]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/processor.h
Merge tag 'for-linus-4.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / processor.h
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3
4 #include <asm/processor-flags.h>
5
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32
33 /*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39 #define NET_IP_ALIGN 0
40
41 #define HBP_NUM 4
42 /*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46 static inline void *current_text_addr(void)
47 {
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53 }
54
55 /*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN 0
66 #endif
67
68 enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71 };
72
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81 /*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head.S, so think twice
84 * before touching them. [mj]
85 */
86
87 struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92 #ifdef CONFIG_X86_32
93 char wp_works_ok; /* It doesn't on 386's */
94
95 /* Problems on some 486Dx4's and old 386's: */
96 char rfu;
97 char pad0;
98 char pad1;
99 #else
100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 int x86_tlbsize;
102 #endif
103 __u8 x86_virt_bits;
104 __u8 x86_phys_bits;
105 /* CPUID returned core id bits: */
106 __u8 x86_coreid_bits;
107 /* Max extended CPUID function supported: */
108 __u32 extended_cpuid_level;
109 /* Maximum supported CPUID level, -1=no CPUID: */
110 int cpuid_level;
111 __u32 x86_capability[NCAPINTS + NBUGINTS];
112 char x86_vendor_id[16];
113 char x86_model_id[64];
114 /* in KB - valid for CPUS which support this call: */
115 int x86_cache_size;
116 int x86_cache_alignment; /* In bytes */
117 /* Cache QoS architectural values: */
118 int x86_cache_max_rmid; /* max index */
119 int x86_cache_occ_scale; /* scale to bytes */
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 /* Index into per_cpu list: */
136 u16 cpu_index;
137 u32 microcode;
138 };
139
140 struct cpuid_regs {
141 u32 eax, ebx, ecx, edx;
142 };
143
144 enum cpuid_regs_idx {
145 CPUID_EAX = 0,
146 CPUID_EBX,
147 CPUID_ECX,
148 CPUID_EDX,
149 };
150
151 #define X86_VENDOR_INTEL 0
152 #define X86_VENDOR_CYRIX 1
153 #define X86_VENDOR_AMD 2
154 #define X86_VENDOR_UMC 3
155 #define X86_VENDOR_CENTAUR 5
156 #define X86_VENDOR_TRANSMETA 7
157 #define X86_VENDOR_NSC 8
158 #define X86_VENDOR_NUM 9
159
160 #define X86_VENDOR_UNKNOWN 0xff
161
162 /*
163 * capabilities of CPUs
164 */
165 extern struct cpuinfo_x86 boot_cpu_data;
166 extern struct cpuinfo_x86 new_cpu_data;
167
168 extern struct tss_struct doublefault_tss;
169 extern __u32 cpu_caps_cleared[NCAPINTS];
170 extern __u32 cpu_caps_set[NCAPINTS];
171
172 #ifdef CONFIG_SMP
173 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
175 #else
176 #define cpu_info boot_cpu_data
177 #define cpu_data(cpu) boot_cpu_data
178 #endif
179
180 extern const struct seq_operations cpuinfo_op;
181
182 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
183
184 extern void cpu_detect(struct cpuinfo_x86 *c);
185
186 extern void early_cpu_init(void);
187 extern void identify_boot_cpu(void);
188 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
189 extern void print_cpu_info(struct cpuinfo_x86 *);
190 void print_cpu_msr(struct cpuinfo_x86 *);
191 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
192 extern u32 get_scattered_cpuid_leaf(unsigned int level,
193 unsigned int sub_leaf,
194 enum cpuid_regs_idx reg);
195 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
196 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
197
198 extern void detect_extended_topology(struct cpuinfo_x86 *c);
199 extern void detect_ht(struct cpuinfo_x86 *c);
200
201 #ifdef CONFIG_X86_32
202 extern int have_cpuid_p(void);
203 #else
204 static inline int have_cpuid_p(void)
205 {
206 return 1;
207 }
208 #endif
209 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
210 unsigned int *ecx, unsigned int *edx)
211 {
212 /* ecx is often an input as well as an output. */
213 asm volatile("cpuid"
214 : "=a" (*eax),
215 "=b" (*ebx),
216 "=c" (*ecx),
217 "=d" (*edx)
218 : "0" (*eax), "2" (*ecx)
219 : "memory");
220 }
221
222 static inline void load_cr3(pgd_t *pgdir)
223 {
224 write_cr3(__pa(pgdir));
225 }
226
227 #ifdef CONFIG_X86_32
228 /* This is the TSS defined by the hardware. */
229 struct x86_hw_tss {
230 unsigned short back_link, __blh;
231 unsigned long sp0;
232 unsigned short ss0, __ss0h;
233 unsigned long sp1;
234
235 /*
236 * We don't use ring 1, so ss1 is a convenient scratch space in
237 * the same cacheline as sp0. We use ss1 to cache the value in
238 * MSR_IA32_SYSENTER_CS. When we context switch
239 * MSR_IA32_SYSENTER_CS, we first check if the new value being
240 * written matches ss1, and, if it's not, then we wrmsr the new
241 * value and update ss1.
