]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/include/asm/tlbflush.h
490a706fdba810ae50c3e85df7522871fcd768f6
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / include / asm / tlbflush.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13
14 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
15 {
16 /*
17 * Bump the generation count. This also serves as a full barrier
18 * that synchronizes with switch_mm(): callers are required to order
19 * their read of mm_cpumask after their writes to the paging
20 * structures.
21 */
22 return atomic64_inc_return(&mm->context.tlb_gen);
23 }
24
25 /* There are 12 bits of space for ASIDS in CR3 */
26 #define CR3_HW_ASID_BITS 12
27 /*
28 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
29 * user/kernel switches
30 */
31 #define PTI_CONSUMED_ASID_BITS 0
32
33 #define CR3_AVAIL_ASID_BITS (CR3_HW_ASID_BITS - PTI_CONSUMED_ASID_BITS)
34 /*
35 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
36 * for them being zero-based. Another -1 is because ASID 0 is reserved for
37 * use by non-PCID-aware users.
38 */
39 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_ASID_BITS) - 2)
40
41 static inline u16 kern_pcid(u16 asid)
42 {
43 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
44 /*
45 * If PCID is on, ASID-aware code paths put the ASID+1 into the
46 * PCID bits. This serves two purposes. It prevents a nasty
47 * situation in which PCID-unaware code saves CR3, loads some other
48 * value (with PCID == 0), and then restores CR3, thus corrupting
49 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
50 * that any bugs involving loading a PCID-enabled CR3 with
51 * CR4.PCIDE off will trigger deterministically.
52 */
53 return asid + 1;
54 }
55
56 struct pgd_t;
57 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
58 {
59 if (static_cpu_has(X86_FEATURE_PCID)) {
60 return __sme_pa(pgd) | kern_pcid(asid);
61 } else {
62 VM_WARN_ON_ONCE(asid != 0);
63 return __sme_pa(pgd);
64 }
65 }
66
67 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
68 {
69 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
70 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
71 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
72 }
73
74 #ifdef CONFIG_PARAVIRT
75 #include <asm/paravirt.h>
76 #else
77 #define __flush_tlb() __native_flush_tlb()
78 #define __flush_tlb_global() __native_flush_tlb_global()
79 #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
80 #endif
81
82 static inline bool tlb_defer_switch_to_init_mm(void)
83 {
84 /*
85 * If we have PCID, then switching to init_mm is reasonably
86 * fast. If we don't have PCID, then switching to init_mm is
87 * quite slow, so we try to defer it in the hopes that we can
88 * avoid it entirely. The latter approach runs the risk of
89 * receiving otherwise unnecessary IPIs.
90 *
91 * This choice is just a heuristic. The tlb code can handle this
92 * function returning true or false regardless of whether we have
93 * PCID.
94 */
95 return !static_cpu_has(X86_FEATURE_PCID);
96 }
97
98 /*
99 * 6 because 6 should be plenty and struct tlb_state will fit in
100 * two cache lines.
101 */
102 #define TLB_NR_DYN_ASIDS 6
103
104 struct tlb_context {
105 u64 ctx_id;
106 u64 tlb_gen;
107 };
108
109 struct tlb_state {
110 /*
111 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
112 * are on. This means that it may not match current->active_mm,
113 * which will contain the previous user mm when we're in lazy TLB
114 * mode even if we've already switched back to swapper_pg_dir.
115 */
116 struct mm_struct *loaded_mm;
117 u16 loaded_mm_asid;
118 u16 next_asid;
119
120 /*
121 * We can be in one of several states:
122 *
123 * - Actively using an mm. Our CPU's bit will be set in
124 * mm_cpumask(loaded_mm) and is_lazy == false;
125 *
126 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
127 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
128 *
129 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
130 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
131 * We're heuristically guessing that the CR3 load we
132 * skipped more than makes up for the overhead added by
133 * lazy mode.
134 */
135 bool is_lazy;
136
137 /*
138 * If set we changed the page tables in such a way that we
139 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
140 * This tells us to go invalidate all the non-loaded ctxs[]
141 * on the next context switch.
