]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/include/asm/spinlock.h
Merge remote-tracking branch 'agust/next' into merge
[mirror_ubuntu-artful-kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10 * Your basic SMP spinlocks, allowing only a single CPU anywhere
11 *
12 * Simple spin lock operations. There are two variants, one clears IRQ's
13 * on the local processor, one does not.
14 *
15 * These are fair FIFO ticket locks, which are currently limited to 256
16 * CPUs.
17 *
18 * (the type definitions are in asm/spinlock_types.h)
19 */
20
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
28
29 #if defined(CONFIG_X86_32) && \
30 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
31 /*
32 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33 * (PPro errata 66, 92)
34 */
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
39
40 /*
41 * Ticket locks are conceptually two parts, one indicating the current head of
42 * the queue, and the other indicating the current tail. The lock is acquired
43 * by atomically noting the tail and incrementing it by one (thus adding
44 * ourself to the queue and noting our position), then waiting until the head
45 * becomes equal to the the initial value of the tail.
46 *
47 * We use an xadd covering *both* parts of the lock, to increment the tail and
48 * also load the position of the head, which takes care of memory ordering
49 * issues and should be optimal for the uncontended case. Note the tail must be
50 * in the high part, because a wide xadd increment of the low part would carry
51 * up and contaminate the high part.
52 */
53 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
54 {
55 register struct __raw_tickets inc = { .tail = 1 };
56
57 inc = xadd(&lock->tickets, inc);
58
59 for (;;) {
60 if (inc.head == inc.tail)
61 break;
62 cpu_relax();
63 inc.head = ACCESS_ONCE(lock->tickets.head);
64 }
65 barrier(); /* make sure nothing creeps before the lock is taken */
66 }
67
68 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
69 {
70 arch_spinlock_t old, new;
71
72 old.tickets = ACCESS_ONCE(lock->tickets);
73 if (old.tickets.head != old.tickets.tail)
74 return 0;
75
76 new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
77
78 /* cmpxchg is a full barrier, so nothing can move before it */
79 return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
80 }
81
82 #if (NR_CPUS < 256)
83 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
84 {
85 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
86 : "+m" (lock->head_tail)
87 :
88 : "memory", "cc");
89 }
90 #else
91 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
92 {
93 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
94 : "+m" (lock->head_tail)
95 :
96 : "memory", "cc");
97 }
98 #endif
99
100 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
101 {
102 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
103
104 return !!(tmp.tail ^ tmp.head);
105 }
106
107 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
108 {
109 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
110
111 return ((tmp.tail - tmp.head) & TICKET_MASK) > 1;
112 }
113
114 #ifndef CONFIG_PARAVIRT_SPINLOCKS
115
116 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
117 {
118 return __ticket_spin_is_locked(lock);
119 }
120
121 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
122 {
123 return __ticket_spin_is_contended(lock);
124 }
125 #define arch_spin_is_contended arch_spin_is_contended
126
127 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
128 {
129 __ticket_spin_lock(lock);
130 }
131
132 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
133 {
134 return __ticket_spin_trylock(lock);
135 }
136
137 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
138 {
139 __ticket_spin_unlock(lock);
140 }
141
142 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
143 unsigned long flags)
144 {
145 arch_spin_lock(lock);
146 }
147
148 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
149
150 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
151 {
152 while (arch_spin_is_locked(lock))
153 cpu_relax();
154 }
155
156 /*
157 * Read-write spinlocks, allowing multiple readers
158 * but only one writer.
159 *
160 * NOTE! it is quite common to have readers in interrupts
161 * but no interrupt writers. For those circumstances we
162 * can "mix" irq-safe locks - any writer needs to get a
163 * irq-safe write-lock, but readers can get non-irqsafe
164 * read-locks.
165 *
166 * On x86, we implement read-write locks as a 32-bit counter
167 * with the high bit (sign) being the "contended" bit.
168 */
169
170 /**
171 * read_can_lock - would read_trylock() succeed?
172 * @lock: the rwlock in question.
173 */
174 static inline int arch_read_can_lock(arch_rwlock_t *lock)
175 {
176 return lock->lock > 0;
177 }
178
179 /**
180 * write_can_lock - would write_trylock() succeed?
181 * @lock: the rwlock in question.
182 */
183 static inline int arch_write_can_lock(arch_rwlock_t *lock)
184 {
185 return lock->write == WRITE_LOCK_CMP;
186 }
187
188 static inline void arch_read_lock(arch_rwlock_t *rw)
189 {
190 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
191 "jns 1f\n"
192 "call __read_lock_failed\n\t"
193 "1:\n"
194 ::LOCK_PTR_REG (rw) : "memory");
195 }
196
197 static inline void arch_write_lock(arch_rwlock_t *rw)
198 {
199 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
200 "jz 1f\n"
201 "call __write_lock_failed\n\t"
202 "1:\n"
203 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
204 : "memory");
205 }
206
207 static inline int arch_read_trylock(arch_rwlock_t *lock)
208 {
209 READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
210
211 if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
212 return 1;
213 READ_LOCK_ATOMIC(inc)(count);
214 return 0;
215 }
216
217 static inline int arch_write_trylock(arch_rwlock_t *lock)
218 {
219 atomic_t *count = (atomic_t *)&lock->write;
220
221 if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
222 return 1;
223 atomic_add(WRITE_LOCK_CMP, count);
224 return 0;
225 }
226
227 static inline void arch_read_unlock(arch_rwlock_t *rw)
228 {
229 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
230 :"+m" (rw->lock) : : "memory");
231 }
232
233 static inline void arch_write_unlock(arch_rwlock_t *rw)
234 {
235 asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
236 : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
237 }
238
239 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
240 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
241
242 #undef READ_LOCK_SIZE
243 #undef READ_LOCK_ATOMIC
244 #undef WRITE_LOCK_ADD
245 #undef WRITE_LOCK_SUB
246 #undef WRITE_LOCK_CMP
247
248 #define arch_spin_relax(lock) cpu_relax()
249 #define arch_read_relax(lock) cpu_relax()
250 #define arch_write_relax(lock) cpu_relax()
251
252 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
253 static inline void smp_mb__after_lock(void) { }
254 #define ARCH_HAS_SMP_MB_AFTER_LOCK
255
256 #endif /* _ASM_X86_SPINLOCK_H */