242 *
243 * The only reason we context switch MSR_IA32_SYSENTER_CS is
244 * that we set it to zero in vm86 tasks to avoid corrupting the
245 * stack if we were to go through the sysenter path from vm86
246 * mode.
247 */
248 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
249
250 unsigned short __ss1h;
251 unsigned long sp2;
252 unsigned short ss2, __ss2h;
253 unsigned long __cr3;
254 unsigned long ip;
255 unsigned long flags;
256 unsigned long ax;
257 unsigned long cx;
258 unsigned long dx;
259 unsigned long bx;
260 unsigned long sp;
261 unsigned long bp;
262 unsigned long si;
263 unsigned long di;
264 unsigned short es, __esh;
265 unsigned short cs, __csh;
266 unsigned short ss, __ssh;
267 unsigned short ds, __dsh;
268 unsigned short fs, __fsh;
269 unsigned short gs, __gsh;
270 unsigned short ldt, __ldth;
271 unsigned short trace;
272 unsigned short io_bitmap_base;
273
274 } __attribute__((packed));
275 #else
276 struct x86_hw_tss {
277 u32 reserved1;
278 u64 sp0;
279 u64 sp1;
280 u64 sp2;
281 u64 reserved2;
282 u64 ist[7];
283 u32 reserved3;
284 u32 reserved4;
285 u16 reserved5;
286 u16 io_bitmap_base;
287
288 } __attribute__((packed)) ____cacheline_aligned;
289 #endif
290
291 /*
292 * IO-bitmap sizes:
293 */
294 #define IO_BITMAP_BITS 65536
295 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
296 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
297 #define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
298 #define INVALID_IO_BITMAP_OFFSET 0x8000
299
300 struct tss_struct {
301 /*
302 * The hardware state:
303 */
304 struct x86_hw_tss x86_tss;
305
306 /*
307 * The extra 1 is there because the CPU will access an
308 * additional byte beyond the end of the IO permission
309 * bitmap. The extra byte must be all 1 bits, and must
310 * be within the limit.
311 */
312 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
313
314 #ifdef CONFIG_X86_32
315 /*
316 * Space for the temporary SYSENTER stack.
317 */
318 unsigned long SYSENTER_stack_canary;
319 unsigned long SYSENTER_stack[64];
320 #endif
321
322 } ____cacheline_aligned;
323
324 DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
325
326 #ifdef CONFIG_X86_32
327 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
328 #endif
329
330 /*
331 * Save the original ist values for checking stack pointers during debugging
332 */
333 struct orig_ist {
334 unsigned long ist[7];
335 };
336
337 #ifdef CONFIG_X86_64
338 DECLARE_PER_CPU(struct orig_ist, orig_ist);
339
340 union irq_stack_union {
341 char irq_stack[IRQ_STACK_SIZE];
342 /*
343 * GCC hardcodes the stack canary as %gs:40. Since the
344 * irq_stack is the object at %gs:0, we reserve the bottom
345 * 48 bytes of the irq stack for the canary.
