 * XXX: this could presumably be unsigned short. Alternatively,
444 * 32-bit kernels could be taught to use fsindex instead.
445 */
446 unsigned long fs;
447 unsigned long gs;
448 #endif
449
450 /* Save middle states of ptrace breakpoints */
451 struct perf_event *ptrace_bps[HBP_NUM];
452 /* Debug status used for traps, single steps, etc... */
453 unsigned long debugreg6;
454 /* Keep track of the exact dr7 value set by the user */
455 unsigned long ptrace_dr7;
456 /* Fault info: */
457 unsigned long cr2;
458 unsigned long trap_nr;
459 unsigned long error_code;
460 #ifdef CONFIG_VM86
461 /* Virtual 86 mode info */
462 struct vm86 *vm86;
463 #endif
464 /* IO permissions: */
465 unsigned long *io_bitmap_ptr;
466 unsigned long iopl;
467 /* Max allowed port in the bitmap, in bytes: */
468 unsigned io_bitmap_max;
469
470 mm_segment_t addr_limit;
471
472 unsigned int sig_on_uaccess_err:1;
473 unsigned int uaccess_err:1; /* uaccess failed */
474
475 /* Floating point and extended processor state */
476 struct fpu fpu;
477 /*
478 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
479 * the end.
480 */
481 };
482
483 /*
484 * Thread-synchronous status.
485 *
486 * This is different from the flags in that nobody else
487 * ever touches our thread-synchronous status, so we don't
488 * have to worry about atomic accesses.
489 */
490 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
491
492 /*
493 * Set IOPL bits in EFLAGS from given mask
494 */
495 static inline void native_set_iopl_mask(unsigned mask)
496 {
497 #ifdef CONFIG_X86_32
498 unsigned int reg;
499
500 asm volatile ("pushfl;"
501 "popl %0;"
502 "andl %1, %0;"
503 "orl %2, %0;"
504 "pushl %0;"
505 "popfl"
506 : "=&r" (reg)
507 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
508 #endif
509 }
510
511 static inline void
512 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
513 {
514 tss->x86_tss.sp0 = thread->sp0;
515 #ifdef CONFIG_X86_32
516 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
517 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
518 tss->x86_tss.ss1 = thread->sysenter_cs;
519 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
520 }
521 #endif
522 }
523
524 static inline void native_swapgs(void)
525 {
526 #ifdef CONFIG_X86_64
527 asm volatile("swapgs" ::: "memory");
528 #endif
529 }
530
531 static inline unsigned long current_top_of_stack(void)
532 {
533 #ifdef CONFIG_X86_64
534 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
535 #else
536 /* sp0 on x86_32 is special in and around vm86 mode. */
537 return this_cpu_read_stable(cpu_current_top_of_stack);
538 #endif
539 }
540
541 #ifdef CONFIG_PARAVIRT
542 #include <asm/paravirt.h>
543 #else
544 #define __cpuid native_cpuid
545
546 static inline void load_sp0(struct tss_struct *tss,
547 struct thread_struct *thread)
548 {
549 native_load_sp0(tss, thread);
550 }
551
552 #define set_iopl_mask native_set_iopl_mask
553 #endif /* CONFIG_PARAVIRT */
554
555 /* Free all resources held by a thread. */
556 extern void release_thread(struct task_struct *);
557
558 unsigned long get_wchan(struct task_struct *p);
559
560 /*
561 * Generic CPUID function
562 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
563 * resulting in stale register contents being returned.
564 */
565 static inline void cpuid(unsigned int op,
566 unsigned int *eax, unsigned int *ebx,
567 unsigned int *ecx, unsigned int *edx)
568 {
569 *eax = op;
570 *ecx = 0;
571 __cpuid(eax, ebx, ecx, edx);
572 }
573
574 /* Some CPUID calls want 'count' to be placed in ecx */
575 static inline void cpuid_count(unsigned int op, int count,
576 unsigned int *eax, unsigned int *ebx,
577 unsigned int *ecx, unsigned int *edx)
578 {
579 *eax = op;
580 *ecx = count;
581 __cpuid(eax, ebx, ecx, edx);
582 }
583
584 /*
585 * CPUID functions returning a single datum
586 */
587 static inline unsigned int cpuid_eax(unsigned int op)
588 {
589 unsigned int eax, ebx, ecx, edx;
590
591 cpuid(op, &eax, &ebx, &ecx, &edx);
592
593 return eax;
594 }
595
596 static inline unsigned int cpuid_ebx(unsigned int op)
597 {
598 unsigned int eax, ebx, ecx, edx;
599
600 cpuid(op, &eax, &ebx, &ecx, &edx);
601
602 return ebx;
603 }
604
605 static inline unsigned int cpuid_ecx(unsigned int op)
606 {
607 unsigned int eax, ebx, ecx, edx;
608
609 cpuid(op, &eax, &ebx, &ecx, &edx);
610
611 return ecx;
612 }
613
614 static inline unsigned int cpuid_edx(unsigned int op)
615 {
616 unsigned int eax, ebx, ecx, edx;
617
618 cpuid(op, &eax, &ebx, &ecx, &edx);
619
620 return edx;
621 }
622
623 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
624 static __always_inline void rep_nop(void)
625 {
626 asm volatile("rep; nop" ::: "memory");
627 }
628
629 static __always_inline void cpu_relax(void)
630 {
631 rep_nop();
632 }
633
634 /*
635 * This function forces the icache and prefetched instruction stream to
636 * catch up with reality in two very specific cases:
637 *
638 * a) Text was modified using one virtual address and is about to be executed
639 * from the same physical page at a different virtual address.