142 *
143 * The current ctx was kept up-to-date as it ran and does not
144 * need to be invalidated.
145 */
146 bool invalidate_other;
147
148 /*
149 * Access to this CR4 shadow and to H/W CR4 is protected by
150 * disabling interrupts when modifying either one.
151 */
152 unsigned long cr4;
153
154 /*
155 * This is a list of all contexts that might exist in the TLB.
156 * There is one per ASID that we use, and the ASID (what the
157 * CPU calls PCID) is the index into ctxts.
158 *
159 * For each context, ctx_id indicates which mm the TLB's user
160 * entries came from. As an invariant, the TLB will never
161 * contain entries that are out-of-date as when that mm reached
162 * the tlb_gen in the list.
163 *
164 * To be clear, this means that it's legal for the TLB code to
165 * flush the TLB without updating tlb_gen. This can happen
166 * (for now, at least) due to paravirt remote flushes.
167 *
168 * NB: context 0 is a bit special, since it's also used by
169 * various bits of init code. This is fine -- code that
170 * isn't aware of PCID will end up harmlessly flushing
171 * context 0.
172 */
173 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
174 };
175 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
176
177 /* Initialize cr4 shadow for this CPU. */
178 static inline void cr4_init_shadow(void)
179 {
180 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
181 }
182
183 /* Set in this cpu's CR4. */
184 static inline void cr4_set_bits(unsigned long mask)
185 {
186 unsigned long cr4;
187
188 cr4 = this_cpu_read(cpu_tlbstate.cr4);
189 if ((cr4 | mask) != cr4) {
190 cr4 |= mask;
191 this_cpu_write(cpu_tlbstate.cr4, cr4);
192 __write_cr4(cr4);
193 }
194 }
195
196 /* Clear in this cpu's CR4. */
197 static inline void cr4_clear_bits(unsigned long mask)
198 {
199 unsigned long cr4;
200
201 cr4 = this_cpu_read(cpu_tlbstate.cr4);
202 if ((cr4 & ~mask) != cr4) {
203 cr4 &= ~mask;
204 this_cpu_write(cpu_tlbstate.cr4, cr4);
205 __write_cr4(cr4);
206 }
207 }
208
209 static inline void cr4_toggle_bits(unsigned long mask)
210 {
211 unsigned long cr4;
212
213 cr4 = this_cpu_read(cpu_tlbstate.cr4);
214 cr4 ^= mask;
215 this_cpu_write(cpu_tlbstate.cr4, cr4);
216 __write_cr4(cr4);
217 }
218
219 /* Read the CR4 shadow. */
220 static inline unsigned long cr4_read_shadow(void)
221 {
222 return this_cpu_read(cpu_tlbstate.cr4);
223 }
224
225 /*
226 * Mark all other ASIDs as invalid, preserves the current.
227 */
228 static inline void invalidate_other_asid(void)
229 {
230 this_cpu_write(cpu_tlbstate.invalidate_other, true);
231 }
232
233 /*
234 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
235 * enable and PPro Global page enable), so that any CPU's that boot
236 * up after us can get the correct flags. This should only be used
237 * during boot on the boot cpu.
238 */
239 extern unsigned long mmu_cr4_features;
240 extern u32 *trampoline_cr4_features;
241
242 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
243 {
244 mmu_cr4_features |= mask;
245 if (trampoline_cr4_features)
246 *trampoline_cr4_features = mmu_cr4_features;
247 cr4_set_bits(mask);
248 }
249
250 extern void initialize_tlbstate_and_flush(void);
251
252 /*
253 * flush the entire current user mapping
254 */
255 static inline void __native_flush_tlb(void)
256 {
257 /*
258 * If current->mm == NULL then we borrow a mm which may change during a
259 * task switch and therefore we must not be preempted while we write CR3
260 * back:
261 */
262 preempt_disable();
263 native_write_cr3(__native_read_cr3());
264 preempt_enable();
265 }
266
267 /*
268 * flush everything
269 */
270 static inline void __native_flush_tlb_global(void)
271 {
272 unsigned long cr4, flags;
273
274 if (static_cpu_has(X86_FEATURE_INVPCID)) {
275 /*
276 * Using INVPCID is considerably faster than a pair of writes
277 * to CR4 sandwiched inside an IRQ flag save/restore.