346 */
347 struct {
348 char gs_base[40];
349 unsigned long stack_canary;
350 };
351 };
352
353 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
354 DECLARE_INIT_PER_CPU(irq_stack_union);
355
356 DECLARE_PER_CPU(char *, irq_stack_ptr);
357 DECLARE_PER_CPU(unsigned int, irq_count);
358 extern asmlinkage void ignore_sysret(void);
359 #else /* X86_64 */
360 #ifdef CONFIG_CC_STACKPROTECTOR
361 /*
362 * Make sure stack canary segment base is cached-aligned:
363 * "For Intel Atom processors, avoid non zero segment base address
364 * that is not aligned to cache line boundary at all cost."
365 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
366 */
367 struct stack_canary {
368 char __pad[20]; /* canary at %gs:20 */
369 unsigned long canary;
370 };
371 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
372 #endif
373 /*
374 * per-CPU IRQ handling stacks
375 */
376 struct irq_stack {
377 u32 stack[THREAD_SIZE/sizeof(u32)];
378 } __aligned(THREAD_SIZE);
379
380 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
381 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
382 #endif /* X86_64 */
383
384 extern unsigned int fpu_kernel_xstate_size;
385 extern unsigned int fpu_user_xstate_size;
386
387 struct perf_event;
388
389 typedef struct {
390 unsigned long seg;
391 } mm_segment_t;
392
393 struct thread_struct {
394 /* Cached TLS descriptors: */
395 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
396 unsigned long sp0;
397 unsigned long sp;
398 #ifdef CONFIG_X86_32
399 unsigned long sysenter_cs;
400 #else
401 unsigned short es;
402 unsigned short ds;
403 unsigned short fsindex;
404 unsigned short gsindex;
405 #endif
406
407 u32 status; /* thread synchronous flags */
408
409 #ifdef CONFIG_X86_64
410 unsigned long fsbase;
411 unsigned long gsbase;
412 #else
413 /*
414 * XXX: this could presumably be unsigned short. Alternatively,
415 * 32-bit kernels could be taught to use fsindex instead.
416 */
417 unsigned long fs;
418 unsigned long gs;
419 #endif
420
421 /* Save middle states of ptrace breakpoints */
422 struct perf_event *ptrace_bps[HBP_NUM];
423 /* Debug status used for traps, single steps, etc... */
424 unsigned long debugreg6;
425 /* Keep track of the exact dr7 value set by the user */
426 unsigned long ptrace_dr7;
427 /* Fault info: */
428 unsigned long cr2;
429 unsigned long trap_nr;
430 unsigned long error_code;
431 #ifdef CONFIG_VM86
432 /* Virtual 86 mode info */
433 struct vm86 *vm86;
434 #endif
435 /* IO permissions: */
436 unsigned long *io_bitmap_ptr;
437 unsigned long iopl;
438 /* Max allowed port in the bitmap, in bytes: */
439 unsigned io_bitmap_max;
440
441 mm_segment_t addr_limit;
442
443 unsigned int sig_on_uaccess_err:1;
444 unsigned int uaccess_err:1; /* uaccess failed */
445
446 /* Floating point and extended processor state */
447 struct fpu fpu;
448 /*
449 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
450 * the end.
451 */
452 };
453
454 /*
455 * Thread-synchronous status.
456 *
457 * This is different from the flags in that nobody else
458 * ever touches our thread-synchronous status, so we don't
459 * have to worry about atomic accesses.