640 *
641 * b) Text was modified on a different CPU, may subsequently be
642 * executed on this CPU, and you want to make sure the new version
643 * gets executed. This generally means you're calling this in a IPI.
644 *
645 * If you're calling this for a different reason, you're probably doing
646 * it wrong.
647 */
648 static inline void sync_core(void)
649 {
650 /*
651 * There are quite a few ways to do this. IRET-to-self is nice
652 * because it works on every CPU, at any CPL (so it's compatible
653 * with paravirtualization), and it never exits to a hypervisor.
654 * The only down sides are that it's a bit slow (it seems to be
655 * a bit more than 2x slower than the fastest options) and that
656 * it unmasks NMIs. The "push %cs" is needed because, in
657 * paravirtual environments, __KERNEL_CS may not be a valid CS
658 * value when we do IRET directly.
659 *
660 * In case NMI unmasking or performance ever becomes a problem,
661 * the next best option appears to be MOV-to-CR2 and an
662 * unconditional jump. That sequence also works on all CPUs,
663 * but it will fault at CPL3 (i.e. Xen PV and lguest).
664 *
665 * CPUID is the conventional way, but it's nasty: it doesn't
666 * exist on some 486-like CPUs, and it usually exits to a
667 * hypervisor.
668 *
669 * Like all of Linux's memory ordering operations, this is a
670 * compiler barrier as well.
671 */
672 register void *__sp asm(_ASM_SP);
673
674 #ifdef CONFIG_X86_32
675 asm volatile (
676 "pushfl\n\t"
677 "pushl %%cs\n\t"
678 "pushl $1f\n\t"
679 "iret\n\t"
680 "1:"
681 : "+r" (__sp) : : "memory");
682 #else
683 unsigned int tmp;
684
685 asm volatile (
686 "mov %%ss, %0\n\t"
687 "pushq %q0\n\t"
688 "pushq %%rsp\n\t"
689 "addq $8, (%%rsp)\n\t"
690 "pushfq\n\t"
691 "mov %%cs, %0\n\t"
692 "pushq %q0\n\t"
693 "pushq $1f\n\t"
694 "iretq\n\t"
695 "1:"
696 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
697 #endif
698 }
699
700 extern void select_idle_routine(const struct cpuinfo_x86 *c);
701 extern void amd_e400_c1e_apic_setup(void);
702
703 extern unsigned long boot_option_idle_override;
704
705 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
706 IDLE_POLL};
707
708 extern void enable_sep_cpu(void);
709 extern int sysenter_setup(void);
710
711 extern void early_trap_init(void);
712 void early_trap_pf_init(void);
713
714 /* Defined in head.S */
715 extern struct desc_ptr early_gdt_descr;
716
717 extern void cpu_set_gdt(int);
718 extern void switch_to_new_gdt(int);
719 extern void load_percpu_segment(int);
720 extern void cpu_init(void);
721
722 static inline unsigned long get_debugctlmsr(void)
723 {
724 unsigned long debugctlmsr = 0;
725
726 #ifndef CONFIG_X86_DEBUGCTLMSR
727 if (boot_cpu_data.x86 < 6)
728 return 0;
729 #endif
730 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
731
732 return debugctlmsr;
733 }
734
735 static inline void update_debugctlmsr(unsigned long debugctlmsr)
736 {
737 #ifndef CONFIG_X86_DEBUGCTLMSR
738 if (boot_cpu_data.x86 < 6)
739 return;
740 #endif
741 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
742 }
743
744 extern void set_task_blockstep(struct task_struct *task, bool on);
745
746 /* Boot loader type from the setup header: */
747 extern int bootloader_type;
748 extern int bootloader_version;
749
750 extern char ignore_fpu_irq;
751
752 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
753 #define ARCH_HAS_PREFETCHW
754 #define ARCH_HAS_SPINLOCK_PREFETCH
755
756 #ifdef CONFIG_X86_32
757 # define BASE_PREFETCH ""
758 # define ARCH_HAS_PREFETCH
759 #else
760 # define BASE_PREFETCH "prefetcht0 %P1"
761 #endif
762
763 /*
764 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
765 *
766 * It's not worth to care about 3dnow prefetches for the K6
767 * because they are microcoded there and very slow.