278 */
279 invpcid_flush_all();
280 return;
281 }
282
283 /*
284 * Read-modify-write to CR4 - protect it from preemption and
285 * from interrupts. (Use the raw variant because this code can
286 * be called from deep inside debugging code.)
287 */
288 raw_local_irq_save(flags);
289
290 cr4 = this_cpu_read(cpu_tlbstate.cr4);
291 /* toggle PGE */
292 native_write_cr4(cr4 ^ X86_CR4_PGE);
293 /* write old PGE again and flush TLBs */
294 native_write_cr4(cr4);
295
296 raw_local_irq_restore(flags);
297 }
298
299 /*
300 * flush one page in the user mapping
301 */
302 static inline void __native_flush_tlb_single(unsigned long addr)
303 {
304 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
305 }
306
307 /*
308 * flush everything
309 */
310 static inline void __flush_tlb_all(void)
311 {
312 if (boot_cpu_has(X86_FEATURE_PGE)) {
313 __flush_tlb_global();
314 } else {
315 /*
316 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
317 */
318 __flush_tlb();
319 }
320 }
321
322 /*
323 * flush one page in the kernel mapping
324 */
325 static inline void __flush_tlb_one(unsigned long addr)
326 {
327 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
328 __flush_tlb_single(addr);
329
330 if (!static_cpu_has(X86_FEATURE_PTI))
331 return;
332
333 /*
334 * __flush_tlb_single() will have cleared the TLB entry for this ASID,
335 * but since kernel space is replicated across all, we must also
336 * invalidate all others.
337 */
338 invalidate_other_asid();
339 }
340
341 #define TLB_FLUSH_ALL -1UL
342
343 /*
344 * TLB flushing:
345 *
346 * - flush_tlb_all() flushes all processes TLBs
347 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
348 * - flush_tlb_page(vma, vmaddr) flushes one page
349 * - flush_tlb_range(vma, start, end) flushes a range of pages
350 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
351 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
352 *
353 * ..but the i386 has somewhat limited tlb flushing capabilities,
354 * and page-granular flushes are available only on i486 and up.
355 */
356 struct flush_tlb_info {
357 /*
358 * We support several kinds of flushes.
359 *
360 * - Fully flush a single mm. .mm will be set, .end will be
361 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
362 * which the IPI sender is trying to catch us up.
363 *
364 * - Partially flush a single mm. .mm will be set, .start and
365 * .end will indicate the range, and .new_tlb_gen will be set
366 * such that the changes between generation .new_tlb_gen-1 and
367 * .new_tlb_gen are entirely contained in the indicated range.
368 *
369 * - Fully flush all mms whose tlb_gens have been updated. .mm
370 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
371 * will be zero.
372 */
373 struct mm_struct *mm;
374 unsigned long start;
375 unsigned long end;
376 u64 new_tlb_gen;
377 };
378
379 #define local_flush_tlb() __flush_tlb()
380
381 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
382
383 #define flush_tlb_range(vma, start, end) \
384 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
385
386 extern void flush_tlb_all(void);
387 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
388 unsigned long end, unsigned long vmflag);
389 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
390
391 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
392 {
393 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
394 }
395
396 void native_flush_tlb_others(const struct cpumask *cpumask,
397 const struct flush_tlb_info *info);
398
399 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
400 struct mm_struct *mm)
401 {
402 inc_mm_tlb_gen(mm);
403 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
404 }
405
406 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
407
408 #ifndef CONFIG_PARAVIRT
409 #define flush_tlb_others(mask, info) \
410 native_flush_tlb_others(mask, info)
411 #endif
412
413 #endif /* _ASM_X86_TLBFLUSH_H */