460 */
461 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
462
463 /*
464 * Set IOPL bits in EFLAGS from given mask
465 */
466 static inline void native_set_iopl_mask(unsigned mask)
467 {
468 #ifdef CONFIG_X86_32
469 unsigned int reg;
470
471 asm volatile ("pushfl;"
472 "popl %0;"
473 "andl %1, %0;"
474 "orl %2, %0;"
475 "pushl %0;"
476 "popfl"
477 : "=&r" (reg)
478 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
479 #endif
480 }
481
482 static inline void
483 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
484 {
485 tss->x86_tss.sp0 = thread->sp0;
486 #ifdef CONFIG_X86_32
487 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
488 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
489 tss->x86_tss.ss1 = thread->sysenter_cs;
490 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
491 }
492 #endif
493 }
494
495 static inline void native_swapgs(void)
496 {
497 #ifdef CONFIG_X86_64
498 asm volatile("swapgs" ::: "memory");
499 #endif
500 }
501
502 static inline unsigned long current_top_of_stack(void)
503 {
504 #ifdef CONFIG_X86_64
505 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
506 #else
507 /* sp0 on x86_32 is special in and around vm86 mode. */
508 return this_cpu_read_stable(cpu_current_top_of_stack);
509 #endif
510 }
511
512 #ifdef CONFIG_PARAVIRT
513 #include <asm/paravirt.h>
514 #else
515 #define __cpuid native_cpuid
516
517 static inline void load_sp0(struct tss_struct *tss,
518 struct thread_struct *thread)
519 {
520 native_load_sp0(tss, thread);
521 }
522
523 #define set_iopl_mask native_set_iopl_mask
524 #endif /* CONFIG_PARAVIRT */
525
526 /* Free all resources held by a thread. */
527 extern void release_thread(struct task_struct *);
528
529 unsigned long get_wchan(struct task_struct *p);
530
531 /*
532 * Generic CPUID function
533 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
534 * resulting in stale register contents being returned.
535 */
536 static inline void cpuid(unsigned int op,
537 unsigned int *eax, unsigned int *ebx,
538 unsigned int *ecx, unsigned int *edx)
539 {
540 *eax = op;
541 *ecx = 0;
542 __cpuid(eax, ebx, ecx, edx);
543 }
544
545 /* Some CPUID calls want 'count' to be placed in ecx */
546 static inline void cpuid_count(unsigned int op, int count,
547 unsigned int *eax, unsigned int *ebx,
548 unsigned int *ecx, unsigned int *edx)
549 {
550 *eax = op;
551 *ecx = count;
552 __cpuid(eax, ebx, ecx, edx);
553 }
554
555 /*
556 * CPUID functions returning a single datum
557 */
558 static inline unsigned int cpuid_eax(unsigned int op)
559 {
560 unsigned int eax, ebx, ecx, edx;
561
562 cpuid(op, &eax, &ebx, &ecx, &edx);
563
564 return eax;
565 }
566
567 static inline unsigned int cpuid_ebx(unsigned int op)
568 {
569 unsigned int eax, ebx, ecx, edx;
570
571 cpuid(op, &eax, &ebx, &ecx, &edx);
572
573 return ebx;
574 }
575
576 static inline unsigned int cpuid_ecx(unsigned int op)
577 {
578 unsigned int eax, ebx, ecx, edx;
579
580 cpuid(op, &eax, &ebx, &ecx, &edx);
581
582 return ecx;
583 }
584
585 static inline unsigned int cpuid_edx(unsigned int op)
586 {
587 unsigned int eax, ebx, ecx, edx;
588
589 cpuid(op, &eax, &ebx, &ecx, &edx);
590
591 return edx;
592 }
593
594 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
595 static __always_inline void rep_nop(void)
596 {
597 asm volatile("rep; nop" ::: "memory");
598 }
599
600 static __always_inline void cpu_relax(void)
601 {
602 rep_nop();
603 }
604
605 /*
606 * This function forces the icache and prefetched instruction stream to
607 * catch up with reality in two very specific cases:
608 *
609 * a) Text was modified using one virtual address and is about to be executed
610 * from the same physical page at a different virtual address.
611 *
612 * b) Text was modified on a different CPU, may subsequently be
613 * executed on this CPU, and you want to make sure the new version
614 * gets executed. This generally means you're calling this in a IPI.
615 *
616 * If you're calling this for a different reason, you're probably doing
617 * it wrong.
618 */
619 static inline void sync_core(void)
620 {
621 /*
622 * There are quite a few ways to do this. IRET-to-self is nice
623 * because it works on every CPU, at any CPL (so it's compatible
624 * with paravirtualization), and it never exits to a hypervisor.
625 * The only down sides are that it's a bit slow (it seems to be
626 * a bit more than 2x slower than the fastest options) and that
627 * it unmasks NMIs. The "push %cs" is needed because, in
628 * paravirtual environments, __KERNEL_CS may not be a valid CS
629 * value when we do IRET directly.