768 */
769 static inline void prefetch(const void *x)
770 {
771 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
772 X86_FEATURE_XMM,
773 "m" (*(const char *)x));
774 }
775
776 /*
777 * 3dnow prefetch to get an exclusive cache line.
778 * Useful for spinlocks to avoid one state transition in the
779 * cache coherency protocol:
780 */
781 static inline void prefetchw(const void *x)
782 {
783 alternative_input(BASE_PREFETCH, "prefetchw %P1",
784 X86_FEATURE_3DNOWPREFETCH,
785 "m" (*(const char *)x));
786 }
787
788 static inline void spin_lock_prefetch(const void *x)
789 {
790 prefetchw(x);
791 }
792
793 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
794 TOP_OF_KERNEL_STACK_PADDING)
795
796 #ifdef CONFIG_X86_32
797 /*
798 * User space process size: 3GB (default).
799 */
800 #define TASK_SIZE PAGE_OFFSET
801 #define TASK_SIZE_MAX TASK_SIZE
802 #define STACK_TOP TASK_SIZE
803 #define STACK_TOP_MAX STACK_TOP
804
805 #define INIT_THREAD { \
806 .sp0 = TOP_OF_INIT_STACK, \
807 .sysenter_cs = __KERNEL_CS, \
808 .io_bitmap_ptr = NULL, \
809 .addr_limit = KERNEL_DS, \
810 }
811
812 /*
813 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
814 * This is necessary to guarantee that the entire "struct pt_regs"
815 * is accessible even if the CPU haven't stored the SS/ESP registers
816 * on the stack (interrupt gate does not save these registers
817 * when switching to the same priv ring).
818 * Therefore beware: accessing the ss/esp fields of the
819 * "struct pt_regs" is possible, but they may contain the
820 * completely wrong values.
821 */
822 #define task_pt_regs(task) \
823 ({ \
824 unsigned long __ptr = (unsigned long)task_stack_page(task); \
825 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
826 ((struct pt_regs *)__ptr) - 1; \
827 })
828
829 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
830
831 #else
832 /*
833 * User space process size. 47bits minus one guard page. The guard
834 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
835 * the highest possible canonical userspace address, then that
836 * syscall will enter the kernel with a non-canonical return
837 * address, and SYSRET will explode dangerously. We avoid this
838 * particular problem by preventing anything from being mapped
839 * at the maximum canonical address.
840 */
841 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
842
843 /* This decides where the kernel will search for a free chunk of vm
844 * space during mmap's.
845 */
846 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
847 0xc0000000 : 0xFFFFe000)
848
849 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
850 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
851 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
852 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
853
854 #define STACK_TOP TASK_SIZE
855 #define STACK_TOP_MAX TASK_SIZE_MAX
856
857 #define INIT_THREAD { \
858 .sp0 = TOP_OF_INIT_STACK, \
859 .addr_limit = KERNEL_DS, \
860 }
861
862 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
863 extern unsigned long KSTK_ESP(struct task_struct *task);
864
865 #endif /* CONFIG_X86_64 */
866
867 extern unsigned long thread_saved_pc(struct task_struct *tsk);
868
869 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
870 unsigned long new_sp);
871
872 /*
873 * This decides where the kernel will search for a free chunk of vm
874 * space during mmap's.
875 */
876 #define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
877
878 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
879
880 /* Get/set a process' ability to use the timestamp counter instruction */
881 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
882 #define SET_TSC_CTL(val) set_tsc_mode((val))
883
884 extern int get_tsc_mode(unsigned long adr);
885 extern int set_tsc_mode(unsigned int val);
886
887 /* Register/unregister a process' MPX related resource */
888 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
889 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
890
891 #ifdef CONFIG_X86_INTEL_MPX
892 extern int mpx_enable_management(void);
893 extern int mpx_disable_management(void);
894 #else
895 static inline int mpx_enable_management(void)
896 {
897 return -EINVAL;
898 }
899 static inline int mpx_disable_management(void)
900 {
901 return -EINVAL;
902 }
903 #endif /* CONFIG_X86_INTEL_MPX */
904
905 extern u16 amd_get_nb_id(int cpu);
906 extern u32 amd_get_nodes_per_socket(void);
907
908 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
909 {
910 uint32_t base, eax, signature[3];
911
912 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
913 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
914
915 if (!memcmp(sig, signature, 12) &&
916 (leaves == 0 || ((eax - base) >= leaves)))
917 return base;
918 }
919
920 return 0;
921 }
922
923 extern unsigned long arch_align_stack(unsigned long sp);
924 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
925
926 void default_idle(void);
927 #ifdef CONFIG_XEN
928 bool xen_set_default_idle(void);
929 #else
930 #define xen_set_default_idle 0
931 #endif
932
933 void stop_this_cpu(void *dummy);
934 void df_debug(struct pt_regs *regs, long error_code);
935 #endif /* _ASM_X86_PROCESSOR_H */