630 *
631 * In case NMI unmasking or performance ever becomes a problem,
632 * the next best option appears to be MOV-to-CR2 and an
633 * unconditional jump. That sequence also works on all CPUs,
634 * but it will fault at CPL3 (i.e. Xen PV and lguest).
635 *
636 * CPUID is the conventional way, but it's nasty: it doesn't
637 * exist on some 486-like CPUs, and it usually exits to a
638 * hypervisor.
639 *
640 * Like all of Linux's memory ordering operations, this is a
641 * compiler barrier as well.
642 */
643 register void *__sp asm(_ASM_SP);
644
645 #ifdef CONFIG_X86_32
646 asm volatile (
647 "pushfl\n\t"
648 "pushl %%cs\n\t"
649 "pushl $1f\n\t"
650 "iret\n\t"
651 "1:"
652 : "+r" (__sp) : : "memory");
653 #else
654 unsigned int tmp;
655
656 asm volatile (
657 "mov %%ss, %0\n\t"
658 "pushq %q0\n\t"
659 "pushq %%rsp\n\t"
660 "addq $8, (%%rsp)\n\t"
661 "pushfq\n\t"
662 "mov %%cs, %0\n\t"
663 "pushq %q0\n\t"
664 "pushq $1f\n\t"
665 "iretq\n\t"
666 "1:"
667 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
668 #endif
669 }
670
671 extern void select_idle_routine(const struct cpuinfo_x86 *c);
672 extern void amd_e400_c1e_apic_setup(void);
673
674 extern unsigned long boot_option_idle_override;
675
676 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
677 IDLE_POLL};
678
679 extern void enable_sep_cpu(void);
680 extern int sysenter_setup(void);
681
682 extern void early_trap_init(void);
683 void early_trap_pf_init(void);
684
685 /* Defined in head.S */
686 extern struct desc_ptr early_gdt_descr;
687
688 extern void cpu_set_gdt(int);
689 extern void switch_to_new_gdt(int);
690 extern void load_percpu_segment(int);
691 extern void cpu_init(void);
692
693 static inline unsigned long get_debugctlmsr(void)
694 {
695 unsigned long debugctlmsr = 0;
696
697 #ifndef CONFIG_X86_DEBUGCTLMSR
698 if (boot_cpu_data.x86 < 6)
699 return 0;
700 #endif
701 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
702
703 return debugctlmsr;
704 }
705
706 static inline void update_debugctlmsr(unsigned long debugctlmsr)
707 {
708 #ifndef CONFIG_X86_DEBUGCTLMSR
709 if (boot_cpu_data.x86 < 6)
710 return;
711 #endif
712 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
713 }
714
715 extern void set_task_blockstep(struct task_struct *task, bool on);
716
717 /* Boot loader type from the setup header: */
718 extern int bootloader_type;
719 extern int bootloader_version;
720
721 extern char ignore_fpu_irq;
722
723 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
724 #define ARCH_HAS_PREFETCHW
725 #define ARCH_HAS_SPINLOCK_PREFETCH
726
727 #ifdef CONFIG_X86_32
728 # define BASE_PREFETCH ""
729 # define ARCH_HAS_PREFETCH
730 #else
731 # define BASE_PREFETCH "prefetcht0 %P1"
732 #endif
733
734 /*
735 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
736 *
737 * It's not worth to care about 3dnow prefetches for the K6
738 * because they are microcoded there and very slow.
739 */
740 static inline void prefetch(const void *x)
741 {
742 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
743 X86_FEATURE_XMM,
744 "m" (*(const char *)x));
745 }
746
747 /*
748 * 3dnow prefetch to get an exclusive cache line.
749 * Useful for spinlocks to avoid one state transition in the
750 * cache coherency protocol:
751 */
752 static inline void prefetchw(const void *x)
753 {
754 alternative_input(BASE_PREFETCH, "prefetchw %P1",
755 X86_FEATURE_3DNOWPREFETCH,
756 "m" (*(const char *)x));
757 }
758
759 static inline void spin_lock_prefetch(const void *x)
760 {
761 prefetchw(x);
762 }
763
764 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
765 TOP_OF_KERNEL_STACK_PADDING)
766
767 #ifdef CONFIG_X86_32
768 /*
769 * User space process size: 3GB (default).
770 */
771 #define TASK_SIZE PAGE_OFFSET
772 #define TASK_SIZE_MAX TASK_SIZE
773 #define STACK_TOP TASK_SIZE
774 #define STACK_TOP_MAX STACK_TOP
775
776 #define INIT_THREAD { \
777 .sp0 = TOP_OF_INIT_STACK, \
778 .sysenter_cs = __KERNEL_CS, \
779 .io_bitmap_ptr = NULL, \
780 .addr_limit = KERNEL_DS, \
781 }
782
783 /*
784 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
785 * This is necessary to guarantee that the entire "struct pt_regs"
786 * is accessible even if the CPU haven't stored the SS/ESP registers
787 * on the stack (interrupt gate does not save these registers
788 * when switching to the same priv ring).
789 * Therefore beware: accessing the ss/esp fields of the
790 * "struct pt_regs" is possible, but they may contain the
791 * completely wrong values.
792 */
793 #define task_pt_regs(task) \
794 ({ \
795 unsigned long __ptr = (unsigned long)task_stack_page(task); \
796 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
797 ((struct pt_regs *)__ptr) - 1; \
798 })
799
800 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
801
802 #else
803 /*
804 * User space process size. 47bits minus one guard page. The guard
805 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
806 * the highest possible canonical userspace address, then that
807 * syscall will enter the kernel with a non-canonical return
808 * address, and SYSRET will explode dangerously. We avoid this
809 * particular problem by preventing anything from being mapped
810 * at the maximum canonical address.
811 */
812 #define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
813
814 /* This decides where the kernel will search for a free chunk of vm
815 * space during mmap's.
816 */
817 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
818 0xc0000000 : 0xFFFFe000)
819
820 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
821 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
822 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
823 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
824
825 #define STACK_TOP TASK_SIZE
826 #define STACK_TOP_MAX TASK_SIZE_MAX
827
828 #define INIT_THREAD { \
829 .sp0 = TOP_OF_INIT_STACK, \
830 .addr_limit = KERNEL_DS, \
831 }
832
833 #define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
834 extern unsigned long KSTK_ESP(struct task_struct *task);
835
836 #endif /* CONFIG_X86_64 */
837
838 extern unsigned long thread_saved_pc(struct task_struct *tsk);
839
840 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
841 unsigned long new_sp);
842
843 /*
844 * This decides where the kernel will search for a free chunk of vm
845 * space during mmap's.
846 */
847 #define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
848
849 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
850
851 /* Get/set a process' ability to use the timestamp counter instruction */
852 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
853 #define SET_TSC_CTL(val) set_tsc_mode((val))
854
855 extern int get_tsc_mode(unsigned long adr);
856 extern int set_tsc_mode(unsigned int val);
857
858 /* Register/unregister a process' MPX related resource */
859 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
860 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
861
862 #ifdef CONFIG_X86_INTEL_MPX
863 extern int mpx_enable_management(void);
864 extern int mpx_disable_management(void);
865 #else
866 static inline int mpx_enable_management(void)
867 {
868 return -EINVAL;
869 }
870 static inline int mpx_disable_management(void)
871 {
872 return -EINVAL;
873 }
874 #endif /* CONFIG_X86_INTEL_MPX */
875
876 extern u16 amd_get_nb_id(int cpu);
877 extern u32 amd_get_nodes_per_socket(void);
878
879 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
880 {
881 uint32_t base, eax, signature[3];
882
883 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
884 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
885
886 if (!memcmp(sig, signature, 12) &&
887 (leaves == 0 || ((eax - base) >= leaves)))
888 return base;
889 }
890
891 return 0;
892 }
893
894 extern unsigned long arch_align_stack(unsigned long sp);
895 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
896
897 void default_idle(void);
898 #ifdef CONFIG_XEN
899 bool xen_set_default_idle(void);
900 #else
901 #define xen_set_default_idle 0
902 #endif
903
904 void stop_this_cpu(void *dummy);
905 void df_debug(struct pt_regs *regs, long error_code);
906 #endif /* _ASM_X86_PROCESSOR_H */